JPH03140308A - Preparation of polymerization catalyst for polyolefin - Google Patents

Preparation of polymerization catalyst for polyolefin

Info

Publication number
JPH03140308A
JPH03140308A JP28046389A JP28046389A JPH03140308A JP H03140308 A JPH03140308 A JP H03140308A JP 28046389 A JP28046389 A JP 28046389A JP 28046389 A JP28046389 A JP 28046389A JP H03140308 A JPH03140308 A JP H03140308A
Authority
JP
Japan
Prior art keywords
alcohol
solid component
compound
component
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28046389A
Other languages
Japanese (ja)
Inventor
Shinya Miya
宮 新也
Katsuhiko Ono
勝彦 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP28046389A priority Critical patent/JPH03140308A/en
Publication of JPH03140308A publication Critical patent/JPH03140308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To prepare the subject highly strong and active catalyst comprising porous spherical particles by stirring the complex compound of a Mg compound with an alcohol in the presence of a surfactant in a solvent at a temperature of >= the melting point, rapidly cooling the stirred suspension, drying the resultant solid particles and subsequently treating the dried solid particles with a halogenated Ti and an electron-donor. CONSTITUTION:A magnesium compound (e.g. magnesium chloride) and an alcohol (e.g. ethanol) are reacted with each other in an inactive organic solvent (e.g. hexane) to prepare a complex compound, which is heated and stirred in the presence of a nonionic surfactant at a temperature range of >= the melting point to give a suspension solution. The suspension solution is rapidly cooled to form a spherical solid component without the evaporation of the alcohol. The solid component is partially dried and subsequently treated with titanium halide (e.g. titanium tetrachloride) and an electron donor (e.g. isobutyl phthalate) to provide the objective polymerization catalyst component.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はポリオレフィン用の重合固体触媒成分の製造方
法に関する。さらに詳しくは、ポリオレフィン用の重合
固体触媒成分において、粒径が大きく球形な固体触媒成
分を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a polymerized solid catalyst component for polyolefins. More specifically, the present invention relates to a method for producing a solid catalyst component having a large particle size and a spherical shape in a polymerization solid catalyst component for polyolefin.

[従来の技術及びその問題点] ポリオレフィン用重合触媒としては、−船釣にはチーグ
ラー・ナツタ系触媒が用いられている。
[Prior art and its problems] Ziegler-Natsuta catalysts are used as polymerization catalysts for polyolefins for boat fishing.

この触媒系の一つとして、マグネシウム化合物を担体と
する担持型触媒が公知であり、重合活性に優れた性能を
示す数多くの特許が報告されている。このような担持型
触媒においては、触媒粒子の形状を制御することが望ま
しく、そのような方法もいくつか知られてはいるが、粒
径が大きく球形な固体触媒成分を得る方法としては不充
分なものが多い。
As one of these catalyst systems, a supported catalyst using a magnesium compound as a carrier is known, and numerous patents have been reported showing excellent performance in polymerization activity. In such supported catalysts, it is desirable to control the shape of the catalyst particles, and although some such methods are known, they are insufficient as methods for obtaining spherical solid catalyst components with large particle sizes. There are many things.

そのような方法の一つとして、スプレー乾燥法とスプレ
ー冷却法が公知である。スプレー乾燥法(特開昭49−
85,999.特開昭52−38,590、特開昭58
−45,205.特開昭57−198,709、特開昭
59−131.608、特開昭63−289,005)
では、マグネシウム化合物の水あるいはアルコール溶液
を、加熱窒素気流中にスプレーし、生成した液滴から水
あるいはアルコールを加熱窒素により蒸発させて、球形
の固体担体粒子を得るものである。この方法では、粒子
から溶剤が連続的にかつ急激に蒸発するため、粒子は多
孔性で溶剤含有量が一定しない不均貢なものになるとい
う問題点があった。
Spray drying methods and spray cooling methods are known as such methods. Spray drying method (JP-A-49-
85,999. JP-A-52-38,590, JP-A-58
-45,205. JP 57-198,709, JP 59-131.608, JP 63-289,005)
In this method, a water or alcohol solution of a magnesium compound is sprayed into a heated nitrogen stream, and the water or alcohol is evaporated from the generated droplets by the heated nitrogen to obtain spherical solid carrier particles. This method has the problem that the solvent is continuously and rapidly evaporated from the particles, resulting in particles that are porous and have a disproportionately distributed solvent content.

また、スプレー冷却法(特表昭a3−so:+、5so
)は一般式MgC1z・xLOH−ysKYのマグネシ
ウム化合物を溶融状態で、冷却不活性液状流体で冷却し
たチ豐ンバー中にスプレーし、溶剤の蒸発なしに球形の
固体担体粒子を得るものである。しかしながら、この方
法で得られる担体粒子の形状は不充分な場合が多く、し
かも、ハロゲン化チタン処理をする時に、粒子が壊れて
しまうという問題点があった。
In addition, spray cooling method (Special table Showa 3-so: +, 5so
) sprays a magnesium compound of the general formula MgC1z.xLOH-ysKY in a molten state into a chamber cooled with a cooled inert liquid fluid to obtain spherical solid carrier particles without evaporation of the solvent. However, the shape of the carrier particles obtained by this method is often insufficient, and furthermore, there is a problem that the particles are broken during the titanium halide treatment.

さらに、別な方法としては、担体成分の溶融物を適当な
油中に乳化して球状溶融粒子を形成させ、次いでこれを
冷却した炭化水素媒体中に添加して急速に固化させる融
体急冷法がある(特開昭55−H5,102、特開昭5
5−135,103、特開昭56−67.311.特開
昭5!l−132,929) 、 L、、かじながら、
この方法において、得られた担体をアルミニウム化合物
で処理しない場合には、次のハロゲン化チタン処理時に
担体の粒子が破壊されていまうことが多く、またアルミ
ニウム化合物で処理する場合には触媒活性が低下する場
合が多いという問題点かありた。
Yet another method is melt quenching, in which a melt of the carrier component is emulsified in a suitable oil to form spherical molten particles, which are then added to a cooled hydrocarbon medium to rapidly solidify. (Japanese Patent Publication No. 55-H5, 102,
5-135,103, JP-A-56-67.311. Tokukai Showa 5! l-132,929), L, while nudging,
In this method, if the obtained support is not treated with an aluminum compound, the particles of the support are often destroyed during the next titanium halide treatment, and if the support is treated with an aluminum compound, the catalytic activity decreases. The problem was that there were many cases where this was done.

本発明者は、上記の問題点を解決すべく研究を重ねた結
果、マグネシウム化合物とアルコール類を不活性有機溶
媒中で反応させて得た錯体化合物を、非イオン性界面活
性剤の存在下、その溶融温度以上の範囲で加熱攪拌し、
懸濁させた溶液を急冷して、アルコールの蒸発なしに球
形担体を得た後、その担体を特定のアルコール/ Mg
C12比まで乾燥することにより、ハロゲン化チタン処
理時に粒子の破壊がなくなり、しかも触媒活性の優れた
、粒径が大ぎく球形の固体触媒成分が得られることを見
いだし、この知見にもとづいて本発明に到達した。
As a result of repeated research to solve the above problems, the present inventor has developed a complex compound obtained by reacting a magnesium compound and an alcohol in an inert organic solvent in the presence of a nonionic surfactant. Heat and stir at a temperature above its melting temperature,
After the suspended solution was rapidly cooled to obtain a spherical carrier without evaporation of alcohol, the carrier was mixed with a specific alcohol/Mg
It has been discovered that by drying to a C12 ratio, particles do not break during titanium halide treatment, and a solid catalyst component with large spherical particle size and excellent catalytic activity can be obtained.Based on this knowledge, the present invention has been developed. reached.

[問題点を解決するための手段] 本発明は、下記 (1)〜(7)の構成を有する。[Means for solving problems] The present invention has the following configurations (1) to (7).

(1) マグネシウム化合物とアルコール類を不活性有
機溶媒中で反応させて得た錯体化合物を、非イオン性界
面活性剤の存在下、その溶融温度以上の範囲で加熱攪拌
し、懸濁させた溶液を急冷して、アルコールの実質的な
蒸発なしに球形固体成分を得た後、該固体成分を部分的
に乾燥し、しかる後詰乾燥固体成分をハロゲン化チタン
及び電子供与性化合物で処理することを特徴とするオレ
フィン重合用触媒成分の製法。
(1) A solution in which a complex compound obtained by reacting a magnesium compound and an alcohol in an inert organic solvent is heated and stirred at a temperature above its melting temperature in the presence of a nonionic surfactant to suspend it. to obtain a spherical solid component without substantial evaporation of the alcohol, partially drying the solid component, and subsequently treating the packed dry solid component with a titanium halide and an electron-donating compound. Characteristic method for producing catalyst components for olefin polymerization.

(2) マグネシウム化合物とアルコール類の不活性有
機溶媒中での反応を電子供与体の存在下に行りてなる前
記第1項に記載の製法。
(2) The method according to item 1 above, wherein the reaction of a magnesium compound and an alcohol in an inert organic solvent is carried out in the presence of an electron donor.

(3) マグネシウム化合物−アルコール錯体の組成が
一般式、 MgC1t・nROH−pED (但し、Rは炭素数1
〜10のアルキル基、rr3.0〜6.0であり、 E
Dは電子供与体、p−0〜2,0である。) である前記第1項に記載の製法。
(3) The composition of the magnesium compound-alcohol complex is the general formula, MgC1t・nROH-pED (where R is 1 carbon number
~10 alkyl groups, rr3.0-6.0, E
D is an electron donor, p-0 to 2,0. ) The manufacturing method according to item 1 above.

(4)該急冷が、アルコールの実質的な蒸発を伴わず、
しかも該錯体粒子を固化させるに充分なほど低温に冷却
された不活性有機溶媒と、該懸濁液とを速やかに接触さ
せることにより行い、出発原料のマグネシウム化合物−
アルコール錯体と同じ組成(−数式MgC11・nRO
)1−pED、但し、Rは炭素数1〜10のアルキル基
、n=3.0〜6.0であり、EDは電子供与体p=0
〜2.0である。)を有する球形固体成分を得る前記第
1項に記載の製法。
(4) the quenching does not involve substantial evaporation of the alcohol;
Moreover, the suspension is rapidly brought into contact with an inert organic solvent that has been cooled to a temperature low enough to solidify the complex particles, and the starting material magnesium compound -
Same composition as alcohol complex (-formula MgC11・nRO
)1-pED, where R is an alkyl group having 1 to 10 carbon atoms, n=3.0 to 6.0, and ED is an electron donor p=0
~2.0. ) The manufacturing method according to item 1 above, for obtaining a spherical solid component having the following properties.

(5)部分的に乾燥した後の固体成分の組成が一般式、 k1gc12・mROH−pED (但し、aは炭素数
1〜1017)フルキル基、■−0,4〜2.0であり
、EDは電子供与体、p=0〜2.0である。) である前記′!J1項に記載の製法。
(5) The composition of the solid component after being partially dried is the general formula k1gc12·mROH-pED (where a is a carbon number 1 to 1017) furkyl group, ■ -0,4 to 2.0, and ED is an electron donor, p=0 to 2.0. ) is the above′! The manufacturing method described in Section J1.

(fi)乾燥固体成分とハロゲン化チタンとの反応を該
ハロゲン化チタン中のTiと該固体成分中のMgCl2
とのそル比が1〜100、−20〜200℃で5分〜6
時間反応させる前記第1項に記載の製法。
(fi) A reaction between a dry solid component and a titanium halide is performed to form a reaction between Ti in the titanium halide and MgCl2 in the solid component.
Ratio between 1 and 100, 5 minutes to 6 at -20 to 200℃
The manufacturing method according to item 1 above, in which the reaction is carried out for a period of time.

(7)乾燥固体触媒成分と電子供与性化合物との反応を
該化合物とMgCl2とのモル比が0.01〜0,8、
−20〜200℃で5分〜6時間行う前記第1項に記載
の製法。
(7) The reaction between the dry solid catalyst component and the electron-donating compound is carried out at a molar ratio of the compound and MgCl2 of 0.01 to 0.8;
The manufacturing method according to item 1 above, which is carried out at -20 to 200°C for 5 minutes to 6 hours.

すなわち、本発明の代表的構成はマグネシウム化合物と
アルコール類及び電子供与体化合物を不活性有機溶媒中
で反応させて得た、−数式、MgC1,・nROH−p
ED (但し、8は炭素数1〜lOのアルキル基、n=
3.0〜6.0であり、EDは電子供与体、p・0〜2
.0である。)で表される錯体化合物を、非イオン性界
面活性剤の存在下、その溶融温度以上の範囲で加熱攪拌
し、懸濁させた溶液を急冷して、アルコールの実質的な
蒸発なしに、上記組成と同じ組成を有する球形固体成分
を得た後、該固体成分をその組成が一般式、MgCl2
・■ROH−pED (但し、Rは炭素数1〜lOのア
ルキル基、m−0,4〜2.0であり、EDは電子供与
体、p−0〜2.0である。)になるまで部分的に乾燥
し、その後詰乾燥固体成分をハロゲン化チタン及び電子
供与性化合物で処理することを特徴とするオレフィン重
合用触媒成分の製法である。
That is, a typical structure of the present invention is obtained by reacting a magnesium compound, an alcohol, and an electron donor compound in an inert organic solvent.
ED (however, 8 is an alkyl group having 1 to 10 carbon atoms, n=
3.0 to 6.0, ED is electron donor, p・0 to 2
.. It is 0. ) is heated and stirred in the presence of a nonionic surfactant at a temperature above its melting temperature, and the suspended solution is rapidly cooled to form the above complex compound without substantial evaporation of the alcohol. After obtaining a spherical solid component having the same composition as the composition, the solid component has the general formula, MgCl2
・■ROH-pED (However, R is an alkyl group having 1 to 10 carbon atoms, m-0.4 to 2.0, and ED is an electron donor, p-0 to 2.0.) This is a method for producing a catalyst component for olefin polymerization, which is characterized in that the packed dry solid component is partially dried until dry, and then the packed dried solid component is treated with a titanium halide and an electron-donating compound.

本発明において使用されるマグネシウム化合物は、無水
塩化マグネシウムであり、市販品に含まれる程度の微量
の水分を含むものであつてもよい、また使用するアルコ
ール類(−数式Rollで表われ、Rは炭素数1〜10
のアルキル基である。)としては、具体的には、メタノ
ール、エタノール、n−プロピルアルコール、■−プロ
ピルアルコール、ブチルアルコール、2−エチルヘキシ
ルアルコール等を挙げることができる。これらの中では
、エタノールが好んで用いられる。これらのアルコール
を2fl類以上混合して使用することもできる。
The magnesium compound used in the present invention is anhydrous magnesium chloride, which may contain a trace amount of water as contained in commercially available products, and the alcohols used (represented by the formula Roll, where R is Carbon number 1-10
is an alkyl group. ), specific examples include methanol, ethanol, n-propyl alcohol, -propyl alcohol, butyl alcohol, and 2-ethylhexyl alcohol. Among these, ethanol is preferably used. It is also possible to use a mixture of 2 fl or more of these alcohols.

本発明に使用する不活性有機溶媒は、マグネシウム化合
物、アルコール類及びこれらが反応して生成する錯体化
合物に対して不活性で、しかも溶融状態における錯体粒
子の懸濁物が形成できないほど高度な親和性を示すもの
であってはならない、具体的には、ヘキサン、ヘプタン
、オクタン、ノナン、デカン、ケロシン及び流動パラフ
ィンのような脂肪族炭化水素、ベンゼン、トルエン、キ
シレン及びクメンのような芳香族炭化水素、1.2−ジ
クロルエタン、クロルベンゼン及びジクロルベンゼンの
ようなハロゲン化炭化水素である。
The inert organic solvent used in the present invention is inert to the magnesium compound, alcohol, and the complex compound formed by the reaction of these, and has such a high affinity that a suspension of complex particles cannot be formed in the molten state. In particular, aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, kerosene and liquid paraffin, aromatic carbons such as benzene, toluene, xylene and cumene. Hydrogen, halogenated hydrocarbons such as 1,2-dichloroethane, chlorobenzene and dichlorobenzene.

本発明においてはマグネシウム化合物とアルコール類を
不活性有機溶媒中で反応させて錯体化合物を生成させる
が、アルコール/塩化マグネシウムのモル比は、 3.
0〜6.0の範囲である。また、後述の電子供与体をこ
の反応時に添加してもよく、その添加量は電子供与体/
塩化マグネシウムのモル比でO〜2.0の範囲である。
In the present invention, a complex compound is produced by reacting a magnesium compound and an alcohol in an inert organic solvent, and the molar ratio of alcohol/magnesium chloride is 3.
It ranges from 0 to 6.0. In addition, an electron donor, which will be described later, may be added during this reaction, and the amount of addition may be determined by adjusting the amount of electron donor/
The molar ratio of magnesium chloride is in the range of O to 2.0.

不活性有機溶媒の使用量は、塩化マグネシウムlog当
り0.1〜10L、好ましくは0.3〜5Lである0反
応塩度及び反応時間には、特に制限はないが、温度に関
しては、錯体生成反応を迅速に行わせ、引き続き生成し
た錯体を溶融状態で不活性有機溶媒中に懸濁させるため
に70℃以上が好んで用いられる。
The amount of inert organic solvent used is 0.1 to 10 L, preferably 0.3 to 5 L, per log of magnesium chloride.There is no particular restriction on the reaction salinity and reaction time, but the temperature is important for complex formation. Temperatures above 70° C. are preferably used in order to allow the reaction to occur rapidly and to subsequently suspend the resulting complex in molten form in an inert organic solvent.

本発明においては、前記錯体を上述した不活性有機溶媒
に懸濁させるに際して界面活性剤を存在させる。界面活
性剤としては、油溶性のもので、非イオン型界面活性剤
が好ましい1例えば、ソルビタン脂肪族エステル、ポリ
オキシエチレンソルビタン脂肪族エステル、ポリオキシ
エチレン脂肪族エステル等で、より具体的にはソルビタ
ントリオレエート、ソルビタントリステアレート、プロ
ピレングリコールモノステアレート、ゾルビタンセスキ
オレエート、ソルビタンモノオレート、ソルビタンジス
テアレート、プロピレングリコールモノラウレート、ソ
ルビタンモノステアレート、ジエチレングリコールモノ
ステアレート、ジエチレングリコールモノラウレート、
ソルビタンモノパルミテート、ソルビタンモノラウレー
ト等を挙げることができる。
In the present invention, a surfactant is present when the complex is suspended in the above-mentioned inert organic solvent. The surfactant is an oil-soluble one, preferably a nonionic surfactant. For example, sorbitan aliphatic ester, polyoxyethylene sorbitan aliphatic ester, polyoxyethylene aliphatic ester, etc. Sorbitan trioleate, sorbitan tristearate, propylene glycol monostearate, sorbitan sesquioleate, sorbitan monooleate, sorbitan distearate, propylene glycol monolaurate, sorbitan monostearate, diethylene glycol monostearate, diethylene glycol monolaurate ,
Examples include sorbitan monopalmitate and sorbitan monolaurate.

界面活性剤の使用量は、マグネシウム化合物とアルコー
ル類の錯体が不活性有機溶媒中で乳化懸濁するに足る量
存在すればよく、不活性有機溶媒中の濃度は0.01〜
50g / 1 、好ましくは0.1〜30g/lの範
囲である。
The amount of surfactant used should be sufficient to emulsify and suspend the complex of the magnesium compound and alcohol in the inert organic solvent, and the concentration in the inert organic solvent should be from 0.01 to
50g/l, preferably in the range of 0.1 to 30g/l.

本発明においては、上記錯体を不活性有機溶媒中、非イ
オン型界面活性剤の存在下、その溶融温度以上の温度で
加熱し、しかも攪拌すれば、該錯体粒子を溶融状態で含
有する懸濁液を形成することができる。加熱温度は錯体
が溶融する温度以上なら、特に制限はないが、好ましく
は70℃以上が用いられる。乳化懸濁状態にある錯体粒
子のサイズは、約1〜200μm程度の範囲で球状の形
状になっている。
In the present invention, by heating the above complex in an inert organic solvent in the presence of a nonionic surfactant at a temperature equal to or higher than its melting temperature and stirring, a suspension containing the complex particles in a molten state can be obtained. A liquid can be formed. The heating temperature is not particularly limited as long as it is at least the temperature at which the complex melts, but a temperature of 70° C. or higher is preferably used. The complex particles in the emulsified suspension state have a spherical shape with a size ranging from about 1 to 200 μm.

上記懸濁液を急速に冷却して、アルコールの実質的な蒸
発なしに球形固体成分を得ることができる。急冷する方
法としては、該錯体粒子を固化させるに充分なほど低温
に冷却された不活性有機溶媒と、該懸濁液とを速やかに
接触させる方法が好んで用いられる。ここで用いる不活
性有機溶媒としては、前に例示した不活性有機溶媒中か
ら選択することができる。この溶媒の温度は、溶融状態
にある該錯体粒子を固化させるに充分なほど低温に冷却
されていれば特に制限はないが、好ましくは0℃以下に
冷却して使用する。
The suspension can be rapidly cooled to obtain a spherical solid component without substantial evaporation of the alcohol. As a method for rapid cooling, a method is preferably used in which the suspension is brought into immediate contact with an inert organic solvent that has been cooled to a low enough temperature to solidify the complex particles. The inert organic solvent used here can be selected from the inert organic solvents listed above. The temperature of this solvent is not particularly limited as long as it is cooled to a low enough temperature to solidify the complex particles in a molten state, but it is preferably used after being cooled to 0° C. or lower.

固化した粒子は、濾過、遠心分離等の方法により分離採
取することができる。得られた固体成分の組成は、原料
のマグネシウム化合物−アルコール溶液と同じ組成を有
しており、固体粒子の粒径は、1〜150μ層程度で球
形のものが製造できる。
The solidified particles can be separated and collected by methods such as filtration and centrifugation. The composition of the obtained solid component is the same as that of the raw material magnesium compound-alcohol solution, and the solid particles have a particle size of about 1 to 150 μm and are spherical.

本発明において使用される上述の固体成分の乾燥方法は
、室温での不活性ガス通気、加熱した不活性ガスの通気
、あるいは減圧下での室温または加熱乾燥である。さら
に、上記乾燥法を組み合わせて用いてもよい、不活性ガ
スとしては、窒素が好んで用いられる。乾燥条件は、乾
燥後の固体成分の組成が、MgC1,・mROH−pE
D (但し、Rは炭素数1〜10のアルキル基、 −一
0.4〜2.0であり、El)は電子供与体、p−0〜
2.0である。)の範囲に入るように選定する必要があ
る。
The method of drying the above-mentioned solid components used in the present invention is bubbling with inert gas at room temperature, bubbling with heated inert gas, or drying at room temperature or by heating under reduced pressure. Furthermore, nitrogen is preferably used as an inert gas that may be used in combination with the above drying methods. The drying conditions were such that the composition of the solid component after drying was MgC1,・mROH-pE.
D (wherein R is an alkyl group having 1 to 10 carbon atoms, -10.4 to 2.0, El) is an electron donor, p-0 to
It is 2.0. ) must be selected so that it falls within the range.

乾燥後の固体成分組成においてlが2.0より大きくな
ると固体粒子は次のハロゲン化チタン処理において破壊
され、粒子は不定形の微粉になる。
If l becomes larger than 2.0 in the solid component composition after drying, the solid particles will be destroyed in the subsequent titanium halide treatment, and the particles will become irregularly shaped fine powder.

また国が0.4より小さくなると触媒活性は大きく低下
する。さらに、乾燥条件は急激なアルコールの蒸発を避
けるため、乾燥温度は低温で行うのが良く、しかも乾燥
時間は少なくとも2〜3時間は必要である。このような
条件において、好ましくは、乾燥時間は5〜1,000
時間、乾燥温度は室温〜90℃の範囲である。
Moreover, when the country becomes smaller than 0.4, the catalyst activity decreases significantly. Further, in order to avoid rapid evaporation of alcohol, the drying temperature is preferably low, and the drying time is preferably at least 2 to 3 hours. Under these conditions, preferably the drying time is 5 to 1,000
The drying time and drying temperature range from room temperature to 90°C.

本発明において使用されるハロゲン化チタンは、具体的
には、四塩化チタン、四臭化チタン、三塩化メトキシチ
タン、三塩化フェノキシチタン、二塩化ジメトキシチタ
ン、塩化トリメトキシチタン等を挙げることができる。
Specific examples of the halogenated titanium used in the present invention include titanium tetrachloride, titanium tetrabromide, methoxytitanium trichloride, phenoxytitanium trichloride, dimethoxytitanium dichloride, trimethoxytitanium chloride, etc. .

好ましくは、四塩化チタンが用いられる。上記ハロゲン
化チタンは、不活性溶剤で希釈して用いてもよい。
Preferably, titanium tetrachloride is used. The above titanium halide may be used after being diluted with an inert solvent.

不活性溶剤としては具体的には、ヘキサン、ヘプタン、
デカン等の脂肪族炭化水素、ベンゼン、トルエン、キシ
レン等の芳香族炭化水素、四塩化炭素、1.2−ジクロ
ルエタン、 1,1.2−トリクロルエタン、クロルベ
ンゼン、0−ジクロルベンゼン等のハロゲン化炭化水素
を挙げることができる。好ましくは、1.2−ジクロル
エタンが用いられる。
Specifically, inert solvents include hexane, heptane,
Aliphatic hydrocarbons such as decane, aromatic hydrocarbons such as benzene, toluene, xylene, etc., halogens such as carbon tetrachloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 0-dichlorobenzene, etc. Examples include hydrogenated hydrocarbons. Preferably, 1,2-dichloroethane is used.

本発明のハロゲン化チタン処理時に(同時に)用いられ
る電子供与性化合物は、カルボン酸類、エーテル類、エ
ステル類、ケトン類、アルデヒド類、酸無水物、アミン
類、ニトリル類、ホスフィン類等である。これらの中で
は、エステル類が好んで用いられる。具体的には、安息
香酸メチル、安息香酸エチル、トルイル酸メチル、トル
イル酸エチル、アニス酸メチル、アニス酸エチル、アニ
ス酸フェニル、フタル酸ジメチル、フタル酸ジエチル、
フタル酸ジ−n−ブチル、フタル酸ジーi−ブチル等を
挙げることができる。好ましくは、フタル酸ジ−n−ブ
チル、フタル酸シートブチルを用いることができる。
Electron-donating compounds used (simultaneously) during the titanium halide treatment of the present invention include carboxylic acids, ethers, esters, ketones, aldehydes, acid anhydrides, amines, nitriles, phosphines, and the like. Among these, esters are preferably used. Specifically, methyl benzoate, ethyl benzoate, methyl toluate, ethyl toluate, methyl anisate, ethyl anisate, phenyl anisate, dimethyl phthalate, diethyl phthalate,
Examples include di-n-butyl phthalate and di-i-butyl phthalate. Preferably, di-n-butyl phthalate and sheet butyl phthalate can be used.

上記で得られた本発明の方法に係わる乾燥固体成分とハ
ロゲン化チタンとの反応においては、ハロゲン化チタン
中のTiと固体成分中のMgC1,のモル比が1〜10
0、好ましくは3〜50である。また、電子供与性化合
物と固体成分中のMgC1,のモル比は、0.01〜0
.8、好ましくは0.05〜0.7である0反応温度は
、−20〜200℃、好ましくは、50〜150℃であ
る0反応時間は、5分〜6時間、好ましくは、10分〜
5時間である。この反応は、上記の反応条件内なら何回
繰り返してもよく、また、その際電子供与性化合物は添
加してもしなくてもよいが、少なくとも1回はいずれか
の反応において添加しなければならない。
In the reaction of the dry solid component obtained above according to the method of the present invention with titanium halide, the molar ratio of Ti in the titanium halide to MgCl in the solid component is 1 to 10.
0, preferably 3-50. In addition, the molar ratio of the electron donating compound and MgCl in the solid component is 0.01 to 0.
.. 8. The reaction temperature is preferably 0.05 to 0.7, -20 to 200°C, preferably 50 to 150°C. The reaction time is 5 minutes to 6 hours, preferably 10 minutes to
It is 5 hours. This reaction may be repeated any number of times within the above reaction conditions, and the electron donating compound may or may not be added, but must be added at least once in any reaction. .

反応後、濾別またはデカンテーシヨンにより固体を分層
後、不活性炭化水素溶剤で洗浄し、未反応物あるいは副
生成物等を除去する。
After the reaction, the solid is separated into layers by filtration or decantation, and then washed with an inert hydrocarbon solvent to remove unreacted substances or by-products.

該洗浄の際使用する溶剤としては、具体的には、ヘキサ
ン、ヘプタン、オクタン、ノナン、デカン、ケロシン等
を挙げることができる。好ましくは、ヘキサン、ヘプタ
ンである。かくして得られた固体触媒成分は、乾燥して
、粉体の状態で保存することもできるし、上記の不活性
炭化水素溶剤に懸濁させて保存することもできる。
Specific examples of the solvent used in the cleaning include hexane, heptane, octane, nonane, decane, kerosene, and the like. Preferably hexane or heptane. The solid catalyst component thus obtained can be dried and stored in the form of a powder, or it can be stored as suspended in the above-mentioned inert hydrocarbon solvent.

上記で得られた固体触媒成分は、有機アルミニウム化合
物及び有機ケイ素化合物と組み合せることにより、オレ
フィン重合用触媒とすることができる。有機アルミニウ
ム化合物としては、具体的には、トリエチルアルミニウ
ム、トリーロープロピルアルミニウム、トリーニーブチ
ルアルミニウム、ジエチルアルミニウムエトキシド、ジ
メチルアルミニウムクロリド、ジエチルアルミニウムク
ロリド、エチルアルミニウムセスキクロリド、エチルア
ルミニウムジクロリド等を挙げることができる。好まし
くは、トリエチルアルミニウムである。
The solid catalyst component obtained above can be used as a catalyst for olefin polymerization by combining with an organoaluminum compound and an organosilicon compound. Specific examples of the organoaluminum compound include triethylaluminum, trilopropylaluminum, trinybutylaluminum, diethylaluminum ethoxide, dimethylaluminum chloride, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, and the like. can. Preferred is triethylaluminum.

有機ケイ素化合物としては、具体的には、メチルトリメ
トキシシラン、t−ブチルトリメトキシシラン、t−ブ
チルトリエトキシシラン、フェニルトリメトキシシラン
、フェニルトリエトキシシラン、メチルエチルジメトキ
シシラン、メチルフエニルジエトキシシラン、ジメチル
ジメトキシシラン、ジメチルジェトキシシラン、ジイソ
プロピルジメトキシシラン、ジイソブチルジメトキシシ
ラン、ジ−t−ブチルジメトキシシラン、ジフェニルジ
メトキシシラン、トリメチルメトキシシラン、トリメチ
ルエトキシシラン等を挙げることができる。好ましくは
、ジフェニルジメトキシシラン、ジ−t−ブチルジメト
キシシランである。
Specific examples of the organosilicon compound include methyltrimethoxysilane, t-butyltrimethoxysilane, t-butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, methylethyldimethoxysilane, and methylphenyldiethoxysilane. Examples include silane, dimethyldimethoxysilane, dimethyljethoxysilane, diisopropyldimethoxysilane, diisobutyldimethoxysilane, di-t-butyldimethoxysilane, diphenyldimethoxysilane, trimethylmethoxysilane, and trimethylethoxysilane. Preferred are diphenyldimethoxysilane and di-t-butyldimethoxysilane.

fatアルミニウム化合物の使用量は、固体触媒成分中
のチタン1モルに対してlO〜1,000モル、好まし
くは、50〜500モルである。有機ケイ素化合物の使
用量は、有機アルミニウム化合物1モルに対して0.0
1〜2モル、好ましくは0.05〜1モルである。
The amount of the fat aluminum compound used is 10 to 1,000 mol, preferably 50 to 500 mol, per 1 mol of titanium in the solid catalyst component. The amount of organosilicon compound used is 0.0 per mole of organoaluminum compound.
The amount is 1 to 2 mol, preferably 0.05 to 1 mol.

本発明において重合反応に用いられるオレフィンは、エ
チレン、プロピレン、l−ブテン、!−ペンテン、l−
ヘキセン、1−オクテン、1−デセン、1−ドデセン、
l−テトラデセン、l−へキサデセン、l−オクタデセ
ン、1−エイコセン、4−メチル−1−ペンテン、3−
メチル−1−ペンテン等である。これらのオレフィンの
重合においては、単独重合のみならず、他のすレフイン
の1種または2f1以上との共重合をも含むものである
The olefins used in the polymerization reaction in the present invention include ethylene, propylene, l-butene, and! -pentene, l-
hexene, 1-octene, 1-decene, 1-dodecene,
l-tetradecene, l-hexadecene, l-octadecene, 1-eicosene, 4-methyl-1-pentene, 3-
Methyl-1-pentene and the like. The polymerization of these olefins includes not only homopolymerization but also copolymerization with one type of other olefins or 2f1 or more.

また、本発明に係る上述の触媒は、上記オレフィン類と
ブタジェン、1.4−へキサジエン、 1.4−ペンタ
ジェン、1.7−オクタジエン、1,8−ノナジェン、
!、9−デカジエン、イソプレン、スチレン、シクロプ
ロパン、シクロブテン、シクロヘキセン、ノルボルネン
、ジシクロペンタジェン等との共重合にも有効である。
Further, the above-mentioned catalyst according to the present invention includes the above-mentioned olefins and butadiene, 1.4-hexadiene, 1.4-pentadiene, 1.7-octadiene, 1,8-nonadiene,
! , 9-decadiene, isoprene, styrene, cyclopropane, cyclobutene, cyclohexene, norbornene, dicyclopentadiene, etc.

重合は、液相中あるいは気相中で行うことができる。液
相中で重合を行う場合は、例えばヘキサン、ヘプタン、
オクタン、ノナン、デカン、ケロシン等の不活性炭化水
素溶剤を重合媒体としてもよいし、さらには液化プロピ
レン、液化ブテン−】等の液化オレフィンそれ自体を溶
媒として用いることも可能である。
Polymerization can be carried out in the liquid phase or in the gas phase. When polymerizing in a liquid phase, for example, hexane, heptane,
An inert hydrocarbon solvent such as octane, nonane, decane, kerosene, etc. may be used as the polymerization medium, and it is also possible to use a liquefied olefin itself such as liquefied propylene, liquefied butene, etc. as the solvent.

重合温度は、40〜200℃、好ましくは50〜150
℃である。Ii合圧力は、大気圧〜loOkg/c+a
2G、好ましくは5〜50に8八m’Gである0重合は
、回分式、半連続式あるいは連続式のいずれでもよいが
、工業的には連続式重合が好ましい。また、重合を重合
条件の異なる多段重合によって行うことも可能である。
The polymerization temperature is 40 to 200°C, preferably 50 to 150°C.
It is ℃. Ii combined pressure is atmospheric pressure ~ loOkg/c+a
2G, preferably 5 to 50 to 88 m'G, may be carried out in a batch, semi-continuous or continuous manner, but industrially preferred is a continuous polymerization. It is also possible to perform the polymerization by multistage polymerization using different polymerization conditions.

ポリマー分子量を調節するためには、重合系に水素のよ
うな分子量調wi剤を加えることが効果的である。
In order to control the polymer molecular weight, it is effective to add a molecular weight controlling agent such as hydrogen to the polymerization system.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を用いれば、ハロゲン化チタン第理時にも
、急冷法で得られた固体成分の粒子形状は破壊されるこ
となく、さらに触媒活性の優れた、粒径の大きなしかも
球形の固体触媒成分が得られる。そしてこの触媒成分を
利用した触媒をオレフィンの重合に使用することにより
、粒径ならびに粒度分布の良好なポリオレフィンが得ら
れる。
If the method of the present invention is used, the particle shape of the solid component obtained by the quenching method will not be destroyed even during the treatment of titanium halide, and the solid catalyst will have a large particle size and a spherical shape with excellent catalytic activity. ingredients are obtained. By using a catalyst using this catalyst component for olefin polymerization, a polyolefin with good particle size and particle size distribution can be obtained.

[実施例] 次に、本発明を実施例によって具体的に説明する。[Example] Next, the present invention will be specifically explained using examples.

実施例1 (a)固体触媒成分の調製 窒素置換したSuS製オートクレーブに、ケロシン46
7厘!、スそイルP−55(■松材石油社製)233厘
1、無水間gcl、を14Jg、乾燥エタノール35.
2園2、エマゾール5−20 (花王■社製、ソルビタ
ンジステアレート)6g1フタル酸ジイソブチル(DB
P) 5.8■itを入れた。この混合物を攪拌しなが
ら、 100℃に加熱し溶解した。1時間攪拌後、攪拌
を続けながら、内径4mmのテフロン製チューブを用い
て、予め一30℃に冷却された精製ヘキサン2Lを導入
しである SUS製オートクレーブに移送した。生成物
を濾過により採取した後、ヘキサンで洗浄し、固体成分
45gを得た。固体粒子は球形であり、粒径は10〜5
0μmであった6分析結果から、この固体成分の組成は
出発溶液と同じJCh・4EtO)l−0,130BP
であった。
Example 1 (a) Preparation of solid catalyst component Kerosene 46 was placed in a SuS autoclave purged with nitrogen.
7 rin! , Susoil P-55 (Matsuzai Sekiyu Co., Ltd.) 233 ml 1, anhydrous gcl 14 Jg, dry ethanol 35.
2 Garden 2, Emazol 5-20 (manufactured by Kao Corporation, sorbitan distearate) 6g 1 diisobutyl phthalate (DB
P) 5.8■it was inserted. This mixture was heated to 100° C. while stirring to dissolve it. After stirring for 1 hour, while continuing stirring, 2 L of purified hexane previously cooled to -30° C. was introduced using a Teflon tube with an inner diameter of 4 mm, and the mixture was transferred to a SUS autoclave. The product was collected by filtration and washed with hexane to obtain 45 g of a solid component. The solid particles are spherical and the particle size is 10-5
From the analysis result of 0 μm, the composition of this solid component is the same as that of the starting solution: JCh4EtO)l-0,130BP.
Met.

得られた固体成分の内15gを室温で、 155時間、
2 It /winの流量の窒素を用いて通気乾燥した
6分析結果から、得られた乾燥固体成分の組成はMgC
1,・1.5EtOH・O,13[IBPであった。
15 g of the obtained solid component was heated at room temperature for 155 hours.
From the 6 analysis results of air drying using nitrogen at a flow rate of 2 It/win, the composition of the obtained dry solid component was MgC.
1,.1.5EtOH.O,13[IBP.

ガラスフラスコ中において、乾燥固体成分5g、四塩化
チタン40■1、精製1.2−ジクロルエタン60mj
tを混合し、攪拌しながら、100℃に加熱した後、フ
タル酸ジイソブチル1.7■itを加えた。100℃で
2時間加熱した後、デカンチーシコンにより液相部を除
き、再び、四塩化チタン4(Is It、精製1.2−
ジクロルエタン 60■1を加えた。  100℃で1
時間加熱した後、デカンチーシコンにより液相部を除き
、精製ヘキサンで洗浄した後乾燥し、固体触媒成分とし
た。
In a glass flask, 5 g of dry solid ingredients, 40 g of titanium tetrachloride, 60 mj of purified 1,2-dichloroethane
After stirring and heating to 100° C., 1.7 μl of diisobutyl phthalate was added. After heating at 100°C for 2 hours, the liquid phase was removed using a decanterizer, and titanium tetrachloride 4 (Is It, purified 1.2-
60 x 1 dichloroethane was added. 1 at 100℃
After heating for a period of time, the liquid phase was removed using decane, washed with purified hexane, and then dried to obtain a solid catalyst component.

(b)オレフィン重合体の製造 窒素置換した3LのSUS製オートクレーブに、ヘキサ
ン 1,5L、トリエチルアルミニウム3■■ol、ジ
フェニルジメトキシシラン0.45■mob固体触媒2
0mgを添加後、室温において全圧が1kg/c■2G
になるようにプロピレンを連続的に導入し10分間重合
した。その後、70℃に昇温し、水素150層1を導入
した。 70℃で全圧が7kg/c■2Gになるように
プロピレンを連続的に導入し2時間重合した。
(b) Production of olefin polymer In a 3L SUS autoclave purged with nitrogen, 1.5L of hexane, 3■■ol of triethylaluminum, 0.45■mob solid catalyst of diphenyldimethoxysilane 2
After adding 0mg, the total pressure is 1kg/c■2G at room temperature.
Propylene was continuously introduced so that the amount of polymerization was maintained, and polymerization was carried out for 10 minutes. Thereafter, the temperature was raised to 70° C., and a hydrogen 150 layer 1 was introduced. Propylene was continuously introduced at 70° C. so that the total pressure was 7 kg/cm2G, and polymerization was carried out for 2 hours.

未反応プロピレンを排出して、濾過後、得られたポリプ
ロピレンを乾燥した。 168gが得られ、触媒活性は
8300g4P/g−cat、であった、ヘキサン可溶
部分は、得られた全ポリプロピレン量の0.7重量%で
あり、また、嵩密度は0.35g7allであフた。得
られたポリマーは球形で、平均粒径は1000μmであ
った。
Unreacted propylene was discharged, and after filtration, the obtained polypropylene was dried. 168 g was obtained, and the catalyst activity was 8300 g4P/g-cat. The hexane soluble portion was 0.7% by weight of the total amount of polypropylene obtained, and the bulk density was 0.35 g7all. Ta. The obtained polymer was spherical and had an average particle size of 1000 μm.

実施例2 (a)固体触媒成分の調製 固体成分の乾燥時間を195時間にした以外は、実施例
1と同様に行フた。なお、乾燥後の固体成分の組成は、
MgC1,・0.9EtOH・0.1311BPであり
た。
Example 2 (a) Preparation of solid catalyst component The same procedure as in Example 1 was carried out except that the drying time of the solid component was changed to 195 hours. The composition of the solid component after drying is as follows:
It was MgCl,.0.9EtOH.0.1311BP.

(b)オレフィン重合体の製造 上記固体触媒を用いて実施例1と同様にプロピレンの重
合を行りた。ポリプロピレン130gが得られ、触媒活
性は6500g4P/rCat、であった、ヘキサン可
溶部分は、得られた全ポリプロピレン量の1.1重量%
であり、また、嵩密度は0.34g/Jtであった。得
られたポリマーは球形で、平均粒径は1010μ閣であ
フた。
(b) Production of olefin polymer Propylene was polymerized in the same manner as in Example 1 using the above solid catalyst. 130 g of polypropylene was obtained, the catalyst activity was 6500 g4P/rCat, the hexane soluble portion was 1.1% by weight of the total amount of polypropylene obtained.
The bulk density was 0.34 g/Jt. The obtained polymer was spherical and had an average particle size of 1010 μm.

実施例3 (a)固体触媒成分の調製 窒素It換した 5υS製オートクレーブに、ケロシン
467sj2、スモイルP−55(@松材石油社製)2
33sjl 、無水MgC1,を14.3g、乾燥エタ
ノール35.2■it、エマゾール5−20 (花王−
社製、ソルビタンジステアレート)6gを入れた。この
混合物を攪拌しながら、 100℃に加熱した。
Example 3 (a) Preparation of solid catalyst component Kerosene 467sj2 and Smoyl P-55 (@Matsuzai Oil Co., Ltd.) 2 were placed in a 5υS autoclave that had been purged with nitrogen It.
33sjl, 14.3g of anhydrous MgCl, 35.2g of dry ethanol, Emazol 5-20 (Kao-
6 g of sorbitan distearate (manufactured by Co., Ltd.) was added. The mixture was heated to 100° C. while stirring.

1時間攪拌後、攪拌を続けながら、内径4■■のテフロ
ン製チェーブを用いて、予め一30℃に冷却された精製
ヘキサン2Lを導入しであるSuS製オートクレーブに
移送した。生成物を濾過により採取した後、ヘキサンで
洗浄し、固体成分38gを得た。固体粒子は球形であり
、粒径は10〜70μmであった。
After stirring for 1 hour, while continuing stirring, 2 L of purified hexane previously cooled to -30° C. was introduced using a Teflon tube with an inner diameter of 4 mm, and the mixture was transferred to a SuS autoclave. The product was collected by filtration and washed with hexane to obtain 38 g of solid component. The solid particles were spherical and had a particle size of 10-70 μm.

また、分析結果から、この固体成分の組成は出発溶液と
同じMgct、・4Et011であった。
Further, from the analysis results, the composition of this solid component was the same as that of the starting solution: Mgct, 4Et011.

得られた固体成分の内15gを室温で、165時間。15 g of the obtained solid component was heated at room temperature for 165 hours.

2λ/sinの流量の窒素を用いて通気乾燥した0分析
結果から、得られた乾燥固体成分の組成は、MgCl2
・1.4EtOHであった。
From the analysis results of air drying using nitrogen at a flow rate of 2λ/sin, the composition of the obtained dry solid component is MgCl2
- It was 1.4EtOH.

ガラスフラスコ中において、乾燥固体成分5g、四塩化
チタン4osi、N製1.2−ジクロルエタン60■1
を混合し、攪拌しながら、100℃に加熱した後、フタ
ル酸ジイソブチル1.7sJ1を加えた100℃で2時
間加熱した後、デカンテーションにより液相部を除き、
再び、四塩化チタン40sJ2 、精製1.2−ジクロ
ルエタン 6011を加えた。100℃で1時間加熱し
た後、デカンテーションにより液相部を除き、精製ヘキ
サンで洗浄した後乾燥し、固体触媒成分とした。
In a glass flask, 5 g of dry solid ingredients, 4 osi of titanium tetrachloride, 60 x 1 of 1,2-dichloroethane manufactured by N.
were mixed and heated to 100°C while stirring, then heated at 100°C for 2 hours to which 1.7 sJ1 of diisobutyl phthalate was added, and the liquid phase was removed by decantation.
Again, 40sJ2 of titanium tetrachloride and 6011 of purified 1,2-dichloroethane were added. After heating at 100° C. for 1 hour, the liquid phase was removed by decantation, washed with purified hexane, and then dried to obtain a solid catalyst component.

(b)オレフィン重合体の製造 窒素置換した3LのSuS製オートクレーブに5へキチ
ン 1.SL、  トリエチルアルミニウム31mol
、ジフェニルジメトキシシラン0.45m■O1、固体
触媒25mgを添加後、室温において全圧が1kg/c
m”Gになるようにプロピレンを連続的に導入し、10
分間重合した。その後、70℃に昇温し、水素150m
Aを導入した。 70℃で全圧が7 kg/cw’Gに
なるようにプロピレンを連続的に導入し、2時間重合し
た。
(b) Production of olefin polymer Place chitin in a 3L SuS autoclave purged with nitrogen.1. SL, triethyl aluminum 31 mol
After adding 0.45 m O1 of diphenyldimethoxysilane and 25 mg of solid catalyst, the total pressure was 1 kg/c at room temperature.
Propylene was continuously introduced so that the amount of
Polymerized for minutes. After that, the temperature was raised to 70℃, and 150ml of hydrogen was added.
A was introduced. Propylene was continuously introduced at 70° C. so that the total pressure was 7 kg/cw'G, and polymerization was carried out for 2 hours.

未反応プロピレンを排出して、濾過後、得られたポリプ
ロピレンを乾燥した。 l50gが得られ、触媒活性は
75QOrsPP/rscat、であワた。ヘキサン可
溶部分は、得られた全ポリプロピレン量の2.2重量%
であり、また、嵩密度は0.30g/mβであった。得
られたポリマーは球形で、平均粒径は1410μツであ
った。
Unreacted propylene was discharged, and after filtration, the obtained polypropylene was dried. 150 g was obtained, and the catalyst activity was 75 QOrsPP/rscat. The hexane soluble portion was 2.2% by weight of the total amount of polypropylene obtained.
, and the bulk density was 0.30 g/mβ. The obtained polymer was spherical and had an average particle size of 1410 microns.

比較例1 (a)固体触媒成分の調製 固体成分の乾燥時間を540時間にした以外は、実施例
1と同様に行った。なお、乾燥後の固体成分の組成は、
MgC1,・0.IEtOH・0.13DBPであった
Comparative Example 1 (a) Preparation of solid catalyst component The same procedure as in Example 1 was carried out except that the drying time of the solid component was changed to 540 hours. The composition of the solid component after drying is as follows:
MgC1,・0. It was IEtOH・0.13DBP.

(b)オレフィン重合体の製造 上記固体触媒を用いて実施例1と同様にプロピレンの重
合を行った。ポリプロピレン14gが得られ、触媒活性
は700g−PP/g−cat、であった、ヘキサン可
溶部分は、得られた全ポリプロピレン量の10.5重量
%であり、また嵩密度は、o、3+g/ fflβであ
った。得られたポリマーは球形で、平均粒径は490μ
曽であった。
(b) Production of olefin polymer Propylene was polymerized in the same manner as in Example 1 using the above solid catalyst. 14 g of polypropylene was obtained, the catalytic activity was 700 g-PP/g-cat, the hexane soluble portion was 10.5% by weight of the total amount of polypropylene obtained, and the bulk density was o, 3+ g /fflβ. The resulting polymer was spherical with an average particle size of 490μ.
It was Zeng.

比較例2 (a)固体触媒成分の調製 固体成分の乾燥時間を31時間にした以外は、実施例1
と同様に行った。なお、乾燥後の固体成分の組成は、M
gC1,・2.8EtOH・0.13D8Pであった。
Comparative Example 2 (a) Preparation of solid catalyst component Example 1 except that the drying time of the solid component was 31 hours.
I did the same thing. The composition of the solid component after drying is M
gC1,.2.8EtOH.0.13D8P.

この乾燥固体成分を用いてハロゲン化チタン処理を行フ
たところ、担体は破壊されて、その形状は不定形の小さ
な粒子になった。
When this dry solid component was subjected to titanium halide treatment, the carrier was destroyed and the shape became small particles with irregular shapes.

(b)オレフィン重合体の製造 上記固体触媒を用いて実施例1と同様にプロピレンの重
合を行った。ポリプロピレン82gが得られ、触媒活性
は4100g−PP/g・cat、であった、ヘキサン
可溶部分は、得られた全ポリプロピレン量の3.5重量
%であり、また、嵩密度は0.26g/+1であった。
(b) Production of olefin polymer Propylene was polymerized in the same manner as in Example 1 using the above solid catalyst. 82 g of polypropylene was obtained, and the catalytic activity was 4100 g-PP/g.cat. The hexane soluble portion was 3.5% by weight of the total amount of polypropylene obtained, and the bulk density was 0.26 g. /+1.

得られたポリマーは不定形で、平均粒径は63Ou層で
あった。
The obtained polymer was amorphous and had an average particle size of 63 Ou layers.

比較例3 (a)固体触媒成分の調製 窒素置換した SUS製オートクレーブに、ケロシン4
67mJ2 、スモイルp−5s(@松材石油社製)2
33■λ、無水MgCl2を14.3g、乾燥エタノー
ル35.2aIL、エマゾール5−20 (花王■社製
、ゾルビタンジステアレート)68、フタル酸ジイソブ
チル(DBP) 5.8sJ2を入れた。この混合物を
攪拌しながら、100℃に加熱した。1時間攪拌後、攪
拌を続けながら、内径4層■のテフロン製チューブを用
いて、予め一30℃に冷却された絹製ヘキサン2Lを導
入しであるSUS製オートクレーブに移送した。
Comparative Example 3 (a) Preparation of solid catalyst component Kerosene 4 was placed in a nitrogen-substituted SUS autoclave.
67mJ2, Smoil p-5s (@Matsuzai Oil Co., Ltd.) 2
33■λ, 14.3g of anhydrous MgCl2, 35.2aIL of dry ethanol, 68% of Emazol 5-20 (manufactured by Kao ■, sorbitane distearate), and 5.8sJ2 of diisobutyl phthalate (DBP) were added. The mixture was heated to 100° C. while stirring. After stirring for 1 hour, the mixture was transferred to a SUS autoclave using a Teflon tube with an inner diameter of 4 layers, into which 2 L of silk hexane previously cooled to -30° C. was introduced while stirring was continued.

生成物を濾通により採取した後、ヘキサンで洗浄し、固
体成分45gを得た。固体粒子は球形であり、球径は1
0〜50μmであった。また、分析結果から、この乾燥
固体成分の組成は出発溶液と同じKgCI、・4EtO
H・(1,l3D8Pであった。
The product was collected by filtration and washed with hexane to obtain 45 g of a solid component. The solid particles are spherical, and the spherical diameter is 1
It was 0 to 50 μm. Also, from the analysis results, the composition of this dry solid component is the same as that of the starting solution, KgCI, 4EtO
H.(1,13D8P).

ガラスフラスコ中に、固体成分10g及びヘキサン10
01λを入れ、攪拌下5℃でトリエチルアルミニウム1
7.2auを滴下した後、25℃で1時間攪拌し、さら
に80℃で3時間攪拌した。固体部を濾通により採取し
、ヘキサンで充分洗浄した。
In a glass flask, 10 g of solid ingredients and 10 g of hexane
Add 01λ and add triethylaluminum 1 at 5℃ while stirring.
After adding 7.2 au dropwise, the mixture was stirred at 25°C for 1 hour, and further stirred at 80°C for 3 hours. The solid portion was collected by filtration and thoroughly washed with hexane.

ガラスフラスコ中において、上記固体成分5g%四塩化
チタン 40−1.9製1.2−ジクロルエタン60厘
1を混合し、攪拌しながら、100℃に加熱した後、フ
タル酸ジイソブチル1.7諷1を加えた。
In a glass flask, 60 liters of 1,2-dichloroethane made from 5 g% titanium tetrachloride 40-1.9 was mixed with the above solid component and heated to 100°C with stirring, followed by 1.7 liters of diisobutyl phthalate. added.

100℃で2時間加熱した後、デカンテーションに上り
液相部を除き、再び、四塩化チタン40−1、精製1.
2−ジクロルエタン !i0mjlを加えた。100℃
で1時間加熱した後、デカンテーションにより液相部を
除き、精製ヘキサンで洗浄した後乾燥し、固体触媒成分
とした。
After heating at 100°C for 2 hours, the liquid phase was removed by decantation and titanium tetrachloride 40-1, purified 1.
2-dichloroethane! i0mjl was added. 100℃
After heating for 1 hour, the liquid phase was removed by decantation, washed with purified hexane, and dried to obtain a solid catalyst component.

(b)オレフィン重合体の製造 上記固体触媒を用いて実施例1と同様にプロピレンの重
合を行った。ポリプロピレン280gが得られ、触媒活
性は1400g−PP7g−Cat、であった、ヘキサ
ン可溶部分は、得られた全ポリプロピレン量の6.7重
量%であり、また、嵩密度は0.32g/sJ!であっ
た。得られたポリマーは不定形で、平均粒径はStOμ
■であフた。
(b) Production of olefin polymer Propylene was polymerized in the same manner as in Example 1 using the above solid catalyst. 280 g of polypropylene was obtained, the catalyst activity was 1400 g-PP7 g-Cat, the hexane soluble portion was 6.7% by weight of the total amount of polypropylene obtained, and the bulk density was 0.32 g/sJ ! Met. The obtained polymer has an amorphous shape and an average particle size of StOμ
■I wiped it off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1rMは、本発明の方法に係る触媒を使用するオレフ
ィン重合体の製造工程図(フローシート)である。 以上
The 1st rM is a process diagram (flow sheet) for producing an olefin polymer using the catalyst according to the method of the present invention. that's all

Claims (7)

【特許請求の範囲】[Claims] (1)マグネシウム化合物とアルコール類を不活性有機
溶媒中で反応させて得た錯体化合物を、非イオン性界面
活性剤の存在下、その溶融温度以上の範囲で加熱攪拌し
、懸濁させた溶液を急冷して、アルコールの実質的な蒸
発なしに球形固体成分を得た後、該固体成分を部分的に
乾燥し、しかる後該乾燥固体成分をハロゲン化チタン及
び電子供与性化合物で処理することを特徴とするオレフ
ィン重合用触媒成分の製法。
(1) A solution obtained by heating and stirring a complex compound obtained by reacting a magnesium compound and an alcohol in an inert organic solvent in the presence of a nonionic surfactant at a temperature above its melting temperature to suspend it. quenching to obtain a spherical solid component without substantial evaporation of the alcohol, partially drying the solid component, and then treating the dry solid component with a titanium halide and an electron-donating compound. A method for producing a catalyst component for olefin polymerization, characterized by:
(2)マグネシウム化合物とアルコール類の不活性有機
溶媒中での反応を電子供与体の存在下に行ってなる特許
請求の範囲第1項に記載の製法。
(2) The manufacturing method according to claim 1, wherein the reaction of a magnesium compound and an alcohol in an inert organic solvent is carried out in the presence of an electron donor.
(3)マグネシウム化合物−アルコール錯体の組成が一
般式、 MgCl_2・nROH−pED(但し、Rは炭素数1
〜10のアルキル基、n=3.0〜6.0であり、ED
は電子供与体、p=0〜2.0である。) である特許請求の範囲第1項に記載の製法。
(3) The composition of the magnesium compound-alcohol complex is the general formula, MgCl_2・nROH-pED (where R is 1 carbon number
~10 alkyl groups, n=3.0-6.0, ED
is an electron donor, p=0 to 2.0. ) The manufacturing method according to claim 1.
(4)該急冷が、アルコールの実質的な蒸発を伴わず、
しかも該錯体粒子を固化させるに充分なほど低温に冷却
された不活性有機溶媒と、該懸濁液とを速やかに接触さ
せることにより行い、出発原料のマグネシウム化合物−
アルコール錯体と同じ組成(一般式MgCl_2・nR
OH−pED、但し、Rは炭素数1〜10のアルキル基
、n=3.0〜6.0であり、EDは電子供与体p=0
〜2.0である。)を有する球形固体成分を得る特許請
求の範囲第1項に記載の製法。
(4) the quenching does not involve substantial evaporation of the alcohol;
Moreover, the suspension is rapidly brought into contact with an inert organic solvent that has been cooled to a temperature low enough to solidify the complex particles, and the starting material magnesium compound -
Same composition as alcohol complex (general formula MgCl_2・nR
OH-pED, where R is an alkyl group having 1 to 10 carbon atoms, n = 3.0 to 6.0, and ED is an electron donor p = 0
~2.0. ) A method according to claim 1 for obtaining a spherical solid component having the following properties.
(5)部分的に乾燥した後の固体成分の組成が一般式、 MgCl_2・mROH・pED(但し、Rは炭素数1
〜10のアルキル基、m=0.4〜2.0であり、ED
は電子供与体、p=0〜2.0である。) である特許請求の範囲第1項に記載の製法。
(5) The composition of the solid component after partially drying is the general formula, MgCl_2・mROH・pED (where R is 1 carbon number
~10 alkyl groups, m=0.4-2.0, ED
is an electron donor, p=0 to 2.0. ) The manufacturing method according to claim 1.
(6)乾燥固体成分とハロゲン化チタンとの反応を該ハ
ロゲン化チタン中のTiと該固体成分中のMgCl_2
とのそル比が1〜100、−20〜200℃で5分〜6
時間反応させる特許請求の範囲第1項に記載の製法。
(6) The reaction between the dry solid component and the titanium halide is performed using Ti in the titanium halide and MgCl_2 in the solid component.
Ratio between 1 and 100, 5 minutes to 6 at -20 to 200℃
The manufacturing method according to claim 1, which involves a time reaction.
(7)乾燥固体触媒成分と電子供与性化合物との反応を
該化合物とMgCl_2とのモル比が0.01〜0.8
、−20〜200℃で5分〜6時間行う特許請求の範囲
第1項に記載の製法。
(7) The reaction between the dry solid catalyst component and the electron-donating compound is carried out at a molar ratio of 0.01 to 0.8 between the compound and MgCl_2.
The manufacturing method according to claim 1, which is carried out at -20 to 200°C for 5 minutes to 6 hours.
JP28046389A 1989-10-27 1989-10-27 Preparation of polymerization catalyst for polyolefin Pending JPH03140308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28046389A JPH03140308A (en) 1989-10-27 1989-10-27 Preparation of polymerization catalyst for polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28046389A JPH03140308A (en) 1989-10-27 1989-10-27 Preparation of polymerization catalyst for polyolefin

Publications (1)

Publication Number Publication Date
JPH03140308A true JPH03140308A (en) 1991-06-14

Family

ID=17625418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28046389A Pending JPH03140308A (en) 1989-10-27 1989-10-27 Preparation of polymerization catalyst for polyolefin

Country Status (1)

Country Link
JP (1) JPH03140308A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726278A3 (en) * 1995-02-09 1997-05-28 Phillips Petroleum Co A process to make small, discrete, spherical adducts of magnesium dihalide/alcohol
WO2004085495A1 (en) * 2003-03-27 2004-10-07 Basell Poliolefine Italia S.R.L. Magnesium dichloride-alcohol adducts and catalyst components obtained therefrom
US6962889B2 (en) 2004-01-28 2005-11-08 Engelhard Corporation Spherical catalyst for olefin polymerization
JP2006518772A (en) * 2002-12-18 2006-08-17 バセル ポリオレフィン イタリア エス.アール.エル. Magnesium dichloride-based adducts and catalyst components obtained therefrom
US7135531B2 (en) 2004-01-28 2006-11-14 Basf Catalysts Llc Spherical catalyst for olefin polymerization
US7638585B2 (en) 2008-05-13 2009-12-29 Basf Catalysts, Llc Catalyst flow
US8003559B2 (en) 2008-05-13 2011-08-23 Basf Corporation Internal donor for olefin polymerization catalysts
US8003558B2 (en) 2008-07-29 2011-08-23 Basf Corporation Internal donor for olefin polymerization catalysts
WO2012099549A1 (en) 2010-12-22 2012-07-26 Ptt Global Chemical Pcl A magnesium halide support for use as a composition of a catalyst for the olefin polymerization, and method of preparation of the magnesium halide support

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726278A3 (en) * 1995-02-09 1997-05-28 Phillips Petroleum Co A process to make small, discrete, spherical adducts of magnesium dihalide/alcohol
JP2006518772A (en) * 2002-12-18 2006-08-17 バセル ポリオレフィン イタリア エス.アール.エル. Magnesium dichloride-based adducts and catalyst components obtained therefrom
WO2004085495A1 (en) * 2003-03-27 2004-10-07 Basell Poliolefine Italia S.R.L. Magnesium dichloride-alcohol adducts and catalyst components obtained therefrom
US7482413B2 (en) 2003-03-27 2009-01-27 Basell Poliolefine Italia S.R.L. Magnesium dichloride-alcohol adducts and catalyst components obtained therefrom
US6962889B2 (en) 2004-01-28 2005-11-08 Engelhard Corporation Spherical catalyst for olefin polymerization
US7135531B2 (en) 2004-01-28 2006-11-14 Basf Catalysts Llc Spherical catalyst for olefin polymerization
US7638585B2 (en) 2008-05-13 2009-12-29 Basf Catalysts, Llc Catalyst flow
US8003559B2 (en) 2008-05-13 2011-08-23 Basf Corporation Internal donor for olefin polymerization catalysts
US8003558B2 (en) 2008-07-29 2011-08-23 Basf Corporation Internal donor for olefin polymerization catalysts
WO2012099549A1 (en) 2010-12-22 2012-07-26 Ptt Global Chemical Pcl A magnesium halide support for use as a composition of a catalyst for the olefin polymerization, and method of preparation of the magnesium halide support
JP2014500383A (en) * 2010-12-22 2014-01-09 ピーティーティー グローバル ケミカル ピーシーエル Magnesium halide support used as composition of catalyst for olefin polymerization reaction and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2879347B2 (en) Manufacturing method of olefin polymerization catalyst
FI80055C (en) Process for preparing catalytic components for polymerization of olefins
US4843049A (en) Catalyst component for polymerizing ethylene or copolymerizing ethylene with an alpha-olefin
JP2003510425A (en) Method for producing catalyst component for olefin polymerization
EP0586389A1 (en) A large-pore polyolefin, a method for its production and a procatalyst containing a transesterification product of a lower alcohol and a phthalic acid ester
JP2908675B2 (en) Deactivator reagent for olefin polymerization catalyst
WO2013005735A1 (en) Method for polymerizing α-olefin
JPH03140308A (en) Preparation of polymerization catalyst for polyolefin
JPS6347721B2 (en)
JP3010575B2 (en) Process for producing isobutene-cyclodiene copolymer
TWI294886B (en)
EP0433105B1 (en) Catalyst support for olefinic polymerization, process for preparing the same and catalyst obtained therefrom
JP3854316B2 (en) Method for producing polyolefin
ES2216858T3 (en) SYSTEM WITH CATALYZE OF ALFA-OLEFINE POLYMERIZATION AND ITS USE FOR THE ALFA-OLEFIN POLYMERIZATION.
WO2003089483A1 (en) Propylene polymerization process with enhanced catalyst activity
NO173656B (en) PROCEDURE FOR THE PREPARATION OF CATALYST COMPONENTS FOR POLYMERIZATION OF THE ETHYLE WITH A RELATIVELY TARGET MOLECULE WEIGHT DISTRIBUTION, AND USE OF THE COMPONENTS
JPH06166718A (en) Production of catalytic component for polymerizing olefin
JPH0820607A (en) Production of support for olefin polymerization catalyst component
JP2001181333A (en) Olefin polymerization catalyst and polymerization method for olefin
KR960001216B1 (en) Process for the stereospecific polymerization of alpha-olefins and
JP2001181332A (en) Olefin polymerization catalyst and polymerization method for olefin
CN112759604B (en) Magnesium halide adduct and preparation method thereof, catalyst component for olefin polymerization, catalyst and olefin polymerization method
JPH06116326A (en) Production of carrier for olefin polymerization catalyst
JP4993865B2 (en) Method for producing solid catalyst component for polymerization of olefins and catalyst
KR101956979B1 (en) Methods for preparing silica-supported catalyst and polyolefin using the same