JPH03140335A - Formation of polymer film containing dispersed hyperfine powder of semiconductor - Google Patents

Formation of polymer film containing dispersed hyperfine powder of semiconductor

Info

Publication number
JPH03140335A
JPH03140335A JP27718889A JP27718889A JPH03140335A JP H03140335 A JPH03140335 A JP H03140335A JP 27718889 A JP27718889 A JP 27718889A JP 27718889 A JP27718889 A JP 27718889A JP H03140335 A JPH03140335 A JP H03140335A
Authority
JP
Japan
Prior art keywords
semiconductor
polymer film
particles
dispersed
hyperfine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27718889A
Other languages
Japanese (ja)
Other versions
JP2819170B2 (en
Inventor
Yoshikazu Takahashi
善和 高橋
Masayuki Iijima
正行 飯島
Toshihiro Arai
敏弘 新井
Toshiaki Anzaki
利明 安崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP27718889A priority Critical patent/JP2819170B2/en
Publication of JPH03140335A publication Critical patent/JPH03140335A/en
Application granted granted Critical
Publication of JP2819170B2 publication Critical patent/JP2819170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the subject polymer film containing hyperfine semiconductor particles having uniform particle size and dispersed in the polymer film and useful as a non-linear optical element, etc., for opto-electronic use by dispersing hyperfine particles of a semiconductor in a polymer film while decaying the kinetic energy of the particles. CONSTITUTION:2,2-Bis(4-aminophenyl)hexafluoropropane, etc., are charged into evaporation vessels 5, 5 and evaporated in a vacuum of 1X10<-1> to 1X10<-5>Torr to effect the evaporation polymerization of the compound on the substrate 3 in a treating chamber 1 to obtain a polymer. At the same time, a semiconductor raw material (e.g. a II-VI compound such as CdS) is sublimed through a hole 7 of a tungsten heater cell 9 and deposited on the substrate while decaying the kinetic energy of the hyperfine semiconductor particle by reflecting with a reflection plate 11. The objective polymer film containing the hyperfine particles dispersed in the film can be produced by this process. The particle size and the concentration of the dispersed hyperfine semiconductor particles can be arbitrarily controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えばオプトエレクトニクス用の非線型光学素
子、光学デバイス用の有色フィルタ等に用いる半導体超
微粒子を分散した高分子膜の形成方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for forming a polymer film in which ultrafine semiconductor particles are dispersed, which is used for example in nonlinear optical elements for optoelectronics, colored filters for optical devices, etc. .

(従来の技術) 従来、この種の形成方法としては、有色ガラスフィルタ
の場合について示せば、ガラス材と半導体成分を加熱し
溶解させながらガラス中に半導体粒子を形成、分散させ
た後、冷却させて有色ガラスフィルタを作成していた。
(Prior Art) Conventionally, in the case of colored glass filters, this type of formation method involves heating and melting a glass material and a semiconductor component to form and disperse semiconductor particles in the glass, and then cooling the filter. and created colored glass filters.

(発明が解決しようとする課20) 前記有色ガラスフィルタの形成方法は、ガラス材と半導
体成分を溶解させながらガラス中に半導体粒子を形成し
て分散させるため、半導体粒子の粒径をうまく制御出来
ないという問題がある。
(Problem 20 to be solved by the invention) The method for forming the colored glass filter is to form and disperse semiconductor particles in the glass while melting the glass material and the semiconductor component, so that the particle size of the semiconductor particles cannot be well controlled. The problem is that there is no.

そこで、ガラス原料を半導体原料と同時に蒸発させ、ガ
ラス中に半導体超微粒子を分散させる方法が考えられる
が、ガラスの性質上ガラスを蒸発させることは極めて困
難であり実用性がなく現在全く行われていない。
Therefore, a method of evaporating the glass raw material at the same time as the semiconductor raw material and dispersing the semiconductor ultrafine particles in the glass has been considered, but due to the nature of glass, it is extremely difficult to evaporate glass, and it is not practical at present. do not have.

本発明は、前記問題点を解消した均一な粒径の半導体超
微粒子を分散した高分子膜の形成方法を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a polymer film in which ultrafine semiconductor particles having a uniform particle size are dispersed, which solves the above-mentioned problems.

(課題を解決するための手段) 本発明の半導体超微粒子を分散した高分子膜の形成方法
は、真空中で高分子の原料モノマーを蒸発させ、これを
基板上で蒸着重合させて該基板上に高分子膜を形成させ
つつ、これと同時に半導体原料を昇華させて、得られる
半導体超?II粒子の運動エネルギーを減衰させてこれ
を同時に蒸着させて該高分子膜中に分散させることを特
徴とする。
(Means for Solving the Problems) The method of forming a polymer film in which semiconductor ultrafine particles are dispersed according to the present invention is to evaporate a raw material monomer of a polymer in a vacuum, and vapor-deposit and polymerize it on a substrate. A semiconductor material obtained by forming a polymer film and sublimating the semiconductor raw material at the same time? The method is characterized in that the kinetic energy of the II particles is attenuated and the particles are simultaneously vapor deposited and dispersed in the polymer film.

真空中で蒸発させる高分子膜の一方の原料モノマーとし
ては、2,2〜ビス(4−アミノフェニル)へキサフロ
ロプロパン、2.2−ビス[4−(4−アミノフェノキ
シ)フェニル]ヘキサフロロプロパン等が挙げられる。
One raw material monomer for the polymer membrane to be evaporated in vacuum includes 2,2-bis(4-aminophenyl)hexafluoropropane and 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoro. Examples include propane.

また、他方の原料モノマーとしては、2,2−ビス(3
,4−ジカルボキシフェニル)へキサフロロプロパンニ
無水物、トリフロロメチルピロメリット酸二無水物等が
挙げられる。
In addition, as the other raw material monomer, 2,2-bis(3
, 4-dicarboxyphenyl) hexafluoropropani dianhydride, trifluoromethylpyromellitic dianhydride, and the like.

高分子膜中に分散させる半導体超微粒子の原料としては
、II−Vl族のCdS 、 CdSe、 ZnTe等
が挙げられる。
Examples of raw materials for semiconductor ultrafine particles to be dispersed in the polymer film include II-Vl group CdS, CdSe, ZnTe, and the like.

また、前記両原料モノマーを蒸発させて基板上で重合さ
せる際の真空度としてはlXl0−’〜1 x 10−
’Torr程度に設定する。
In addition, the degree of vacuum when evaporating both of the raw material monomers and polymerizing them on the substrate is lXl0-' to 1 x 10-
'Set to about Torr.

また、半導体超微粒子の運動エネルギーの減衰は、例え
ば反射板に反射させて行うようにしてもよいし、或いは
半導体超微粒子が昇華する間にレーザー照射(レーザー
による冷却)を行うようにしてもよい。
Furthermore, the kinetic energy of the semiconductor ultrafine particles may be attenuated by, for example, reflecting it off a reflector, or by laser irradiation (cooling by laser) while the semiconductor ultrafine particles sublimate. .

また、基板上に形成される高分子膜の形成速度を調整す
ることによって高分子膜中に分散させる半導体超微粒子
の分散量を調整することが出来る。
Furthermore, by adjusting the formation rate of the polymer film formed on the substrate, the amount of semiconductor ultrafine particles dispersed in the polymer film can be adjusted.

また、基板と半導体原料を昇華させる装置との間に質量
分析装置を設置し、該装置によって昇華する半導体超微
粒子の粒径を選択、制御することが出来る。
Furthermore, a mass spectrometer is installed between the substrate and the device for sublimating the semiconductor raw material, and the particle size of the semiconductor ultrafine particles to be sublimed can be selected and controlled by the device.

尚、半導体超微粒子を高分子膜に分散させた後、適当な
熱処理を施すことによって、有機物高分子膜を形成する
場合も、この加熱により半導体超微粒子は特に変化はな
い。
Note that even when an organic polymer film is formed by dispersing semiconductor ultrafine particles in a polymer film and then subjecting them to appropriate heat treatment, the semiconductor ultrafine particles are not particularly changed by this heating.

(作 用) 運動エネルギーを減衰された半導体超微粒子は基板上で
蒸着重合されて形成される高分子膜に取り込まれ均一に
分散される。
(Function) The semiconductor ultrafine particles whose kinetic energy has been attenuated are incorporated into a polymer film formed by vapor deposition and polymerization on a substrate and are uniformly dispersed.

(実施例) 以下添付図面に従って本発明の実施例について説明する
(Example) Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明方法を実施する装置の1例を示すもので
、図中、1は処理室を示す。該処理室1内は外部の真空
ポンプその他の真空排気系2に接続すると共に、該処理
室1内に高分子の蒸着膜を形成せしめるべき基板3を固
定板4上に保持するようにした。また、該処理室1内に
前記基板3に対向する位置に高分子膜の原料モノマーa
とbを夫々蒸発させるためのガラス製の蒸発用容器5,
5を設け、該各蒸発用容器5をその近傍に設けられた水
晶振動の蒸発モニター(図示せず)と、ハロゲンヒータ
ー6とによって前記高分子膜の原料モノマーaおよびb
の蒸発を常に一定化させる所定温度にコントロール出来
るようにした。更に、該処理室1内に前記基板3に対向
させて前記蒸発用容器5の位置とは異なる位置に半導体
原料Cを昇華させるための孔7(孔径2〜3n程度)を
備え、1対の銅電極8間に配置されたタングステンヒー
ターセル9を設け、タングステンヒーターlOと処理室
1外に設けた赤外線温度計(図示せず)によりヒータ一
部の温度をモニターしながら半導体原料Cを加熱し、熱
平衡に達して所定粒径(40〜100人程度)に成長し
た半導体超微粒子の昇華を常に一定化させる所定温度に
コントロール出来るようにした。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention, and in the figure, 1 indicates a processing chamber. The inside of the processing chamber 1 is connected to an external vacuum pump or other evacuation system 2, and a substrate 3 on which a polymer vapor-deposited film is to be formed is held on a fixed plate 4 inside the processing chamber 1. In addition, a raw material monomer a for the polymer film is placed in the processing chamber 1 at a position facing the substrate 3.
a glass evaporation container 5 for evaporating and b, respectively;
5, each evaporation container 5 is connected to a crystal vibration evaporation monitor (not shown) provided near the evaporation container 5, and a halogen heater 6 to evaporate the raw material monomers a and b of the polymer film.
The temperature can be controlled to a predetermined temperature to keep the evaporation constant. Further, a hole 7 (hole diameter of about 2 to 3 nm) for sublimating the semiconductor raw material C is provided in the processing chamber 1 at a position opposite to the substrate 3 and different from the position of the evaporation container 5. A tungsten heater cell 9 placed between copper electrodes 8 is provided, and the semiconductor raw material C is heated while monitoring the temperature of a part of the heater using a tungsten heater 1O and an infrared thermometer (not shown) provided outside the processing chamber 1. The temperature can be controlled at a predetermined temperature so that the sublimation of semiconductor ultrafine particles that have reached thermal equilibrium and grown to a predetermined particle size (approximately 40 to 100 particles) is kept constant.

また、基板3を保持する固定数4に固定板4の表面から
間隔を存して基板3に対向する反射板11を設けた。尚
、反射板11は固定板4の表面に対してその角度を可変
調整出来るようにしてもよい。このように反射板11の
を設けることによりタングステンヒーターセル9で加熱
されて昇華した半導体超微粒子が基板3に到達した際、
半導体超微粒子自体が有する高い運動エネルギーによっ
て半導体超微粒子が高分子膜に直接蒸着せずに飛散する
が、その飛散した半導体超微粒子を反射板11で基板3
側に反射させることが出来るから、タングステンヒータ
ーセル9で加熱されて昇華した半導体超微粒子の運動エ
ネルギーが非常に高い場合であってもその運動エネルギ
ーを減衰することが出来て基板3上に形成されている高
分子膜に確実に蒸着、分散させることが出来る。
In addition, a reflecting plate 11 was provided at the fixed number 4 for holding the substrate 3 so as to face the substrate 3 at a distance from the surface of the fixed plate 4. Incidentally, the angle of the reflecting plate 11 with respect to the surface of the fixed plate 4 may be variably adjusted. By providing the reflective plate 11 in this way, when the semiconductor ultrafine particles heated and sublimated by the tungsten heater cell 9 reach the substrate 3,
Due to the high kinetic energy of the semiconductor ultrafine particles themselves, the semiconductor ultrafine particles are not directly deposited on the polymer film but are scattered.
Since it can be reflected to the side, even if the kinetic energy of the semiconductor ultrafine particles heated and sublimated in the tungsten heater cell 9 is very high, the kinetic energy can be attenuated and the particles formed on the substrate 3 can be It can be reliably deposited and dispersed on polymer membranes.

次に前記装置を用いて半導体超微粒子を分散した高分子
膜の形成の具体的実施例について説明する。
Next, a specific example of forming a polymer film in which ultrafine semiconductor particles are dispersed using the above-mentioned apparatus will be described.

実施例 先ず、蒸発用容器5,5の一方に原料モノマーaとして
2.2−ビス(4−アミノフェニル)へキサフロロプロ
パンと、他方に原料モノマーとして2,2−ビス(3,
4−ジカルボキシフェニル)へキサフロロブロバンニ無
水物を夫々充填し、またタングステンヒーターセル9に
半導体原料CとしてCdS粉末を充填した後、処理室1
内の全圧を真空排気系2を介して4 X 10−’To
rrに設定する。
Example First, 2,2-bis(4-aminophenyl)hexafluoropropane was placed in one of the evaporation vessels 5, 5 as the raw material monomer a, and 2,2-bis(3,
4-dicarboxyphenyl) hexafluorobrovanni anhydride and CdS powder as the semiconductor raw material C into the tungsten heater cell 9, the processing chamber 1
The total pressure inside the 4 x 10-'To
Set to rr.

次に、蒸発モニターで蒸発用容器5,5から各原料モノ
マーa、bの蒸発量を測定しながらハロゲンヒーター6
.6によって2.2−ビス(4−アミノフェニル)へキ
サフロロプロパンを温度200±1℃に、また2、2−
ビス(3゜4−ジカルボキシフェニル)へキサフロロプ
ロパンニ無水物を温度200±1℃に夫々加熱すると共
に、赤外線温度計でタングステンヒーターセル9の孔7
からCdSの昇華量をΔp1定しながらタングステンヒ
ーターIOによってCdS粉末をlii度610±10
℃に加熱した。
Next, while measuring the amount of evaporation of each raw material monomer a and b from the evaporation containers 5 and 5 with an evaporation monitor,
.. 2,2-bis(4-aminophenyl)hexafluoropropane to a temperature of 200±1°C and 2,2-
Bis(3°4-dicarboxyphenyl)hexafluoropropanihydride was heated to a temperature of 200±1°C, and the hole 7 of the tungsten heater cell 9 was heated with an infrared thermometer.
The CdS powder was heated by a tungsten heater IO at a temperature of 610±10 degrees while keeping the sublimation amount of CdS constant at Δp1.
heated to ℃.

次いで、原料上ツマ−a、bが所定温度に達して所要の
蒸発量が得られた後に、処理室1内の固定板4に保持さ
れた基板3(マツナミ製ガラス)上に該原料モノマーa
、bをBO人/分の析出速度で堆積させポリイミド膜を
作成しながら、所定温度により熱平衡に達して粒径約7
0人に成長したCdS超微粒子をタングステンヒーター
セル9の孔7から昇華させてポリイミド膜に到告させる
。その際高い運動エネルギーを有するCdS超微粒子は
該膜に直接蒸着せずに飛散し、その飛散したCdS超微
粒子が反射板11に衝突して反射し、その反射したCd
S超微粒子が固定板4と反射板11の間で反射を繰り返
すことによってCdS超微粒子はそれ自体が有する運動
エネルギーが減衰されて基板3上に形成されているポリ
イミド膜にCdS B3微粒子を蒸着した。
Next, after the raw material upper knobs a and b reach a predetermined temperature and the required amount of evaporation is obtained, the raw material monomer a is placed on the substrate 3 (glass made by Matsunami) held on the fixed plate 4 in the processing chamber 1.
, b are deposited at a deposition rate of BO/min to form a polyimide film, thermal equilibrium is reached at a predetermined temperature, and the grain size is approximately 7.
The CdS ultrafine particles that have grown to zero are sublimated through the holes 7 of the tungsten heater cell 9 and delivered to the polyimide film. At that time, the CdS ultrafine particles with high kinetic energy are not directly deposited on the film but are scattered, and the scattered CdS ultrafine particles collide with the reflection plate 11 and are reflected, and the reflected CdS
As the S ultrafine particles were repeatedly reflected between the fixing plate 4 and the reflection plate 11, the kinetic energy of the CdS ultrafine particles itself was attenuated, and the CdS B3 particles were deposited on the polyimide film formed on the substrate 3. .

尚、原料モノマーa、bは化学量論的にポリイミド膜が
形成されるように蒸発量の調整によって1:1のモル比
で蒸発するようにした。また、原料モノマーa、bの蒸
発時における処理室1内の圧力は4 X 1O−3To
rrとした。
The raw material monomers a and b were evaporated at a molar ratio of 1:1 by adjusting the amount of evaporation so that a polyimide film was formed stoichiometrically. Furthermore, the pressure inside the processing chamber 1 during the evaporation of the raw material monomers a and b is 4 X 1O-3To
It was set as rr.

このようにCdS超微粒子の蒸着したポリイミド膜が形
成された基1!i23を処理室1内から取り出した後、
温度300℃の熱処理を施してCdS超微粒子が均一に
分散した有色フィルタを作成した。
In this way, a polyimide film with CdS ultrafine particles deposited was formed on the base 1! After taking out i23 from the processing chamber 1,
A colored filter in which ultrafine CdS particles were uniformly dispersed was produced by heat treatment at a temperature of 300°C.

また、前記実施例では有色フィルタについて説明したが
、本発明はこれに限定されるものではなく、例えばCu
Cj!のような非線型光学材料の作成にも広く応用出来
る。
Further, although the above-mentioned embodiments have described colored filters, the present invention is not limited thereto; for example, Cu filters are used.
Cj! It can also be widely applied to the creation of nonlinear optical materials such as .

(発明の効果) このように本発明の形成法によるときは、真空中で高分
子の原料上ツマ−を蒸発させ、これを基板上で蒸着重合
させて該基板上に高分子膜を形成させつつ、これと同時
に半導体原料を昇華させて、得られる半導体超微粒子の
運動エネルギーを減衰させてこれを同時に蒸着させて該
高分子膜中に分散させるようにしたので、高分子膜中に
均一な粒径の半導体超微粒子を分散させることが出来る
ばかりでなく、分散される半導体超微粒子の粒径や濃度
を任意に制御出来る等の効果がある。
(Effects of the Invention) As described above, when using the formation method of the present invention, a polymer film is formed on the substrate by evaporating the material on the polymer material in a vacuum, and vapor depositing and polymerizing it on the substrate. At the same time, the semiconductor raw material was sublimated to attenuate the kinetic energy of the resulting semiconductor ultrafine particles, which were simultaneously vapor-deposited and dispersed in the polymer film. Not only can semiconductor ultrafine particles of a particle size be dispersed, but also the particle size and concentration of the dispersed semiconductor ultrafine particles can be arbitrarily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明半導体超微粒子を分散した高分子膜の形
成方法を実施するための装置の1例の載断面図である。 外3名 第1図
FIG. 1 is a cross-sectional view of an example of an apparatus for carrying out the method of forming a polymer film in which ultrafine semiconductor particles are dispersed according to the present invention. Figure 1: 3 other people

Claims (1)

【特許請求の範囲】 1、真空中で高分子の原料モノマーを蒸発させ、これを
基板上で蒸着重合させて該基板上に高分子膜を形成させ
つつ、これと同時に半導体原料を昇華させて、得られる
半導体超微粒子の運動エネルギーを減衰させて、これを
同時に蒸着させて該高分子膜中に分散させることを特徴
とする半導体超微粒子を分散した高分子膜の形成方法。 2、前記半導体超微粒子の運動エネルギーの減衰は該半
導体超微粒子を反射板に反射させて行うことを特徴とす
る請求項1に記載の半導体超微粒子を分散した高分子膜
の形成方法。
[Claims] 1. Evaporating a raw material monomer for a polymer in a vacuum, vapor-depositing and polymerizing it on a substrate to form a polymer film on the substrate, and simultaneously sublimating a semiconductor raw material. A method for forming a polymer film in which ultrafine semiconductor particles are dispersed, characterized in that the kinetic energy of the resulting ultrafine semiconductor particles is attenuated and the particles are simultaneously vapor deposited and dispersed in the polymer film. 2. The method for forming a polymer film in which ultrafine semiconductor particles are dispersed according to claim 1, wherein the kinetic energy of the ultrafine semiconductor particles is attenuated by reflecting the ultrafine semiconductor particles on a reflecting plate.
JP27718889A 1989-10-26 1989-10-26 Method for forming polymer film in which semiconductor ultrafine particles are dispersed Expired - Fee Related JP2819170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27718889A JP2819170B2 (en) 1989-10-26 1989-10-26 Method for forming polymer film in which semiconductor ultrafine particles are dispersed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27718889A JP2819170B2 (en) 1989-10-26 1989-10-26 Method for forming polymer film in which semiconductor ultrafine particles are dispersed

Publications (2)

Publication Number Publication Date
JPH03140335A true JPH03140335A (en) 1991-06-14
JP2819170B2 JP2819170B2 (en) 1998-10-30

Family

ID=17580034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27718889A Expired - Fee Related JP2819170B2 (en) 1989-10-26 1989-10-26 Method for forming polymer film in which semiconductor ultrafine particles are dispersed

Country Status (1)

Country Link
JP (1) JP2819170B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955528A (en) * 1996-07-04 1999-09-21 Fuji Xerox Co., Ltd. Polymeric composite material and process for manufacturing the same
US5963360A (en) * 1993-02-12 1999-10-05 Fuji Xerox Co., Ltd. Nonlinear optical element and process for the preparation of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963360A (en) * 1993-02-12 1999-10-05 Fuji Xerox Co., Ltd. Nonlinear optical element and process for the preparation of same
US5955528A (en) * 1996-07-04 1999-09-21 Fuji Xerox Co., Ltd. Polymeric composite material and process for manufacturing the same

Also Published As

Publication number Publication date
JP2819170B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
EP1861693B1 (en) Method for preparing a thermoplastic film having metallic nanoparticle coating
Kumar et al. Pulse laser deposited nanostructured ZnO thin films: a review
JPH02259628A (en) Production of organic compound thin film
WO2007011331A2 (en) Water-soluble polymeric substrate having metallic nanoparticle coating
KR100264347B1 (en) Process and device for fabricating thin films
JPS5817038B2 (en) Optical recording medium and its manufacturing method
JPH03140335A (en) Formation of polymer film containing dispersed hyperfine powder of semiconductor
JP3623848B2 (en) Evaporation source for organic compounds and vapor deposition polymerization apparatus using the same
JP3059972B2 (en) Manufacturing method of organic optical thin film and its equipment
Tokura et al. Photo-induced structural disorder in Langmuir-Blodgett films of polydiacetylenes
JPH0286490A (en) Optical recording medium
JPH03174307A (en) Production of oxide superconductor
Sajjadi et al. Laser-ablation deposition of uniform thin films of Bi2Sr2CaCu2Ox
JPH03174306A (en) Production of oxide superconductor
Tamada et al. Real-time in-situ observation of vapor deposition polymerization of N-methylolacrylamide with IR-RAS
JPH03200218A (en) Function member having intra-surface oriented and polymerized thin film and its production
Usui et al. Deposition polymerization of polyurea thin films by ionization-assisted method
Podpirka et al. Molecular beam epitaxy growth of low-bandgap material thick films using a molybdenum disilicide coated backing plate for substrate temperature control
JPS59112870A (en) Curing method for coating film and apparatus therefor
JP2009510208A (en) Method for preparing oriented and nanostructured polymer surfaces
JPH0318500Y2 (en)
Sakata et al. Preparation of uniaxially oriented polyamide films by vacuum deposition polymerization
JPH0240243B2 (en) BUNSHIHAIKOSEIHAKUMAKU
RU94041175A (en) Method for making thin-filmed coating
JPH06347607A (en) Moistureproof optical material and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees