JPH03140416A - Production of cold rolled steel sheet for deep drawing by continuous annealing method - Google Patents

Production of cold rolled steel sheet for deep drawing by continuous annealing method

Info

Publication number
JPH03140416A
JPH03140416A JP27797389A JP27797389A JPH03140416A JP H03140416 A JPH03140416 A JP H03140416A JP 27797389 A JP27797389 A JP 27797389A JP 27797389 A JP27797389 A JP 27797389A JP H03140416 A JPH03140416 A JP H03140416A
Authority
JP
Japan
Prior art keywords
temperature
rolled steel
rolling
less
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27797389A
Other languages
Japanese (ja)
Other versions
JPH0747779B2 (en
Inventor
Teruaki Yamada
輝昭 山田
Masahiko Oda
昌彦 織田
Teruki Hayashida
輝樹 林田
Koji Fujii
浩二 藤井
Yuzo Nishimoto
西本 勇三
Michihiro Koino
通博 濃野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1277973A priority Critical patent/JPH0747779B2/en
Publication of JPH03140416A publication Critical patent/JPH03140416A/en
Publication of JPH0747779B2 publication Critical patent/JPH0747779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain the steel sheet free from material deterioration in the top part and the bottom part of a coil by the use of a low-cost stock by limiting C content in an Al-killed steel to a specific value or below, inhibiting the abnormal growth of crystalline grains in a hot rolled plate, and specifying manufacturing conditions. CONSTITUTION:A molten steel having a composition consisting of, by weight, 0.008-0.035% C, 0.003-0.10% Si, 0.05-0.35% Mn, 0.001-0.10% P, 0.001-0.030% S, 0.020-0.10% SOlAl, 0.0005-0.0060% N, and the balance iron is formed into a slab by means of continuous casting, etc. This slab is heated up to 1000-1170 deg.C, finish rolling is completed at 890-960 deg.C, and channel cooling is applied to the part between the position of 18m from the head end of a steel strip and the position of 15m from the tail end of the steel strip. The upper limit of coiling temp. is specified so that it is 850 deg.C in the part of <18m from the head end, 760 deg.C at the position of 18m from the head end, 740 deg.C at the position of 50m from the head end, a temp. obtained by connecting 760 deg.C and 740 deg.C with a straight line in the part between the position of 18m from the head end and the position of <50 from the head end, 740 deg.C in the part between the position of 50m from the head end and the position of 30m from the tail end, 740 deg.C at the point of 30m from the tail end, 760 deg.C at the position of 15m from the tail end, a temp. obtained by connecting 740 deg.C and 760 deg.C with a straight line in the part between the position of <30m from the tail end and the position of 15m from the tail end, and 820 deg.C in the part of <15m from the tail end. The lower limits of coiling temp. in respective parts are specified in a similar manner.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続焼鈍法による深絞り用冷延鋼板を低コス
トで製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing cold-rolled steel sheets for deep drawing at low cost by continuous annealing.

(従来の技術) 連続焼鈍法による冷延鋼板の製造方法は、過去多くの発
明がなされ、TIを添加し深絞り用冷延鋼板を製造する
方法に関するものとしては、例えば、特公昭44−18
088号公報がある。又、Tiを添加せず、低炭素Ag
キルド鋼を用いる方法も多数発明されており、例えば、
特開昭51−66219号公報がある。
(Prior Art) Many inventions have been made in the past regarding the method for manufacturing cold rolled steel sheets by continuous annealing, and for example, the method for manufacturing cold rolled steel sheets for deep drawing by adding TI is disclosed in Japanese Patent Publication No. 44-18.
There is a publication No. 088. In addition, low carbon Ag without adding Ti
Many methods using killed steel have also been invented, for example:
There is Japanese Unexamined Patent Publication No. 51-66219.

T1を添加する特公昭44−18066号公報は、優れ
た材質が得られるが、高価なTiを添加したり、鋼のC
含有量を極度に低下せねばならないため、製鋼での脱炭
処理コストが多大となる等、製造コストが多大となり過
ぎるという問題がある。
In Japanese Patent Publication No. 18066/1986, which adds T1, an excellent material can be obtained, but it does not add expensive Ti or carbon in the steel.
Since the content must be extremely reduced, there is a problem that the manufacturing cost becomes too large, such as the cost of decarburization treatment in steel manufacturing becoming large.

一方、低炭素ANキルド鋼を用いる方法は、連続焼鈍法
で製造されたコイルのTop部、BottoIl1部の
材質劣化が多く、深絞り用冷延鋼板としての要求材質を
満足しないため歩留まり落ちとなり製造コスト並びに生
産性が大きく劣化するという問題がある。
On the other hand, in the method of using low carbon AN killed steel, there is a lot of material deterioration in the top part and bottom part of the coil manufactured by continuous annealing, and the material quality required for cold rolled steel sheets for deep drawing is not satisfied, resulting in a decrease in yield and production. There is a problem in that cost and productivity are significantly reduced.

この原因は、低炭素Aj7キルド鋼を用いる方法では良
好な材質を得るためには、熱間圧延に際し高温捲き取り
を行わねばならないが、通常行りれる高温捲き取りの方
法では、捲き取った後のコイルの内周は捲き取り機のリ
ールに接し急速に冷却され、外周は大気で早く冷却され
る。
The reason for this is that in the method using low-carbon Aj7 killed steel, high-temperature rolling must be performed during hot rolling in order to obtain good material quality, but in the commonly used high-temperature rolling method, after rolling The inner periphery of the coil contacts the reel of the winding machine and is rapidly cooled, and the outer periphery is rapidly cooled in the atmosphere.

そのため、高温捲き取りを行ってもT、B部は実質的に
は低温捲き取り相当となり、コイルの内外周はAgNの
析出やセメンタイト凝集粗大化が不十分となり、材質の
劣化が生じるのである。
Therefore, even if high-temperature winding is performed, the T and B portions are essentially equivalent to low-temperature winding, and the precipitation of AgN and coarsening of cementite agglomeration are insufficient on the inner and outer peripheries of the coil, resulting in deterioration of the material.

このAgキルド鋼のT、B部の問題点を解決する従来法
の代表的なものとして、特開昭51−68219号公報
がある。しかし、この方法は、同公報第3図に示されて
いるように低炭素Apキルドに適用した場合はF値が1
.3〜1.4と低く、本発明の方法が目的とするような
深絞り用冷延鋼板には適用できない材質しか得られない
JP-A-51-68219 is a representative example of a conventional method for solving the problems of the T and B sections of Ag killed steel. However, as shown in Figure 3 of the same publication, when this method is applied to low carbon Ap killed, the F value is 1.
.. It is as low as 3 to 1.4, and the method of the present invention can only obtain a material that cannot be applied to cold-rolled steel sheets for deep drawing.

以上の如く、連続焼鈍法による深絞り用冷延鋼板を低コ
ストで製造する方法はない。
As described above, there is no method for producing cold-rolled steel sheets for deep drawing at low cost by continuous annealing.

(発明が解決しようとする課題) 本発明が解決しようとする課題は、低コストな素材であ
る低炭素AI?ギルド鋼を用い、コイルのT、 B部の
材質劣化がない連続焼鈍法による深絞り用冷延鋼板の製
造方法を提供することにある。
(Problem to be solved by the invention) The problem to be solved by the present invention is to use low-carbon AI, which is a low-cost material. An object of the present invention is to provide a method for manufacturing a cold-rolled steel sheet for deep drawing by a continuous annealing method using guild steel and causing no material deterioration in the T and B parts of the coil.

(課題を解決するための手段) 本発明者等は、低コストな低炭素Alギルド鋼を用い、
コイルのT、  B部の材質劣化がない連続焼鈍法によ
る深絞り用冷延鋼板の製造方法について種々検討し、連
続焼鈍法による深絞り用冷延鋼板の製造方法を初めて見
いだしたものである。
(Means for solving the problem) The present inventors used low-cost low-carbon Al guild steel,
We conducted various studies on methods for producing cold-rolled steel sheets for deep drawing using continuous annealing methods that do not cause material deterioration in the T and B parts of the coil, and discovered for the first time a method for producing cold-rolled steel sheets for deep drawing using continuous annealing methods.

本発明の要旨はC: 0.008〜0.035%、Sに
0.003〜0.10%、Mn:0.05〜0.35%
、P:0.001〜0.10%、S :0.OOl 〜
o、oao%、sof、Ai) +0.020〜0.1
0%、N : 0.0005〜0.0060%、残部の
不可否的不純物及び鉄よりなる溶鋼を連続鋳造又は、イ
ンゴット法にてスラブとなし、熱間圧延、酸洗、冷延、
過時効処理を有する連続焼鈍の工程を経る深絞り用冷延
鋼板の製造方法において、スラブの加熱温度(以下SR
Tという)を1000℃〜1170℃とし、890〜9
60℃で仕上げ圧延を終了し、熱延鋼帯の長手方向の最
Topより18m以上且つ最Bottomより15m以
上はランアウトテーブル(以下ROTという)上に注水
冷却を行い、熱延鋼帯の最Topから18m未満を85
0℃、最Topより01m以上50m未満を18mの位
置の温度を760℃、50mの位置の温度を740℃と
し、その間をその二点の温度を直線で結んで求められる
温度、最Topより50m以上且つ最BO1tOfll
より30m以上を740℃、最Bottomより30m
未満15m以上を30mの位置の温度を740℃、15
mの位置の温度を760℃とし、その間をその二点の温
度を直線で結んで求められる温度、最BottoImよ
り15m未満を820℃、を上限の捲き取り温度(以下
CTという)とし、且つ、熱延鋼帯の最Topから5m
未満を760℃、最Topより5m以上30rn未満を
5mの位置の温度を710℃、30mの位置の温度を6
80℃とし、その間をその二点の温度を直線で結んで求
められる温度、最Topより30m以上且つ最Bott
omより15m以上を660℃、最Bottoωより1
5m未満5m以上を15mの位置の温度を680℃、5
mの位置の温度を700℃とし、その間をその二点の温
度を直線で結んで求められる温度、最Bottomより
5m未満を720℃、を下限の捲き取り温度とし、ラン
アウトテーブル上で制御冷却して捲き取ることを特徴と
する連続焼鈍法による深絞り用冷延鋼板の製造方法であ
る。
The gist of the present invention is C: 0.008-0.035%, S 0.003-0.10%, Mn: 0.05-0.35%.
, P: 0.001-0.10%, S: 0. OOl ~
o, oao%, sof, Ai) +0.020 to 0.1
0%, N: 0.0005-0.0060%, remaining unavoidable impurities and molten steel made of iron by continuous casting or ingot method, hot rolling, pickling, cold rolling,
In the manufacturing method of cold-rolled steel sheets for deep drawing which undergoes a continuous annealing process with over-aging treatment, the heating temperature of the slab (hereinafter referred to as SR) is
T) is 1000℃~1170℃, and 890~9
Finish rolling is completed at 60°C, and water is poured onto a run-out table (hereinafter referred to as ROT) for cooling over 18 m or more from the top of the hot-rolled steel strip in the longitudinal direction and 15 m or more from the bottom of the hot-rolled steel strip. 85 less than 18m from
0℃, 01m or more and less than 50m from the top, the temperature at 18m is 760℃, the temperature at 50m is 740℃, and the temperature found by connecting the two points with a straight line, 50m from the top. Above and maximum BO1tOfll
740℃ over 30m from the bottom, 30m from the bottom
The temperature at a distance of less than 15m and 30m is 740℃, 15
The temperature at the position m is 760°C, the temperature found by connecting the temperatures of the two points with a straight line, and the temperature less than 15m from the maximum Bottom Im is 820°C, which is the upper limit winding temperature (hereinafter referred to as CT), and 5m from the top of hot rolled steel strip
760℃ for less than 760℃, 710℃ for 5m or more and less than 30rn from the top, and 6 for the temperature at 30m.
80℃, and the temperature found by connecting the two points in between with a straight line, 30m or more from the top and the bottom
660℃ over 15m from om, 1 from bottom ω
Temperature at 15 m below 5 m, 680℃, 5
The temperature at position m is 700°C, the temperature found by connecting the two points in between with a straight line, the lower limit of the rolling temperature is 720°C less than 5m from the bottom, and the temperature is controlled and cooled on a run-out table. This is a method for manufacturing a cold-rolled steel sheet for deep drawing using a continuous annealing method, which is characterized by rolling up the steel sheet.

以下に本発明の方法について詳細に述べる。The method of the present invention will be described in detail below.

本発明者等は、低炭素ANギルド鋼を用い連続焼鈍法に
よる深絞り用冷延鋼板の製造方法について種々検討した
The present inventors have conducted various studies on a method for producing cold-rolled steel sheets for deep drawing using a continuous annealing method using low carbon AN guild steel.

最初に従来法の特開昭51−66219号公報に記載さ
れているC含有量が0.05%と高いA[ギルド鋼を用
いて、軟質冷延鋼板では無く、i値の高い深絞り用冷延
鋼板の製造方法を検討した。その結果、熱延時のスラブ
加熱温度が1250℃と高い場合には、CTを730℃
としても同公報にあるように1値が1.4前後と深絞り
用冷延鋼板の必要材質を満たすことができなかった。
First, the conventional method described in JP-A No. 51-66219 uses A with a high C content of 0.05% [guild steel is used, instead of soft cold rolled steel sheet, it is used for deep drawing with a high i value. We investigated the manufacturing method of cold-rolled steel sheets. As a result, when the slab heating temperature during hot rolling was as high as 1250°C, the CT was set to 730°C.
However, as stated in the same publication, the value of 1 was around 1.4, which could not satisfy the required material quality for cold-rolled steel sheets for deep drawing.

次に、本発明者等は、C含有量が0.05%と高いAΩ
キルド鋼を用いて、?値を向上させる方法について種々
検討し、熱延圧延を行うに際し、スラブの加熱温度を1
050℃のような低温加熱とする方法を、更に、熱延鋼
板のT、  B部の材質劣化の防止と、高温捲き取りで
の熱延鋼帯の粗大結晶粒(冷延鋼板をプレス加工時に異
常に大きなオレンジピールの発生となるー「肌荒れ」と
記す)の防止のために、特開昭51−66219号公報
の方法のROT上熱延コイルのT、B部各20m〜20
0mに渡り冷却水を噴出すること無く捲き取る方法とを
併用する方法を検討した。
Next, the present inventors discovered that AΩ with a high C content of 0.05%
Using killed steel? We studied various ways to improve the value and decided to increase the heating temperature of the slab to 1 when hot rolling.
The method of heating at a low temperature such as 050°C is further improved to prevent material deterioration of the T and B parts of the hot rolled steel sheet and to improve the coarse crystal grains of the hot rolled steel strip during high temperature rolling (when pressing the cold rolled steel sheet). In order to prevent the occurrence of an abnormally large orange peel (referred to as "rough skin"), the T and B sections of the ROT hot-rolled coil using the method disclosed in JP-A No. 51-66219 were coated with 20 m to 20 m each on the T and B sections.
We investigated a method that combines the method of rolling up cooling water over a distance of 0 m without spouting it out.

その結果、F値を向上させるのに対し改善効果が認めら
れたが、3つの大きな問題点があることがわかった。
As a result, although an improvement effect was observed in increasing the F value, it was found that there were three major problems.

一点目は、熱延コイルの最内外周部に当たるT。The first point is T, which is the innermost and outermost part of the hot rolled coil.

B部各3〜7mを除<ROT上で冷却水を噴射すること
無く捲き取ったT、 B部位(20m〜200m )及
びその内側の若干の部位の熱延板結晶粒が粗大結晶粒と
なってしまうこと、二点口は、M部の材質と熱延板結晶
粒の粗大化の回避とが両立できる温度範囲がないこと、
三点口は、熱延コイルの最内外周部に当たるT、  B
部各20m、 lOmの7値が低く歩留まり劣化が大き
いことである。
Except for each 3 to 7 m of B section, the hot-rolled sheet crystal grains in T, B section (20 m to 200 m) and some areas inside thereof became coarse crystal grains. For the two-point opening, there is no temperature range in which the material of the M part and the avoidance of coarsening of the hot-rolled sheet grains can be compatible.
The three-point openings are T and B, which are the innermost and outermost parts of the hot-rolled coil.
7 values of 20m and 10m for each part are low, and the yield deterioration is large.

深絞り用冷延鋼板の製造方法は、低温スラブ加熱に特開
昭51−86219号公報を併用する方法では連続焼鈍
法での深絞り用冷延鋼板の製造ができないことがわかっ
た。
It has been found that the method for producing cold-rolled steel sheets for deep drawing using the method disclosed in JP-A-51-86219 in combination with low-temperature slab heating cannot produce cold-rolled steel sheets for deep drawing by continuous annealing.

そこで、本発明者等は、低温スラブ加熱法で熱間圧延す
る方法において、特開昭51−11i8219号公報の
方法で捲き取ったときに、同公報に記載されているよう
に熱延板結晶粒の粗大化なしに熱延コイルとすることが
なぜできなかったかについて検討した結果、同公報の場
合はスラブ加熱段階(同公報の記載内容、7値レベル、
本発明者等の研究結果等から1200℃以上と推定)で
はA、17.Nが固溶しており、熱間圧延途中から捲き
取り後の初期にかけて、AgNが熱延板の結晶粒界に多
数析出する。その析出物が、捲き取り後の高い温度域で
の熱延板の結晶粒の異常粒成長(粗大化)を阻止してい
たものと思われる。
Therefore, in a method of hot rolling using a low-temperature slab heating method, the present inventors discovered that when rolled up using the method described in JP-A-51-11i8219, hot-rolled plate crystals were observed as described in the same publication. As a result of examining why it was not possible to make hot-rolled coils without coarsening of the grains, we found that in the case of the same publication, the slab heating stage (the contents of the publication, 7-value level,
(estimated to be 1200°C or higher based on the research results of the present inventors) is A, 17. N is dissolved in solid solution, and a large amount of AgN precipitates at the grain boundaries of the hot rolled sheet from the middle of hot rolling to the early stage after rolling up. It is thought that the precipitates prevented abnormal grain growth (coarsening) of the crystal grains of the hot rolled sheet in the high temperature range after rolling.

しかし、本発明者等の低温スラブ加熱の上記実験の場合
は、低温スラブ加熱段階においてAg。
However, in the case of the inventors' above experiment of low temperature slab heating, Ag in the low temperature slab heating stage.

Nの多くはAIINとして既に析出しており、その結果
、粗大結晶粒を抑制する熱間圧延途中から捲き取り後の
初期にかけて熱延板結晶粒界に析出するAINが少なく
なってしまい結晶粒の粗大化が容易に起きてしまったも
のと考えられる。
Most of the N has already precipitated as AIIN, and as a result, from the middle of hot rolling, which suppresses coarse grains, to the early stage after rolling, less AI precipitates at the grain boundaries of the hot-rolled sheet, which causes the formation of grains. It is thought that coarsening occurred easily.

又、この結晶粒界に析出するAgNは連続焼鈍時にも、
再結晶粒の粒成長も抑制し、特開昭51−66219号
公報のように低い?値の冷延鋼板しか製造できなくして
しまうことがわかった。
In addition, AgN precipitated at the grain boundaries also during continuous annealing.
It also suppresses the grain growth of recrystallized grains, and it is as low as JP-A-51-66219. It was found that only cold-rolled steel sheets with a certain value could be manufactured.

以上の予備実験の結果、AΩキルド鋼を素材とした連続
焼鈍法による深絞り用冷延鋼板の製造方法を実現させる
には、■特開昭51− CG219号公報の結晶粒界に
析出するA、9Nとは別のメカニズムで、熱延板結晶粒
の粗大化を阻止でき、且つ、■7値も低下させないメカ
ニズムの方法を見いだすことが不可欠であることがわか
った。
As a result of the above preliminary experiments, in order to realize the manufacturing method of cold-rolled steel sheets for deep drawing by continuous annealing using AΩ killed steel as material, it is necessary to It has been found that it is essential to find a method that can prevent the coarsening of the hot-rolled sheet crystal grains by a mechanism different from that of 9N, and that also does not reduce the 7 value.

そこで更に、本発明者等は、先ず基礎実験として、この
■と■を両立させる方法について種々の実験を行い、熱
延板結晶粒の粗大化阻止の工業化可能な新しい方法とし
て、Alキルド鋼のC含有量を0.015%以下に規制
する方法が優れていることを見いだした。
Therefore, the present inventors first conducted various experiments as a basic experiment to find a method for achieving both of the above (1) and (2), and developed a new industrially possible method for preventing grain coarsening of hot-rolled sheets. It has been found that a method of regulating the C content to 0.015% or less is superior.

C含有量を0.035%以下に規制する方法が熱延板結
晶粒の粗大化を抑制する効果が大きいのは、C含有量を
0.035%以下にすることによって熱間圧延後変態し
生じるα粒の結晶粒径が大きくなる、その結果、その大
きなα粒は安定で異常粒成長が生じがたく、捲き取り後
の高い温度域での熱延板の結晶粒の異常粒成長(粗大化
)を阻止し得たものと考えられる。
The reason why the method of regulating the C content to 0.035% or less is highly effective in suppressing coarsening of hot-rolled sheet grains is that by controlling the C content to 0.035% or less, transformation after hot rolling is prevented. As a result, the large α grains are stable and difficult to cause abnormal grain growth, and the abnormal grain growth (coarse and It is thought that this could have prevented the

即ち、AINではなく、熱間圧延後変態し生じる大きな
αの結晶粒によっても異常粒成長の阻止が可能であると
いう新しいメカニズムと、それを工業化可能な方法とし
てC含有量を0.035%以下に規制する方法を見いだ
すことに成功した。又、この方法はAgNを利用してい
ないし、しかも低C化の方法であるので、■の7値は向
上する方法である。
In other words, there is a new mechanism in which it is possible to prevent abnormal grain growth not by AIN but by large α crystal grains that are generated by transformation after hot rolling, and as a method that can be industrialized, it is possible to reduce the C content to 0.035% or less. succeeded in finding a way to regulate it. Furthermore, this method does not utilize AgN and is a low C method, so it is a method that improves the 7 value of ■.

尚、C含有量を0.035%以下に規制することで、熱
間圧延後変態を生じるα粒の結晶粒径が大きくなる理由
は、低C化によって変態温度が高くなることによる効果
と、C含有量の低ドによる変態時のα粒径UPとによっ
てα粒が大きく且つ安定となったものと考えられる。更
に、大きなαの結晶粒によっても異常粒成長の阻止が可
能となるのは、大きな結晶粒径隣接する他の結晶粒を食
って異常粒成長するのに要する熱エネルギが大きくなる
ためと考えられる。
In addition, the reason why the crystal grain size of α grains that undergo transformation after hot rolling increases by regulating the C content to 0.035% or less is due to the effect of increasing the transformation temperature due to lower C, It is thought that the α grains became large and stable due to the increase in the α grain size during transformation due to the low C content. Furthermore, the reason why it is possible to prevent abnormal grain growth even with large α grains is thought to be because the thermal energy required to grow abnormal grains by eating other large grains adjacent to them is thought to be large. .

以上の基礎実験で得たC含有量を0.035%以下に規
制することによる熱延板の結晶粒の異常粒成長の阻止効
果をベースに、連続焼鈍法による深絞り用冷延鋼板の製
造方法について種々の実験を行い、■c :o、oog
〜0.035%とし、■スラブの加熱温度を1000℃
〜1170℃とし、■熱延鋼帯の長手方向の最Topよ
り18m以上且つ最Bottomより15m以上はRO
T上で注水冷却を行い、熱延鋼帯の最Topから18m
未満を850℃、最Topより18m以上50m未満を
18mの位置の温度を760℃、50mの位置の温度を
740℃とし、その間をその二点の温度を直線で結んで
求められる温度、最Topより50m以上且つ最fio
ttomより30m以上を740℃、最Botto■よ
り30m未満15m以上を30mの位置の温度を740
℃、15mの位置の温度を760℃とし、その間をその
二点の温度を直線で結んで求められる温度、最Bott
o■より15m未満を820℃を上限の捲き取り温度と
し、且つ、熱延鋼帯の最Topから5m未満を760℃
、最Topより5m以上30m未満を5mの位置の温度
を710℃、30mの位置の温度を680℃とし、その
間をその二点の温度を直線で結んで求められる温度、最
Topより30m以上且つ最Bottomより15m以
上を660℃、最Bottomより15m未満5m以上
を15mの位置の温度を680℃、5mの位置の温度を
700℃とし、その間をその二点の温度を直線で結んで
求められる温度、最Bottomより5m未満を720
℃を、下限の捲き取り温度とし、ROT上で制御冷却し
て捲き取ることの3点を主たる特徴とする連続焼鈍法に
よる深絞り用冷延鋼板の製造方法を見いだすことに成功
した。
Based on the effect of inhibiting abnormal grain growth of crystal grains in hot-rolled sheets by regulating the C content to 0.035% or less obtained in the above basic experiments, cold-rolled steel sheets for deep drawing are manufactured by continuous annealing. Various experiments were conducted on the method, and ■c: o, oog
〜0.035%, ■ heating temperature of slab to 1000℃
~1170℃, and 18 m or more from the top of the hot rolled steel strip in the longitudinal direction and 15 m or more from the bottom of the hot rolled steel strip are RO.
Water injection cooling was performed on the T, and the temperature was 18 m from the top of the hot rolled steel strip.
The temperature at a position 18m or more and less than 50m from the top is 760°C, and the temperature at a position 50m is 740°C, and the temperature found by connecting the two points with a straight line between them is the temperature at the top. 50m or more and maximum fio
740℃ for 30m or more from bottom, 740℃ for 30m or more less than 30m from bottom■
℃, the temperature at a position of 15 m is 760℃, and the temperature found by connecting the two points with a straight line, the maximum Bott.
The upper limit of the winding temperature is 820°C for less than 15m from o■, and 760°C for less than 5m from the top of the hot rolled steel strip.
, 5 m or more and less than 30 m from the top, the temperature at the position 5 m is 710 ° C, the temperature at the 30 m position is 680 ° C, and the temperature is determined by connecting the two points with a straight line. The temperature at 15m or more from the highest bottom is 660℃, the temperature at a position 15m or more less than 15m from the highest bottom is 680℃, and the temperature at 5m is 700℃, and the temperature is determined by connecting the two points with a straight line. Temperature, 720 less than 5m from the bottom
We succeeded in discovering a method for producing cold-rolled steel sheets for deep drawing using a continuous annealing method, which has three main features: the lower limit of the rolling temperature is 100°C, and the rolling is controlled and cooled on an ROT.

C含有量は、上記にも述べたように重要なポイントで、
0.008%未満になると過時効処理中の析出速度が遅
くなり時効特性が劣化するようになるので、下限を0.
008%以上とした。又、C含有量が0.035%超に
なると、熱延板結晶粒の粗大化が発生し易くなるととも
に7値が低下するようになるので上限を0.035%と
した。
C content is an important point as mentioned above,
If it is less than 0.008%, the precipitation rate during overaging treatment will slow down and the aging characteristics will deteriorate, so the lower limit should be set at 0.008%.
008% or more. Furthermore, if the C content exceeds 0.035%, coarsening of the hot-rolled sheet crystal grains tends to occur and the 7 value decreases, so the upper limit was set at 0.035%.

Slは、0.003%未満とすることは困難であり、又
、0.1%超含まれると塗装時の塗膜密着性が劣化する
ようになるので、S1含有量の範囲は0.003%〜0
.035%とした。
It is difficult to keep Sl to less than 0.003%, and if it exceeds 0.1%, the adhesion of the paint film during painting will deteriorate, so the range of S1 content is 0.003%. %~0
.. 035%.

Mnは、通常の製鋼法では0.0596未満とすること
は困難であり、又、0.35%超含まれるとf値の低下
が大きくなるので、Mn含有量の範囲は0.05%〜0
.35%とした。
It is difficult to reduce Mn to less than 0.0596 using normal steel manufacturing methods, and if it is contained in an amount exceeding 0.35%, the f value will decrease significantly, so the Mn content ranges from 0.05% to 0.05%. 0
.. It was set at 35%.

Pは、通常の製鋼法では0.001%未満とすることは
困難であり、又、0.10%超含まれると二次加工性の
低下が大きくなるので、P含有量の範囲は0.001%
〜0.10%とした。
It is difficult to reduce P to less than 0.001% in ordinary steelmaking methods, and if it is contained in excess of 0.10%, the secondary workability will be greatly reduced, so the range of P content is 0.001%. 001%
~0.10%.

Sは、通常の製鋼法ではo、oot%未満とすることは
困難であり、又、o、oao%超含まれると7値の低下
が大きくなるので、S含有量の範囲はo、ooi%〜0
.030%とした。
It is difficult to reduce S to less than o, oot% in normal steel manufacturing methods, and if it is contained in excess of o, oao%, the decrease in the 7 value will be large, so the S content range is o, ooi%. ~0
.. 030%.

5oi1. A Dは、熱延時の低温スラブ加熱段階で
A47Nとして析出のまま存在させるために必要な元素
で、0.020%未満になると低温スラブ加熱でもAI
Nが再固溶し、捲き取り時あるいは連続焼鈍性時に微細
なAINが析出しF値の低下が生じる。又、0.lO%
超含まれると固溶体強化が目立ち始め?値等の低下が大
きくなるので、sof、 A O含有量の範囲は0.0
20%〜0.10%とした。
5oi1. A D is an element necessary to keep it precipitated as A47N during the low-temperature slab heating stage during hot rolling, and if it is less than 0.020%, AI will not be present even during low-temperature slab heating.
N re-dissolves into solid solution, and fine AIN precipitates during rolling or continuous annealing, resulting in a decrease in the F value. Also, 0. lO%
Does solid solution strengthening start to become noticeable when it is super contained? Since the decrease in values, etc. becomes large, the range of sof, A O content is 0.0.
The content was set at 20% to 0.10%.

Nは、通常の製鋼法では0.0005%未満とすること
は困難であり、又、o、ooeo%超含まれると7値の
低下が大きくなるので、5oi1. A I含有量の範
囲は0.0005%〜0.0060%とした。
It is difficult to reduce N to less than 0.0005% in a normal steel manufacturing method, and if it is contained in excess of o, ooeo%, the decrease in the 7 value becomes large, so 5oi1. The range of AI content was 0.0005% to 0.0060%.

スラブの鋳造条件は、特別に規制する必要が無く、連続
鋳造法でも良く、インゴット法でも良い。
There is no need to particularly regulate the casting conditions for the slab, and continuous casting or ingot casting may be used.

熱延条件は、先に述べたように重要な要素である。スラ
ブの加熱に至るまでの熱履歴は特に規制する必要がなく
、スラブを一旦冷片と成したのち加熱炉に挿入しても、
熱片の状態で加熱炉に挿入しても良い。
Hot rolling conditions are an important element as mentioned above. There is no need to particularly regulate the thermal history up to the heating of the slab, and even if the slab is once formed into a cold piece and then inserted into the heating furnace,
It may be inserted into the heating furnace in the form of a hot piece.

スラブ加熱温度は、Ag、NをAfiNとして析出させ
連続焼鈍後の製品のF値を高くするのに重要な役割を有
しており、より低い加熱温度にすることが望ましく、1
170℃超では固溶のAg、Nが多くなり、深絞り用鋼
板に必要なF値が得られなくなる。又、1000℃未満
となると深絞り用冷延鋼板の製造に必要な熱延仕上げ温
度が確保できなくなるので、スラブ加熱温度の範囲を1
000℃〜1170℃とした。
The slab heating temperature plays an important role in precipitating Ag and N as AfiN and increasing the F value of the product after continuous annealing, and it is desirable to lower the heating temperature.
If the temperature exceeds 170°C, solid solution of Ag and N increases, making it impossible to obtain the F value required for a steel plate for deep drawing. Also, if the temperature is less than 1000°C, it will not be possible to secure the hot rolling finishing temperature necessary for manufacturing cold rolled steel sheets for deep drawing, so the range of the slab heating temperature should be set to 1.
000°C to 1170°C.

熱延仕上げ温度は、A r 3点以上の温度の確保は勿
論であるが、本発明の方法の熱延板結晶粒の粗大化防止
法の変態後のα粒の粗大化のためにはより高温であるこ
とが望ましいが、工業的には低温スラブ加熱の場合は9
60℃が限度である。又、本発明の場合の粗大粒が発生
しない限界の仕上げ温度は、種々の実験の結果890℃
であったので、仕上げ温度の範囲は890℃〜960℃
とした。
Of course, the hot rolling finishing temperature must be maintained at the A r 3 point or higher, but in order to coarsen the α grains after transformation, which is the method of the present invention for preventing coarsening of hot rolled sheet crystal grains. A high temperature is desirable, but industrially, in the case of low-temperature slab heating, 9
The limit is 60°C. In addition, in the case of the present invention, the limit finishing temperature at which coarse grains do not occur is 890°C as a result of various experiments.
Therefore, the finishing temperature range was 890°C to 960°C.
And so.

ROT冷却条件は、種々の実験の結果、捲き取り時に、
熱延鋼帯の少なくとも最Topより18m以上且つ最B
ottomより15m以上をROT上で注水冷却を行い
、制御冷却し、本発明の方法の捲き取り条件範囲に確実
に入れるよう冷却することである。
As a result of various experiments, the ROT cooling conditions are as follows:
At least 18 m or more from the top of the hot rolled steel strip and the top B
Water injection cooling is performed on the ROT for a distance of 15 m or more from the ottom, and controlled cooling is performed to ensure cooling within the winding condition range of the method of the present invention.

少なくとも最Topから18m以上且つ最Bottom
より15m以上をROT上で注水冷却を行うのは、低温
スラブ加熱でFTを890℃以上確保するため高速で熱
間圧延を行う必要があり、且つ890℃以上の高いFT
から限られたROT長さで本発明の方法の捲き取り温度
の範囲に冷却するには注水冷却が必要であるためである
At least 18m from the top and the bottom
In order to perform water injection cooling on the ROT over 15 m, it is necessary to perform hot rolling at high speed in order to secure a FT of 890°C or higher with low-temperature slab heating, and a high FT of 890°C or higher.
This is because water injection cooling is necessary to cool the film to the rolling temperature range of the method of the present invention with a limited ROT length.

次に望ましくは仕上げ温度から830℃までの温度範囲
を40℃/see以下で冷却することが粗大粒の発生を
より確実に行う上で好ましい。
Next, it is preferable to cool the material at a temperature of 40° C./see or less within a temperature range from the finishing temperature to 830° C. in order to more reliably generate coarse grains.

捲き取り温度は極めて詳細に規制することが重要で、本
発明者等の数多くの実験の結果、素材成分、熱延条件を
厳しく限定し、更に、熱延鋼帯の長手方向の最Topよ
り18m以上且つ最BottomよりL5m以上はRO
T上で注水冷却を行い、熱延鋼帯の最Topから18m
未満を850℃、最Topより18m以上50m未満を
18mの位置の温度を760℃、50mの位置の温度を
740℃とし、その間をその二点の温度を直線で結んで
求められる温度、最Topより50m以上且つ最Bot
toa+より30m以上を740℃、最Bottomよ
り30m未満15m以上を30mの位置の温度を740
℃、15mの位置の温度を760℃とし、その間をその
二点の温度を直線で結んで求められる温度、最Bott
oIIより15m未満を820℃、を上限の捲き取り温
度とし、且つ、熱延鋼帯の最Topから5m未満を76
0℃、最Topより5m以上30m未満を5mの位置の
温度を710℃、30mの位置の温度を680℃とし、
その間をその二点の温度を直線で結んで求められる温度
、最Topより30m以上且つ最Bottomより15
m以上を660℃、最BottoI11より15m未満
5m以上を15mの位置の温度を680℃、5mの位置
の温度を700℃とし、その間をその二点の温度を直線
で結んで求められる温度、最Bottomより5m未満
を720℃、を下限の捲き取り温度とし、ROT上で制
御冷却して捲き取ることで初めて、熱延板結晶粒の粗大
化もなく、深絞り性に優れた冷延鋼板の製造が可能とな
ったのである。
It is important to regulate the winding temperature in extremely detail, and as a result of numerous experiments conducted by the present inventors, the material composition and hot rolling conditions were strictly limited, and furthermore, the rolling temperature was 18 m from the top of the hot rolled steel strip in the longitudinal direction. above and L5m or more from the bottom is RO
Water injection cooling was performed on the T, and the temperature was 18 m from the top of the hot rolled steel strip.
The temperature at a position 18m or more and less than 50m from the top is 760°C, and the temperature at a position 50m is 740°C, and the temperature found by connecting the two points with a straight line between them is the temperature at the top. 50m or more and the highest bot
740℃ for 30m or more from TOA+, 740℃ for 30m or more less than 30m from the bottom
℃, the temperature at a position of 15 m is 760℃, and the temperature found by connecting the two points with a straight line, the maximum Bott.
The upper limit of rolling temperature is 820°C for less than 15m from oII, and 76°C for less than 5m from the top of the hot rolled steel strip.
0℃, the temperature at the position 5m or more and less than 30m from the top is 710℃, the temperature at the position 30m is 680℃,
Temperature determined by connecting the temperature of the two points between them with a straight line, 30m or more from the top and 15m from the bottom.
m or more is 660℃, less than 15m from BottoI11, the temperature at 15m or more is 680℃, the temperature at 5m is 700℃, and the temperature found by connecting the two points with a straight line between them is the maximum temperature. The lower limit of rolling temperature is 720°C less than 5m from the bottom, and by controlling cooling and rolling on ROT, we can produce cold rolled steel sheets with excellent deep drawability without coarsening of hot rolled sheet grains. Manufacturing became possible.

熱延鋼帯長手方向の各位置の捲き取り温度が、本発明の
方法の温度の上限を超えると熱延板結晶粒が粗大化が生
じ、熱延鋼帯長手方向の各位置の捲き取り温度が、本発
明の方法の温度の下限を下回ると、?値が低下し深絞り
用冷延鋼板が得られなくなるので上記のように規制した
When the winding temperature at each position in the longitudinal direction of the hot-rolled steel strip exceeds the upper limit of the temperature in the method of the present invention, the grains of the hot-rolled sheet become coarsened, and the winding temperature at each position in the longitudinal direction of the hot-rolled steel strip increases. is below the lower temperature limit of the method of the invention? Since the value decreases and it becomes impossible to obtain cold-rolled steel sheets for deep drawing, the above restrictions were made.

冷間圧延は、通常冷延鋼板に行われているような冷延率
で冷延すればよく、特に限定する必要はないが、より高
い?値を得るためには冷間圧延率を70%以上とするの
が好ましい。
Cold rolling can be carried out at a cold rolling rate that is normally used for cold rolled steel sheets, and there is no need to limit it in particular, but is it higher? In order to obtain this value, it is preferable that the cold rolling rate is 70% or more.

連続焼鈍は、通常行われているように、再結晶焼鈍後時
効性を向上させるための過時効処理のある冷延鋼板用の
連続焼鈍法でよいが、より高い1値を得るためには焼鈍
温度を750℃以上とするのが好ましい。
Continuous annealing may be a continuous annealing method for cold-rolled steel sheets that includes overaging treatment to improve aging properties after recrystallization annealing, as is usually done, but in order to obtain a higher value of 1, annealing is necessary. Preferably, the temperature is 750°C or higher.

(実 施 例) 第1表に示す製造条件で4.0mmの熱延コイルを製造
し、0.80mmに冷間圧延を行い、第1表の連続焼鈍
条件で製造した冷延鋼板のi値と肌荒れを調査し、その
結果を第2表に示す。
(Example) A 4.0 mm hot rolled coil was manufactured under the manufacturing conditions shown in Table 1, cold rolled to 0.80 mm, and the i value of a cold rolled steel sheet manufactured under the continuous annealing conditions shown in Table 1. The results are shown in Table 2.

冷延鋼板の7値と肌荒れの調査は調質圧延後の冷延鋼帯
の長手方向5カ所を調査し、熱間圧延時の熱延鋼帯の最
Topより5mの位置に相当する冷延鋼帯の位置をT1
部、最Topより30mの位置に相当する位置を12部
、中央部の位置に相当する位置をM部、最Bottom
より30mの位置に相当する位置をB2部、最Bott
orAより5mの位置に相当する位置を81部と表示し
た。
In order to investigate the 7 values and roughness of the cold rolled steel sheet, we investigated 5 locations in the longitudinal direction of the cold rolled steel strip after temper rolling, and examined the cold rolled steel strip at 5 m from the top of the hot rolled steel strip during hot rolling. Position the steel strip at T1
part, the position corresponding to the position 30m from the top is 12 parts, the position corresponding to the center position is part M, the most Bottom
The position corresponding to the position 30m away from B2, the highest Bott
The position corresponding to the position 5 m from orA was indicated as 81 copies.

鋼1.鋼2.鋼3は、何れも本発明の実施例で、f値は
コイルの全長に渡り良好な値を示し、且つ、肌荒れも全
く無く、優れた深絞り用冷延鋼板が得られた。
Steel 1. Steel 2. Steel 3 was an example of the present invention, and the f value showed a good value over the entire length of the coil, and there was no roughening at all, and an excellent cold-rolled steel sheet for deep drawing was obtained.

鋼4は、C含有量が0.055%と高い比較例である。Steel 4 is a comparative example with a high C content of 0.055%.

1値は低く特にT、B部の劣化が大きい。又、M部に軽
度ではあるが、肌荒れが710℃のCTにも関わらず発
生しており、本発明の方法の低C化の効果が大きいこと
がわかる。
The value of 1 is low, and the deterioration of the T and B portions is particularly large. In addition, although it was mild, rough skin occurred in the M area despite the CT of 710° C., which shows that the method of the present invention is highly effective in reducing C.

鋼5は、Pを0.075%添加した抗張力が35キロク
ラスの深絞り用抗張力鋼に適用した本発明の実施例で、
f値はコイルの全長に渡り良好な値を示し、且つ、肌荒
れも全く無く、優れた深絞り用抗張力冷延鋼板が得られ
た。
Steel 5 is an example of the present invention applied to a deep-drawing tensile strength steel with a tensile strength of 35 kg class with addition of 0.075% P.
The f value showed a good value over the entire length of the coil, and there was no surface roughness, and an excellent tensile strength cold rolled steel sheet for deep drawing was obtained.

鋼6は、スラブ加熱温度が1250℃の比較例である。Steel 6 is a comparative example in which the slab heating temperature is 1250°C.

M部の1値は良好な値となったが、TI。The 1 value of the M part was a good value, but the TI.

B1部の劣化が激しい。Severe deterioration of part B1.

鋼7は、捲き取り温度が630℃の低温均−捲き取りの
比較例で?値が全く低い。鋼8は、捲き取り温度が71
0℃の均−捲き取り温度の比較例で、M部の7値は良好
な値となったが、rl、B1部の劣化が激しい。
Is Steel 7 a comparative example of low-temperature uniform rolling with a rolling temperature of 630°C? The value is completely low. Steel 8 has a rolling temperature of 71
In a comparative example with a uniform rolling temperature of 0° C., the M portion had a good value of 7, but the rl and B1 portions were severely degraded.

鋼9は捲き取り温度が760℃の均−捲き取り温度の比
較例で、M部の7値は非常に良好な値となったが、12
部、M部、82部の肌荒れが激しく全く製品にならなか
った。
Steel 9 is a comparative example with a uniform rolling temperature of 760°C, and the 7 value of the M part was a very good value, but the 12
The skin of parts 1, M, and 82 was so rough that it could not be used as a product at all.

鋼10は、低温スラブ加熱の方法に、特開昭51−86
219号公報の捲き取り方法を適用し、M部を711℃
で捲き取った比較例(T、B部の無注水捲き取りの長さ
は35mとした。)である。F値は良好な値が得られる
が、12部、B2部に於いて肌荒れが発生し製品になら
なかった。これは無注水部分が35mと長すぎた影響が
大きく本願の低C化効果やM部の捲き取り温度規制のみ
では肌荒れの発生を完全に抑制することができなかった
ためである。
Steel 10 was developed in Japanese Patent Application Laid-Open No. 51-86 in a low-temperature slab heating method.
Applying the rolling method of Publication No. 219, the M part was heated to 711°C.
This is a comparative example (the length of T and B portions rolled up without water injection was 35 m). Although a good F value was obtained, rough skin occurred in 12 parts and B 2 parts, and the product could not be made into a product. This is because the non-water injection part was too long, which was 35 m, and the occurrence of rough skin could not be completely suppressed only by the low C effect of the present application and the winding temperature regulation of the M section.

*1   ニアLO−Uにおいて、710はM部の捲き
取り温度を示し、Uは巻き取り温 度パターンを示す(詳細は下記に示 す)。
*1 In near LO-U, 710 indicates the winding temperature of the M section, and U indicates the winding temperature pattern (details are shown below).

Uパターン:本発明の方法のCTパターンの実施例で、
最Topの位置から最Topより15mの間を無注水で
800℃、最Topより15m超の位置から注水冷却に
よ り、最Topより15m超の位置のCTを750℃に制
御し、漸次直線的に CTを下げていき最Topより30mの位置のCTを7
10℃、最Topより30mの位置から最BottoI
11より20mの位置までのM部を710℃、最BOt
tOfflより20mの位置より漸次直線的に CTを上げていき最Topより8mの 位置のCTを740℃にし、残りの最 Bottomまでの間を760℃、て捲き取った。
U pattern: An example of a CT pattern of the method of the present invention,
CT is controlled to 800℃ without water injection from the top position to 15m from the top, and by water injection cooling from a position 15m from the top to 750℃, gradually and linearly. Lower the CT and set the CT at a position 30m from the top to 7.
10℃, from the position 30m from the top
M part up to 20m from No. 11 at 710℃, maximum BOt
The CT was gradually increased linearly from a position 20 m from tOffl until the CT at a position 8 m from the top was 740°C, and the remaining part up to the bottom was rolled at 760°C.

Fパターン:全長が均一な捲き取り温度Mパターン、低
温スラブ加熱の方法に特開昭51−66219号公報の
捲き取り方法を適用した方法で、T、B部を各々35m
の 長さを無注水で捲き取った。無性 水冷却部のCTはTop部が805℃、BottoI1
1部が800°Cてあった。
F pattern: M pattern with uniform winding temperature over the entire length, by applying the winding method of JP-A-51-66219 to the method of low-temperature slab heating, the T and B sections are each 35 m long.
The length was rolled up without pouring water. The CT of the amorphous water cooling section is 805°C at the top, BottoI1
One portion was at 800°C.

(発明の効果) 以上に本発明の効果について詳細に説明したが、本発明
によれば、連続焼鈍法による深絞り用冷延鋼板を低コス
トなAΩキルド鋼を用いて製造することが可能となり、
その工業的価値は大きい。
(Effects of the Invention) The effects of the present invention have been described in detail above. According to the present invention, it is possible to manufacture cold rolled steel sheets for deep drawing by continuous annealing using low-cost AΩ killed steel. ,
Its industrial value is great.

代 理 人teenager Reason Man

Claims (1)

【特許請求の範囲】 重量%で C:0.008〜0.035%、 Si:0.003〜0.10%、 Mn:0.05〜0.35%、 P:0.001〜0.10%、 S:0.001〜0.030%、 sol.Al:0.020〜0.10%、 N:0.0005〜0.0060%、 残部の不可否的不純物及び鉄よりなる溶鋼を連続鋳造又
は、インゴット法にてスラブとなし、熱間圧延、酸洗、
冷延、過時効処理を有する連続焼鈍の工程を経る深絞り
用冷延鋼板の製造方法において、スラブの加熱温度を1
000℃〜1170℃とし、890〜960℃で仕上げ
圧延を終了し、熱延鋼帯の長手方向の最Topより18
m以上且つ最Bottomより15m以上はランアウト
テーブル上に注水冷却を行い、熱延鋼帯の最Topから
18m未満を850℃、最Topより18m以上50m
未満を18mの位置の温度を780℃、50mの位置の
温度を740℃とし、その間をその二点の温度を直線で
結んで求められる温度、最Topより50m以上且つ最
Bottomより30m以上を740℃、最Botto
mより30m未満15m以上を30mの位置の温度を7
40℃、15mの位置の温度を760℃とし、その間を
その二点の温度を直線で結んで求められる温度、最Bo
ttomより15m未満を820℃、を上限の捲き取り
温度とし、且つ、熱延鋼帯の最Topから5m未満を7
60℃、最Topより5m以上30m未満を5mの位置
の温度を710℃、30mの位置の温度を680℃とし
、その間をその二点の温度を直線で結んで求められる温
度、最Topより30m以上且つ最Bottomより1
5m以上を660℃、最Bottomより15m未満5
m以上を15mの位置の温度を680℃、5mの位置の
温度を700℃とし、その間をその二点の温度を直線で
結んで求められる温度、最Bottomより5m未満を
720℃、を下限の捲き取り温度とし、ランアウトテー
ブル上で制御冷却して捲き取ることを特徴とする連続焼
鈍法による深絞り用冷延鋼板の製造方法。
[Claims] C: 0.008 to 0.035%, Si: 0.003 to 0.10%, Mn: 0.05 to 0.35%, P: 0.001 to 0.03% by weight. 10%, S: 0.001-0.030%, sol. Molten steel consisting of Al: 0.020-0.10%, N: 0.0005-0.0060%, the remainder unavoidable impurities and iron is made into a slab by continuous casting or ingot method, hot rolled, Pickling,
In a method for manufacturing cold-rolled steel sheets for deep drawing that undergoes a continuous annealing process with cold rolling and over-aging treatment, the heating temperature of the slab is set to 1.
000°C to 1170°C, finish rolling at 890°C to 960°C, and roll the hot rolled steel strip at 18°C from the top in the longitudinal direction.
Water cooling is performed on the run-out table for 15 m or more from the top of the hot-rolled steel strip and 15 m or more from the bottom, and 850°C for less than 18 m from the top of the hot-rolled steel strip.
The temperature at a position of 18 m is 780°C, the temperature at a position of 50 m is 740°C, and the temperature obtained by connecting the two points with a straight line is 740 m or more from the top and 30 m from the bottom. ℃、Most Botto
The temperature at a position 30 m below 30 m and 15 m or more from m is 7.
The temperature at a position of 40℃ and 15m is 760℃, and the temperature found by connecting the two points with a straight line is the maximum Bo.
The upper limit of the rolling temperature is 820°C for less than 15m from the top of the hot rolled steel strip, and 7m for less than 5m from the top of the hot rolled steel strip.
60℃, the temperature at a position 5m or more and less than 30m from the top is 710℃, the temperature at 30m is 680℃, and the temperature found by connecting the two points with a straight line, 30m from the top. More than 1 from the bottom
5m or more at 660℃, less than 15m from the bottom5
The lower limit is 680℃ for the temperature at 15m above m, and 700℃ for the temperature at 5m, and the temperature found by connecting the two points with a straight line, and 720℃ for less than 5m from the bottom. A method for manufacturing a cold-rolled steel sheet for deep drawing by a continuous annealing method, which is characterized by controlling the rolling temperature and rolling the steel plate with controlled cooling on a run-out table.
JP1277973A 1989-10-25 1989-10-25 Manufacturing method of cold-rolled steel sheet for deep drawing by continuous annealing method Expired - Fee Related JPH0747779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277973A JPH0747779B2 (en) 1989-10-25 1989-10-25 Manufacturing method of cold-rolled steel sheet for deep drawing by continuous annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277973A JPH0747779B2 (en) 1989-10-25 1989-10-25 Manufacturing method of cold-rolled steel sheet for deep drawing by continuous annealing method

Publications (2)

Publication Number Publication Date
JPH03140416A true JPH03140416A (en) 1991-06-14
JPH0747779B2 JPH0747779B2 (en) 1995-05-24

Family

ID=17590850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277973A Expired - Fee Related JPH0747779B2 (en) 1989-10-25 1989-10-25 Manufacturing method of cold-rolled steel sheet for deep drawing by continuous annealing method

Country Status (1)

Country Link
JP (1) JPH0747779B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059270A (en) * 2009-11-16 2011-05-18 常熟市宏润精密钢管制造有限公司 Method for producing multi-purpose deformed channel steel
CN108220799A (en) * 2017-12-27 2018-06-29 柳州钢铁股份有限公司 Household electrical appliances cold rolling low-carbon glassed steel
CN108220748A (en) * 2017-12-27 2018-06-29 柳州钢铁股份有限公司 The manufacturing method of household electrical appliances cold rolling low-carbon glassed steel
CN108342654A (en) * 2018-05-17 2018-07-31 柳州钢铁股份有限公司 The manufacturing method of the cold rolling glassed steel of yield strength 230MPa or more

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059270A (en) * 2009-11-16 2011-05-18 常熟市宏润精密钢管制造有限公司 Method for producing multi-purpose deformed channel steel
CN108220799A (en) * 2017-12-27 2018-06-29 柳州钢铁股份有限公司 Household electrical appliances cold rolling low-carbon glassed steel
CN108220748A (en) * 2017-12-27 2018-06-29 柳州钢铁股份有限公司 The manufacturing method of household electrical appliances cold rolling low-carbon glassed steel
CN108342654A (en) * 2018-05-17 2018-07-31 柳州钢铁股份有限公司 The manufacturing method of the cold rolling glassed steel of yield strength 230MPa or more

Also Published As

Publication number Publication date
JPH0747779B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US5102478A (en) Method of making non-oriented magnetic steel strips
JP5350255B2 (en) Process for producing flat steel products from silicon alloyed multiphase steels
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
JPH0676616B2 (en) Method for producing hot rolling strip having two-phase structure
JPH03140416A (en) Production of cold rolled steel sheet for deep drawing by continuous annealing method
JPH0582458B2 (en)
JPH0559970B2 (en)
JPS6283426A (en) Manufacture of cold rolled steel sheet for deep drawing
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
JPH0344423A (en) Manufacture of galvanized hot rolled steel sheet having excellent workability
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPH03138317A (en) Production of hot rolled plate for high grade nonoriented silicon steel sheet
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPS6240319A (en) Manufacture of steel sheet having superior deep drawability by continuous annealing
JPH058257B2 (en)
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPS62139822A (en) Production of cold rolled steel sheet for deep drawing having excellent uniformity of material quality
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
JPH05171279A (en) Production of nonoriented silicon steel sheet excellent in surface characteristic and magnetic property
JPH01177322A (en) Manufacture of cold rolled steel sheet extremely excellent in deep drawability
JPH04210427A (en) Production of hot rolled steel plate excellent in deep drawability
JPS6362822A (en) Production of cold rolled steel sheet for deep drawing
JPH11350037A (en) Production of stock for cold rolled steel sheet for working
JPS5836050B2 (en) Renzokuchiyuzou Oyobi Renzokushiyoudonniyoru

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees