JPH03140475A - Method for introducing liquid into micropore - Google Patents

Method for introducing liquid into micropore

Info

Publication number
JPH03140475A
JPH03140475A JP27835289A JP27835289A JPH03140475A JP H03140475 A JPH03140475 A JP H03140475A JP 27835289 A JP27835289 A JP 27835289A JP 27835289 A JP27835289 A JP 27835289A JP H03140475 A JPH03140475 A JP H03140475A
Authority
JP
Japan
Prior art keywords
liquid
boiling
base material
micropores
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27835289A
Other languages
Japanese (ja)
Other versions
JP2695489B2 (en
Inventor
Shigenobu Nojiyou
能條 重信
Hideho Inagawa
秀穂 稲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27835289A priority Critical patent/JP2695489B2/en
Publication of JPH03140475A publication Critical patent/JPH03140475A/en
Application granted granted Critical
Publication of JP2695489B2 publication Critical patent/JP2695489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To introduce liquid into micropores in a short time by introducing a boiling matter soluble in a liquid into micropores in a base material and bringing the micropores into contact with a nonboiling liquid while maintaining the state where the above boiling matter is kept being introduced. CONSTITUTION:A liquid is introduced into micropores in a base material 1. For this purpose, the base material 1 is placed into a vessel 3, and a boiling vapor 6 and/or boiling liquid soluble in a liquid is introduced into the micropores in the base material 1. Then, while keeping the state of introduction, the micropores 2 are brought into contact with a nonboiling liquid 9. At this time, water vapor is used as the above boiling vapor, and water or a solution in which water is used as a solvent are used as the above boiling liquid and the above nonboiling liquid. By this method, the cost of equipment can be reduced and economized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基材に形成されている微小穴内に液体を導入す
る方法に関する。本発明は、たとえばプリント配線基板
において両面間の導通をとるための導体膜の形成される
微小穴内壁面にメツキ処理等を施す際に前処理のための
液体を導入するのに有効に適用される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for introducing a liquid into microholes formed in a substrate. INDUSTRIAL APPLICABILITY The present invention is effectively applied, for example, to introducing a liquid for pretreatment when performing plating treatment on the inner wall surface of a microhole on which a conductive film is formed to establish conduction between both surfaces of a printed wiring board. .

[従来の技術及び発明が解決しようとする課題]通常、
微小穴を有する基材に、湿式法により水溶液を用いて洗
浄、メツキ、エツチング等の処理を施す場合には、該基
材の表面全体にわたり液体を接触させる必要がある。し
かし、液体は基材の外部表面には容易に接触するが、微
小穴内部には液体が入りに(く、該液体は穴内壁面とは
接触しにくい。
[Prior art and problems to be solved by the invention] Usually,
When cleaning, plating, etching, or the like a wet method using an aqueous solution on a substrate having micropores, it is necessary to bring the entire surface of the substrate into contact with the liquid. However, although the liquid easily comes into contact with the outer surface of the base material, it is difficult for the liquid to enter the inside of the micropores, and the liquid hardly comes into contact with the inner wall surfaces of the holes.

第3図はその様子を説明するための模式的断面図である
。第3図の(a)に示す様に、微小穴2を有する基材1
を空気の様な気体7中におき、しかる後に、第3図の(
b)に示す様に、該基材を液体5中に浸漬すると、微小
穴内に気体7が気泡として残留し、このため液体5が接
触しない穴内壁面部分が生ずる。
FIG. 3 is a schematic cross-sectional view for explaining the situation. As shown in FIG. 3(a), a base material 1 having microholes 2
is placed in a gas 7 such as air, and then the (
As shown in b), when the base material is immersed in the liquid 5, the gas 7 remains as bubbles in the microholes, thereby creating a portion of the inner wall surface of the hole that the liquid 5 does not come into contact with.

特に、プリント配線基板の様に、穴内壁面にメツキ皮膜
を形成する場合には、適宜の水溶液を用いて脱脂処理工
程、触媒処理工程、無電解メツキ処理工程、電気メツキ
処理工程及び各処理工程間の水洗処理工程等の多数の工
程を有しているため、前記穴内に気体が残留する問題は
、プリント配線基板に重大な不良を生ずる原因となる。
In particular, when forming a plating film on the inner wall surface of a hole such as in a printed wiring board, an appropriate aqueous solution is used to perform the degreasing process, catalyst treatment process, electroless plating process, electroplating process, and between each process. Since there are many processes such as a water washing process, the problem of gas remaining in the holes can cause serious defects in the printed wiring board.

近年、プリント配線基板は、配線密度が高まっているた
めに、次第に穴径が小さ(なっており、穴径0.1mm
φ程度のものが要求される様になってきている。そこで
、この様な微小穴内に液体を導入する方法として、たと
えば、特開昭62−154797号公報及び特開昭62
−190794号公報に提案がなされている。
In recent years, as the wiring density of printed wiring boards has increased, the hole diameter has gradually become smaller (with a hole diameter of 0.1 mm).
There is a growing demand for something of the order of φ. Therefore, as a method of introducing liquid into such a microhole, for example, Japanese Patent Application Laid-Open No. 62-154797 and Japanese Patent Application Laid-open No. 62-154
A proposal has been made in Publication No.-190794.

しかしながら、上記特開昭62−154797号公報の
提案は、振動脱泡装置を用いて基材を振動させることに
より穴内の空気を追い出し、液体を導入する方法である
が、この方法では穴開口付近の空気は容易に除去できる
ものの、穴内中央部分の空気を追い出して液体を導入す
ることはなかなか困難であり、信頼性が未だ十分でない
という問題点がある。
However, the proposal in JP-A No. 62-154797 uses a vibrating defoaming device to vibrate the base material to drive out the air in the holes and introduce liquid; Although the air in the hole can be easily removed, it is difficult to expel the air in the center of the hole and introduce the liquid, and there is a problem that the reliability is still insufficient.

また、上記特開昭62−190794号公報の提案は、
真空脱泡槽を減圧し穴内の空気を取り去り、フラックス
溶液を穴内に導入する方法である。この方法は、完全に
真空にできれば、極めて信頼性の高い方法であるが、槽
全体を密閉式とする必要があり、装置を強固なものとし
、空気漏れのない様な構造とする必要があり、設備コス
トが高(なるという問題がある。また、通常の真空ポン
プでは、水分を含む気体を吸引した場合、ポンプ内の循
環オイルが水分による影響を受けて分解してしまうため
、液体を使用する処理に対しては不適であり、それを避
けるために、水流ポンプを用いて減圧するのが一般的で
あるが、水流ポンプでは、減圧能力が低く真空を得るた
めに長時間を要し、生産性が低いという難点がある。
In addition, the proposal of the above-mentioned Japanese Patent Application Laid-open No. 1987-190794 is as follows:
This method reduces the pressure in the vacuum degassing tank to remove the air inside the hole, and then introduces the flux solution into the hole. This method is extremely reliable if it can be completely evacuated, but the entire tank needs to be sealed, and the equipment needs to be strong and have a structure that prevents air leaks. However, there is the problem of high equipment costs.Also, with ordinary vacuum pumps, when a gas containing moisture is sucked in, the circulating oil inside the pump is affected by moisture and decomposes, so liquids are not used. In order to avoid this, it is common to use water pumps to reduce the pressure, but water pumps have low pressure reduction capabilities and take a long time to obtain a vacuum. The problem is that productivity is low.

そこで、本発明は、上記従来技術の問題点がなく、簡単
な設備で効率よく微小穴内へ液体を導入できる方法を提
供することを目的とするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method that does not have the above-mentioned problems of the prior art and can efficiently introduce a liquid into a microhole using simple equipment.

[課題を解決するための手段] 本発明によれば、上記の目的を達成するものとして、 基材の微小穴内に液体を導入する方法において、該液体
に可溶性の沸騰蒸気及び/または沸騰液体を基材の微小
穴内に導入し、該導入状態を維持したままで上記微小穴
を非沸騰液体と接触させることを特徴とする、微小穴内
に液体を導入する方法、 が提供される。
[Means for Solving the Problems] According to the present invention, in order to achieve the above object, in a method of introducing a liquid into micropores of a base material, boiling vapor and/or boiling liquid soluble in the liquid is introduced. Provided is a method for introducing a liquid into a microhole, the method comprising introducing a liquid into a microhole of a base material, and bringing the microhole into contact with a non-boiling liquid while maintaining the introduced state.

本発明において、上記沸騰蒸気を水蒸気とし、上記沸騰
液体及び上記非沸騰液体をともに水または水を溶媒とす
る溶液とすることができる。
In the present invention, the boiling vapor may be water vapor, and both the boiling liquid and the non-boiling liquid may be water or a solution using water as a solvent.

[実施例] 以下、本発明の実施例について図面を参照しながら説明
する。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明方法の一例を説明するための模式的断面
図である。
FIG. 1 is a schematic cross-sectional view for explaining an example of the method of the present invention.

第1図において、(a)は空気中にある基材1を示すも
のであり、該基材には貫通微小穴2が形成されている。
In FIG. 1, (a) shows a base material 1 in the air, and a through microhole 2 is formed in the base material.

第1図において、(b)は上記基材1を処理容器3内に
収容した状態を示すものである。容器3には外部との連
通口を有する蓋4がかぶせられている。該容器3は2つ
の部分を有し、左側部分には第1の液体5が収容されて
おり、該液体は加熱手段8により加熱され、沸騰状態と
されている。
In FIG. 1, (b) shows the state in which the base material 1 is accommodated in the processing container 3. As shown in FIG. The container 3 is covered with a lid 4 having a communication port with the outside. The container 3 has two parts, the left part containing a first liquid 5 which is heated by heating means 8 to a boiling state.

容器3内の空間には第1の液体5の蒸気6が充満してお
り、外部から容器3内に入れられた基材1は、先ず該蒸
気6中におかれる(第1図の容器内左側参照)。
The space inside the container 3 is filled with vapor 6 of the first liquid 5, and the substrate 1 put into the container 3 from the outside is first placed in the vapor 6 (inside the container in Fig. 1). (See left).

沸騰蒸気6中では、蒸気圧が大気圧と同じになるため、
微小穴2内の気圧は該穴内の空気の分圧だけ大気圧以上
となる。従って、穴内の空気は留まることができず、微
小穴2から大鉢へと追い出され、更には容器3の外へと
追い出される。その結果、微小穴2の内部は、全て沸騰
蒸気6に置換される。
In boiling steam 6, the vapor pressure is the same as atmospheric pressure, so
The atmospheric pressure inside the microhole 2 becomes higher than the atmospheric pressure by the partial pressure of the air inside the hole. Therefore, the air within the hole cannot remain and is expelled from the microscopic hole 2 into the large bowl and further out of the container 3. As a result, the entire inside of the microhole 2 is replaced with boiling steam 6.

次に、以上の様にして穴内の空気を追い呂し沸騰蒸気6
に置換した状態の基材1を、該置換状態のまま、容器3
外に出すことなしに、第2の液体9中に浸漬させ、微小
穴2を液体9と接触させる(第1図の容器内右側参照)
。該第2の液体9は沸騰してはおらず、また沸騰蒸気6
と可溶性である。
Next, as described above, the air inside the hole is purged and boiled steam is 6
The base material 1 in a state where it has been replaced with
Without letting it out, it is immersed in the second liquid 9 and the microhole 2 is brought into contact with the liquid 9 (see the right side inside the container in Figure 1).
. The second liquid 9 is not boiling and has boiling vapor 6
and soluble.

微小穴2内の蒸気6は液化し、液体9に溶は込む。その
結果、微小穴2内は液体9によって満たされ、該穴内に
完全に液体9を導入することができる。
The vapor 6 in the microhole 2 liquefies and dissolves into the liquid 9. As a result, the inside of the microhole 2 is filled with the liquid 9, and the liquid 9 can be completely introduced into the hole.

第2図は、以上の過程を模式的に示すものであり、(a
)は基材1が空気7中にある状態を示し、(b)は微小
穴2内の空気7が追い出され沸騰蒸気6に置換される状
態を示し、(c)は液体9中に浸漬された直後の状態を
示し、(d)は蒸気6の液化が完了し液体9が微小穴2
内に導入された状態を示す。
Figure 2 schematically shows the above process, and (a
) shows the state in which the substrate 1 is in the air 7, (b) shows the state in which the air 7 in the micropores 2 is expelled and replaced by boiling steam 6, and (c) shows the state in which the substrate 1 is immersed in the liquid 9. (d) shows the state immediately after the vapor 6 has liquefied and the liquid 9 has flowed into the microhole 2.
Indicates the state introduced within.

上記第1の液体5及び第2の液体9は、特に限定されな
いが、たとえば、水及びその溶液、アルコール、エーテ
ル等の有機溶媒等が使用できる。
Although the first liquid 5 and the second liquid 9 are not particularly limited, for example, water and its solution, organic solvents such as alcohol and ether, etc. can be used.

第1の液体5と第2の液体9とは、互いに可溶性であれ
ば、同一でもよいし異なっていてもよい。
The first liquid 5 and the second liquid 9 may be the same or different as long as they are soluble in each other.

水、または水を溶媒とする水溶液が、安価、取り扱い簡
単及び低沸点の故に、有利に使用できる。たとえば、第
1の液体5として水を用い、第2の液体9として脱脂水
溶液を用いることができる。
Water or an aqueous solution using water as a solvent can be advantageously used because it is inexpensive, easy to handle, and has a low boiling point. For example, water can be used as the first liquid 5 and a degreasing aqueous solution can be used as the second liquid 9.

尚、液体を用いて処理を施す場合には、各種の水溶液に
順次浸漬してい(のが−船釣であり、処理を施す最初の
段階で完全に微小穴内に液体を導入しておけば、微小穴
内壁面は湿潤状態にあるため、処理途中に第3図の(b
)の様な状態にはなりに(い。従って、本発明は処理を
施す最初の段階で採用するのが最も効果的である。但し
、各処理工程ごとに液体を完全に導入する必要がある場
合には、各処理工程ごとに本発明を採用することができ
る。この様に各処理工程ごとに行なう場合には、特に設
備の点で、真空減圧による従来方法に比べて本発明では
極めて簡単なものとなる。
In addition, when performing treatment using a liquid, it is necessary to immerse it in various aqueous solutions one after another (this is done by boat fishing, and if the liquid is completely introduced into the micropores at the first stage of treatment, Since the inner wall surface of the microhole is in a wet state, during the process (b) in Figure 3.
Therefore, the present invention is most effective when applied at the initial stage of treatment. However, it is necessary to completely introduce the liquid at each treatment step. In such cases, the present invention can be adopted for each processing step.In this way, when performing each processing step, the present invention is extremely simple compared to the conventional method using vacuum depressurization, especially in terms of equipment. Become something.

了するまで浸漬し、次に加熱を止めて冷却手段10によ
り液体5を冷却すると、微小穴2内に液体5を導入する
ことができる。この様に、完全に非密閉式の容器とし、
同一容器内で第1の液体と第2の液体とを同一となし、
本発明の目的を達成することが可能である。
The liquid 5 can be introduced into the microhole 2 by immersing the liquid 5 until the liquid 5 is completely immersed, and then stopping the heating and cooling the liquid 5 by the cooling means 10. In this way, it is a completely non-sealable container,
The first liquid and the second liquid are the same in the same container,
It is possible to achieve the objectives of the invention.

以上の例では、沸騰蒸気中において置換する場合につい
て述べたが、本発明では、その他第4図や第5図に示さ
れる形態も可能である。これらの図において、上記第1
図におけると同様の部材には同一の符号が付されている
In the above example, a case was described in which the substitution was performed in boiling steam, but the present invention also allows the embodiments shown in FIGS. 4 and 5 to be possible. In these figures, the first
Similar members in the figures are given the same reference numerals.

第4図の例は、基材1を沸騰状態にある液体5中に浸漬
することによって、微小穴2内の気体を追い出し、沸騰
蒸気及び沸騰液体とが混在する形態で置換することが可
能である。
In the example shown in FIG. 4, by immersing the base material 1 in the boiling liquid 5, it is possible to expel the gas in the micropores 2 and replace it with a mixture of boiling vapor and boiling liquid. be.

第5図の例では、容器3に蓋はなく、該容器内に加熱手
段8と冷却手段10とが設けられている。この場合は、
加熱手段8によって液体5を沸騰状態とし、この中に基
材1を投入し、置換が完尚、以上の例では、微小穴2は
全て貫通穴であるとしたが、貫通していない穴の場合も
同様に適用できる。
In the example shown in FIG. 5, the container 3 does not have a lid, and heating means 8 and cooling means 10 are provided inside the container. in this case,
The liquid 5 is brought to a boiling state by the heating means 8, and the base material 1 is put into it, and the replacement is completed. The same applies to the case.

更に、本発明方法において、従来法を併用することもで
きる。即ち、振動脱泡装置を付加することにより、速や
かな置換が可能となり、また真空減圧法を併用すれば、
減圧により液体の沸点が低下し、たとえば100℃以下
の温度でも水を沸騰させることができるので、100℃
まで液温を上昇させることのできない水溶液に対しても
適用が可能となる。
Furthermore, in the method of the present invention, conventional methods can also be used in combination. In other words, by adding a vibration degassing device, rapid replacement is possible, and if a vacuum depressurization method is also used,
Reduced pressure lowers the boiling point of a liquid, and for example, water can be boiled at temperatures below 100°C, so 100°C
It can also be applied to aqueous solutions whose temperature cannot be raised to a certain level.

以下、上記本発明の方法を用いた具体的実施例について
説明する。
Hereinafter, specific examples using the above method of the present invention will be described.

’!JiJLL: 厚さ0.6mmのガラスエポキシ両面銅張板(東芝ケミ
カル社製:TLC−W−551)にドリルにより0.1
mmφの穴を多数あけ、試料基材とした。
'! JiJLL: 0.6 mm thick glass epoxy double-sided copper clad plate (manufactured by Toshiba Chemical Corporation: TLC-W-551) with a drill of 0.1 mm.
A large number of holes of mmφ were made and used as a sample base material.

第1図の(b)に示す容器3の左側部分に水道水を入れ
、加熱ヒータ8により沸騰させた。容器の右側部分には
脱脂液(ユケン工業社製:パクナ30g/I2)を入れ
、80℃に調節した。容器3内の沸騰蒸気中に基材を吊
し、10分間放置した後に、容器3から取り出すことな
(基材を脱脂液中に入れ、10分間浸漬した。基材を取
り出し、所定の前処理、無電解銅メツキを行なった後に
、電気メツキにより大向の最大厚さが20μmとなるま
で銅メツキ皮膜を形成した。次いで、この基材を微小穴
1つごとのチップ状に切断し、微小穴の導体抵抗を測定
した。
Tap water was poured into the left side of the container 3 shown in FIG. 1(b) and brought to a boil by the heater 8. A degreasing solution (manufactured by Yuken Kogyo Co., Ltd.: Pakuna 30 g/I2) was placed in the right side of the container, and the temperature was adjusted to 80°C. The substrate was suspended in boiling steam in the container 3, left for 10 minutes, and then removed from the container 3 (the substrate was placed in the degreasing liquid and immersed for 10 minutes. After performing electroless copper plating, a copper plating film was formed by electroplating until the maximum thickness of Omukai reached 20 μm.Next, this base material was cut into chips for each microhole, and The conductor resistance of the hole was measured.

之校豊ユニ 実施例1と同様にして試料基材を得た。School Yutaka Uni A sample base material was obtained in the same manner as in Example 1.

空のビーカー内に基材を入れ、ペルジャーを用いてアス
ピレータ−により減圧処理を10分間行ない、520m
mHgまで減圧した。次に、減圧状態のまま、ビーカー
内に水道水を導入した。基材を取り出し、実施例1と同
様に80℃の上記脱脂液に浸漬し、以下、実施例1と同
様の処理及び測定を行なった。
The base material was placed in an empty beaker, and the pressure was reduced using an aspirator using a Pelger for 10 minutes.
The pressure was reduced to mHg. Next, tap water was introduced into the beaker while maintaining the reduced pressure. The base material was taken out and immersed in the degreasing solution at 80° C. in the same manner as in Example 1, and the same treatments and measurements as in Example 1 were performed.

見立■ユニ 実施例1と同様の基材を用意し、第4図に示す容器の左
側部分に水道水を満たし、沸騰状態に保持し、右側部分
には80℃の上記脱脂液を満たした。基材を沸騰水中に
10分間浸漬し、容器3から取り出すことな(基材を脱
脂液中に入れ、10分間浸漬した。基材を取り出し、以
下、実施例1と同様にした。
A base material similar to Mitate Uni Example 1 was prepared, and the left side of the container shown in Figure 4 was filled with tap water and kept in a boiling state, and the right side was filled with the above degreasing liquid at 80°C. . The base material was immersed in boiling water for 10 minutes, and without being taken out from the container 3 (the base material was placed in a degreasing liquid and immersed for 10 minutes. The base material was taken out and the same procedure as in Example 1 was carried out.

見立■1: 実施例1と同様の基材を用意し、第5図に示す容器に水
道水を満たし、沸騰状態に保持した。この沸騰水中に基
材を10分間浸漬した後、加温な停止し、冷却手段とし
ての銅製スパイラル管に約20℃の水道水を通過させ、
約20℃まで冷却した。基材を容器から取り出し、80
℃の上記脱脂液に10分間浸漬した後、実施例1と同様
にした。
Mitate 1: The same base material as in Example 1 was prepared, and the container shown in FIG. 5 was filled with tap water and kept in a boiling state. After immersing the substrate in this boiling water for 10 minutes, the heating was stopped, and tap water at about 20°C was passed through a copper spiral tube as a cooling means.
It was cooled to about 20°C. Remove the base material from the container and
After being immersed in the degreasing solution at a temperature of 10° C. for 10 minutes, the same procedure as in Example 1 was carried out.

見立!A: ビーカーに上記脱脂液を満たし、80℃に保持した。ビ
ーカー内に実施例1と同様の基材を浸漬し、比較例1と
同様にして減圧し、350mmHgで上記脱脂液を沸騰
状態とし5分間保持した後、大気圧に戻し、基材を取り
出した。以下、実施例1と同様にした。
Mitate! A: A beaker was filled with the above degreasing solution and maintained at 80°C. The same base material as in Example 1 was immersed in a beaker, the pressure was reduced in the same manner as in Comparative Example 1, and the degreasing solution was brought to a boiling state at 350 mmHg and held for 5 minutes, then returned to atmospheric pressure and the base material was taken out. . Hereinafter, the same procedure as in Example 1 was carried out.

上記実施例及び比較例における微小穴の導体抵抗測定の
結果を以下の第1表に示す。尚、各実施例または比較例
において、測定したチップの数は100個であり、50
mΩ以上を不良と判定し、不良率を算出した。
The results of measuring the conductor resistance of the microholes in the above Examples and Comparative Examples are shown in Table 1 below. In each example or comparative example, the number of chips measured was 100, and 50
A value of mΩ or more was determined to be defective, and the defective rate was calculated.

第  1  表 以上の結果より、比較例1の様に、従来の減圧法によれ
ば10分間では十分な真空が得られず、不良率が4%で
あるが、本発明の実施例では不良率が全て0%であり、
良好であることが認められた。
From the results shown in Table 1, as in Comparative Example 1, with the conventional depressurization method, sufficient vacuum could not be obtained in 10 minutes and the defective rate was 4%, but in the example of the present invention, the defective rate was lower. are all 0%,
It was found to be good.

[発明の効果] 以上説明したように、本発明によれば、・次の効果が得
られる。
[Effects of the Invention] As explained above, according to the present invention, the following effects can be obtained.

1)微小穴内に短時間で液体を導入することが可能であ
り、従来の真空減圧法に比べて効率が高い。
1) It is possible to introduce liquid into microholes in a short time, and it is more efficient than the conventional vacuum depressurization method.

2)簡単な設備で十分な効果が得られるため、設備コス
トが安くてすみ、経済的である。
2) Since sufficient effects can be obtained with simple equipment, equipment costs are low and it is economical.

3)従来の手法とも組合わせが可能であり、応用範囲が
広い。
3) It can be combined with conventional methods and has a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第4図及び第5図はいずれも本発明方法を説明
するための模式的断面図である。 第2図は本発明の過程を示す模式的断面図である。 第3図は微小穴内での気体残留の様子を示す模式的断面
図である。 1・・・基材、 3・・・容器、 5.9・・・液体、 7・・・気体、 10・・・冷却手段。
FIG. 1, FIG. 4, and FIG. 5 are all schematic cross-sectional views for explaining the method of the present invention. FIG. 2 is a schematic sectional view showing the process of the present invention. FIG. 3 is a schematic cross-sectional view showing how gas remains in the microhole. DESCRIPTION OF SYMBOLS 1... Base material, 3... Container, 5.9... Liquid, 7... Gas, 10... Cooling means.

Claims (2)

【特許請求の範囲】[Claims] (1)基材の微小穴内に液体を導入する方法において、
該液体に可溶性の沸騰蒸気及び/または沸騰液体を基材
の微小穴内に導入し、該導入状態を維持したままで上記
微小穴を非沸騰液体と接触させることを特徴とする、微
小穴内に液体を導入する方法。
(1) In a method of introducing a liquid into microholes in a base material,
Introducing boiling vapor and/or boiling liquid soluble in the liquid into the microholes of the base material, and bringing the microholes into contact with a non-boiling liquid while maintaining the introduction state, the liquid in the microholes. How to introduce.
(2)上記沸騰蒸気が水蒸気であり、上記沸騰液体及び
上記非沸騰液体がともに水または水を溶媒とする溶液で
ある、請求項1に記載の微小穴内に液体を導入する方法
(2) The method for introducing a liquid into a microhole according to claim 1, wherein the boiling vapor is water vapor, and the boiling liquid and the non-boiling liquid are both water or a solution using water as a solvent.
JP27835289A 1989-10-27 1989-10-27 Method of introducing liquid into minute holes Expired - Fee Related JP2695489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27835289A JP2695489B2 (en) 1989-10-27 1989-10-27 Method of introducing liquid into minute holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27835289A JP2695489B2 (en) 1989-10-27 1989-10-27 Method of introducing liquid into minute holes

Publications (2)

Publication Number Publication Date
JPH03140475A true JPH03140475A (en) 1991-06-14
JP2695489B2 JP2695489B2 (en) 1997-12-24

Family

ID=17596138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27835289A Expired - Fee Related JP2695489B2 (en) 1989-10-27 1989-10-27 Method of introducing liquid into minute holes

Country Status (1)

Country Link
JP (1) JP2695489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137916A (en) * 2018-01-25 2019-08-22 セムシスコ ゲーエムベーハーSemsysco GmbH Method and device for plating recessed part of substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137916A (en) * 2018-01-25 2019-08-22 セムシスコ ゲーエムベーハーSemsysco GmbH Method and device for plating recessed part of substrate
US11908698B2 (en) 2018-01-25 2024-02-20 Semsysco Gmbh Method and device for plating a recess in a substrate

Also Published As

Publication number Publication date
JP2695489B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
KR100586481B1 (en) How to Plate the Substrate
TWI636027B (en) Methods for forming vias in glass substrates
US5215593A (en) Method of introducing liquid into small-diameter hole
US20100300887A1 (en) Preparing Electrodes for Electroplating
JPH03140475A (en) Method for introducing liquid into micropore
US4155775A (en) Cleaning of high aspect ratio through holes in multilayer printed circuit boards
JP2695489C (en)
JP2003129283A5 (en)
KR900003157B1 (en) Pretreatment of through-hole plating
WO2016157251A1 (en) Method for evaluating degassing of processing liquid
DK173119B1 (en) Method of removing burrs in plated through holes in multilayer copper printed circuit boards
JPH11152597A (en) Plating pretreatment
KR20060109867A (en) Cleaning masks
JP2001028361A (en) Method for wet chemical treatment of semiconductor wafer in container
JPH05320928A (en) Electroless plating liquid and plating method for molded product
JPH06142501A (en) Production of washing water
JPH0685437A (en) Cleaning method of electronic part
JPH06158358A (en) Deburring solution of aluminum alloy and precision deburring method
JPH01128547A (en) Fine pattern gold plating apparatus
JPH0629643A (en) Manufacture of printed wiring board having non-penetration hole
JPH03248494A (en) Manufacture of printed wiring board
JP2005330567A (en) Substrate plating method and substrate plating equipment
KR100564799B1 (en) Device and method for electrochemical plating of Cu
JPH04208595A (en) Defoaming method for interior of small-diameter hole of printed circuit board
CN113811090A (en) FPC manufacturing method with micropore process replacing blind hole process and FPC board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees