JPH0313895A - Radiation shield structure - Google Patents

Radiation shield structure

Info

Publication number
JPH0313895A
JPH0313895A JP14836989A JP14836989A JPH0313895A JP H0313895 A JPH0313895 A JP H0313895A JP 14836989 A JP14836989 A JP 14836989A JP 14836989 A JP14836989 A JP 14836989A JP H0313895 A JPH0313895 A JP H0313895A
Authority
JP
Japan
Prior art keywords
concrete
radiation
panel
face
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14836989A
Other languages
Japanese (ja)
Other versions
JPH0677067B2 (en
Inventor
Yoshirou Ichinose
一之瀬 快朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP14836989A priority Critical patent/JPH0677067B2/en
Publication of JPH0313895A publication Critical patent/JPH0313895A/en
Publication of JPH0677067B2 publication Critical patent/JPH0677067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve safety by forming an outer layer of one face of a low activation alloy plate to superpose a specific panel in an inner layer thereof to arrange a reinforcing bar between its panel and an iron plate of the other face so as to place concrete. CONSTITUTION:A low activation alloy material combined with a formwork is arranged in the outside of one face of a radiation shield structure to place a molding panel 2 for functioning as neutron absorption and a shield material in the inside thereof. In addition, an iron steel 3 combined with the shield material and the formwork is arranged on the other face of the structure to fill with the structure composed of a reinforcing bar 4 and concrete 5 between the panel 2 and the iron plate 3 to place. Thereby, a large scale facility for dealing with high energy and high density particles can be treated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、核融合炉施設、各種中性子実験施設、高速増
殖炉施設等の高エネルギー中性子や高密度中性子を扱う
施設等への採用に適した放射線遮蔽構造体に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention is suitable for use in facilities that handle high-energy neutrons and high-density neutrons, such as nuclear fusion reactor facilities, various neutron experimental facilities, and fast breeder reactor facilities. The present invention relates to a radiation shielding structure.

(従来の技術) 従来の原子力施設は、中性子エネルギー及び中性子密度
とも比較的低く、これら低密度・低エネルギー粒子の遮
蔽体としては、鉄筋コンクリートが存効であった。
(Prior Art) Conventional nuclear facilities have relatively low neutron energy and neutron density, and reinforced concrete has been effective as a shield for these low-density, low-energy particles.

ところで、最近、高エネルギー中性子や高密度中性子を
扱う実験施設等が建造されるようになってきたが、これ
らの実験施設等にも、上記従来通りの鉄筋コンクリート
製遮蔽体が使用されている。
By the way, recently, experimental facilities that handle high-energy neutrons and high-density neutrons have been constructed, and the conventional reinforced concrete shields described above are also used in these experimental facilities.

ここで、上記鉄筋コンクリート製遮蔽体は、砂利等の骨
材とポルトランドセメント等からなるコンクリート、及
び鉄筋からなる骨組により、通常の鉄筋コンクリートと
同様にfIが築されているが、上記の骨材である砂利等
には、Pa、Co、Mn、Eu等の鉱物成分が含有され
、普通ポルトランドセメントには、製造過程で酸化鉄が
混入されている。また、骨組も鉄筋であり、この鉄筋に
よるFe、Mn、Co分も、上記鉄筋コンクリート製遮
蔽体には多量に含まれている。
Here, the above-mentioned reinforced concrete shield is constructed with fI in the same way as normal reinforced concrete, using concrete made of aggregate such as gravel and portland cement, and a framework made of reinforcing bars. Gravel and the like contain mineral components such as Pa, Co, Mn, and Eu, and normally Portland cement is mixed with iron oxide during the manufacturing process. Further, the frame is also made of reinforcing bars, and the reinforced concrete shield contains large amounts of Fe, Mn, and Co from these reinforcing bars.

ところが、このような鉄筋コンクリート製遮蔽体で高エ
ネルギー中性子や高密度中性子を遮蔽すると、これら高
エネルギー・高密度中性子を受けた鉄筋コンクリートは
、上記鉱物成分(酸化鉄や鉄筋によるFe分等を含む)
が、高エネルギー・高密度中性子により核破壊され、放
射性同位元素となり放射化する。
However, when high-energy neutrons and high-density neutrons are shielded with such a reinforced concrete shield, the reinforced concrete that receives these high-energy and high-density neutrons loses its mineral components (including iron oxide and Fe content from reinforcing bars).
is nuclearly destroyed by high-energy, high-density neutrons and becomes radioactive isotope.

この結果、上記遮蔽体が高レベルに放射化され、上記実
験設備での作業の際に、遮蔽体からも放射線が照射され
て作業員が多量の放射線被爆を受ける。
As a result, the shielding body is activated to a high level, and when working in the experimental equipment, radiation is also irradiated from the shielding body, and workers are exposed to a large amount of radiation.

また施設を解体した場合には、多量の鉄筋及びコンクリ
ートを放射性廃棄物として処分する必要があるし、廃棄
物処理コストも極めて高額となる。
Furthermore, if the facility is demolished, a large amount of reinforcing steel and concrete will need to be disposed of as radioactive waste, and the cost of waste disposal will be extremely high.

そこで、このような問題を解決する技術として、第3図
に示すような高エネルギー粒子遮蔽構造が提案されてい
る(特開昭82−32394号公報参照)。
Therefore, as a technique for solving such problems, a high-energy particle shielding structure as shown in FIG. 3 has been proposed (see Japanese Patent Laid-Open No. 82-32394).

すなわち、鉄筋コンクリート製の第1遮蔽体11の高エ
ネルギー粒子領域に、低放射化材料製の第2遮蔽体12
を着脱自在に配置したものである。
That is, the second shield 12 made of a low activation material is placed in the high energy particle region of the first shield 11 made of reinforced concrete.
It is arranged so that it can be attached and detached.

この低放射化材料製の第2遮蔽体12は、放射化量が少
ないため、所定の放射化量に達する期間が長く、解体回
数を減少できる。また、第2遮蔽体12が所定の放射化
量に達したなら、この第2遮蔽体12を第1遮蔽体11
から外して新しいものと交換すれば良く、設備コスト及
び廃棄物処理コストを低減できる。
Since the second shielding body 12 made of a low-activation material has a small amount of activation, it takes a long time to reach a predetermined amount of activation, and the number of times it is dismantled can be reduced. Further, when the second shielding body 12 reaches a predetermined amount of activation, the second shielding body 12 is replaced with the first shielding body 11.
All you have to do is remove it and replace it with a new one, reducing equipment costs and waste disposal costs.

(発明が解決しようとする課題) しかし、第2遮蔽体12を着脱自在に配置するようにし
た上記公知の高エネルギー粒子遮蔽構造にあっては、例
えば実験施設等の非常に高い線源を対象にした小規模な
特殊施設に対しては有効であるものの、放射化した第2
遮蔽体12を交換する際、作業員の安全を考慮しなけれ
ばならず、また交換作業が極めて煩雑であり、交換作業
コストが高額になる等の問題があって、恒久的に使用す
る大規模な施設への適用は不向き゛な面がある。
(Problem to be Solved by the Invention) However, in the above-mentioned known high-energy particle shielding structure in which the second shielding body 12 is arranged detachably, Although it is effective against small-scale special facilities that have been
When replacing the shield 12, the safety of the workers must be considered, and the replacement work is extremely complicated and the cost of replacement work is high. However, it is not suitable for application to large facilities.

本発明は、以上の諸点に鑑みてなされたもので、その目
的とするところは、高エネルギー・高密度粒子を扱う大
規模施設への採用に適し、しかも放射化が極めて低く、
従って施設従事者の被爆量の低減を図ることのできる放
射線遮蔽構造体を提供するにある。
The present invention was made in view of the above points, and its purpose is to be suitable for adoption in large-scale facilities that handle high-energy, high-density particles, and to have extremely low activation.
Therefore, it is an object of the present invention to provide a radiation shielding structure that can reduce the radiation exposure of facility workers.

(課題を解決するための手段) 上記目的を達成するため、本発明に係る放射線遮蔽構造
体では、一方の面の外層が低放射化合金板で形成されか
つその内層に中性子吸収及び遮蔽材からなるパネルが積
層され、他方の面に鉄板が配設され、該ノドネルと該鉄
板との間に鉄筋が配筋されるとともにコンクリートが打
設されてなるのである。
(Means for Solving the Problems) In order to achieve the above object, in the radiation shielding structure according to the present invention, the outer layer on one side is formed of a low activation alloy plate, and the inner layer is made of a neutron absorbing and shielding material. The panels are stacked, a steel plate is placed on the other side, reinforcing bars are placed between the nodonnel and the steel plate, and concrete is poured.

(作 用) 放射線の遮蔽で問題となるのは、γ線と中性子線である
(Function) The problems in radiation shielding are gamma rays and neutron rays.

γ線の遮蔽体としては比重の大きい(例えば、鉛、鉄等
の)物質がfj効であり、中性子線の遮蔽体としては比
重の小さい元素(例えば、水素)を含む物質(例えば、
水)が有効である。
As a shield for gamma rays, materials with high specific gravity (e.g., lead, iron, etc.) have an fj effect, and as shielders for neutron rays, materials containing elements with low specific gravity (e.g., hydrogen) (e.g.,
water) is effective.

本発明に係る放射線遮蔽構造体では、一方の面に用いて
いる2層構造体のうちの外側の層の低放射化合金材は中
性子線を受けても放射化する割合が少ない性質を有する
In the radiation shielding structure according to the present invention, the low activation alloy material of the outer layer of the two-layer structure used on one surface has a property that the rate of activation is low even when exposed to neutron beams.

上記の作用及び性質を有する低放射化合金材としては、
例えばアルミニウム合金を挙げることができる。
Low activation alloy materials with the above actions and properties include:
For example, aluminum alloy can be mentioned.

また、上記2層構造体のうちの内側の層の中性子吸収及
遮蔽材は、比重の小さい元素を含む物質であり、中性子
を吸収し、また遮蔽する作用を有する。
Further, the neutron absorbing and shielding material in the inner layer of the two-layer structure is a substance containing an element with a small specific gravity, and has the function of absorbing and shielding neutrons.

この作用を有する中性子吸収及び遮蔽材としては、例え
ばボロン、水素等の比重の小さい元素を含む物質を挙げ
ることができる。
Examples of neutron absorbing and shielding materials having this effect include substances containing elements with low specific gravity such as boron and hydrogen.

以上の2層構造体からなる枠体の内側にあるコンクリー
トはγ線を遮蔽すると共に、比重の小さい元素H2から
なる水を含んでおり、この水が更に中性子線を遮蔽する
The concrete inside the frame made of the two-layer structure described above not only shields gamma rays, but also contains water consisting of the element H2, which has a small specific gravity, and this water further shields neutron rays.

このコンクリート中の水は、上記の2層構造体及び後述
の鉄板からなる枠体によりシールされ、その逸散が防止
される。故に、本発明に係る放射線遮蔽構造体のコンク
リ、−トは、水分量の多い状態を、延いては中性子線の
高遮蔽状態を維持する。
The water in the concrete is sealed by the above-mentioned two-layer structure and a frame made of iron plates, which will be described later, to prevent it from escaping. Therefore, the concrete of the radiation shielding structure according to the present invention maintains a high water content state and, in turn, maintains a high neutron beam shielding state.

なお、中性子線を遮蔽する際に、前記したように、この
中性子線を受けてγ線が二次的に発生する場合がある。
Note that when shielding neutron beams, as described above, gamma rays may be generated secondarily in response to the neutron beams.

この二次的に発生した所謂誘導放射線能γ線は、上記の
ように、コンクリートにより遮蔽される。
This secondarily generated so-called stimulated radioactivity gamma rays are shielded by concrete, as described above.

上記のコンクリートとしては、普通コンクリート(γ線
を有効に遮蔽する)、重量コンクリート(強いγ線を有
効に遮蔽する)、蛇紋岩コンクリート(中性子線を有効
に遮蔽する)等が挙げられる。
Examples of the above-mentioned concrete include ordinary concrete (effectively shields γ-rays), heavy concrete (effectively shields strong γ-rays), and serpentine concrete (effectively shields neutron rays).

更に、上記枠体の他方の面に用いられている鉄板は、比
重が大きく、γ線を遮蔽する作用を有する。従って、こ
の鉄板は、上記の中性子線による誘導放射線γ線を遮蔽
する作用を有する。
Furthermore, the iron plate used on the other surface of the frame has a large specific gravity and has the effect of shielding gamma rays. Therefore, this iron plate has the effect of shielding the radiation γ rays induced by the above-mentioned neutron beam.

また、本発明に係る上記放射線遮蔽構造体の構築に際し
ては、上記の2層構造体と鉄板からなる枠体が、鉄筋コ
ンクリート製構造体の成型用型枠として作用する。
Further, in constructing the radiation shielding structure according to the present invention, the frame consisting of the two-layer structure and the iron plate acts as a molding frame for the reinforced concrete structure.

従って、鉄筋を配筋後、この鉄筋の外周に上記の2層構
造体と鉄板からなる枠体を配設し、この枠体内にコンク
リートを打設するのみで型枠の取外し作業を要すること
なく上記の放射線遮蔽構造体が構築される。
Therefore, after arranging the reinforcing bars, a frame consisting of the above-mentioned two-layer structure and steel plates is placed around the outer periphery of the reinforcing bars, and concrete is poured into this frame without the need to remove the formwork. The radiation shielding structure described above is constructed.

(実 施 例) 第1図は、本発明に係る放射線遮蔽構造体の一実施例を
示す平面図である。
(Example) FIG. 1 is a plan view showing an example of a radiation shielding structure according to the present invention.

同図に示された放射線遮蔽構造体の一方の面の外側に型
枠を兼用する低放射化合金材1と内側に中性子吸収及び
遮蔽材として機能する成型パネル2とを配してなる2層
構造体が用いられ、他方の面に遮蔽材と型枠を兼ねる鉄
板3が用いられている。
One side of the radiation shielding structure shown in the same figure has two layers: a low-activation alloy material 1 that also serves as a formwork on the outside, and a molded panel 2 that functions as a neutron absorption and shielding material on the inside. A structure is used, and an iron plate 3 serving as a shielding material and a formwork is used on the other side.

上記の型枠を兼用する枠体1〜3の内部に鉄筋4及びコ
ンクリート5からなる構造体が充填配置されており、構
造耐力部材として外力(地震荷重等)に抵抗する。尚、
6は型枠としての低放射化合金材1と鉄板3との間に掛
は渡されて配設されたセパレーターを示している。
A structure made of reinforcing bars 4 and concrete 5 is filled inside the frames 1 to 3, which also serve as the above-mentioned formwork, and serves as a structural load-bearing member to resist external forces (earthquake loads, etc.). still,
Reference numeral 6 indicates a separator that is placed between the low activation alloy material 1 serving as a formwork and the iron plate 3.

なお、上記の低放射化合金材1、成型パネル2、鉄板3
、コンクリート5の断面寸法は、放射線の強さに応じて
適宜変更される。
In addition, the above-mentioned low activation alloy material 1, molded panel 2, iron plate 3
The cross-sectional dimensions of the concrete 5 are changed as appropriate depending on the intensity of radiation.

同図において、放射線は、矢印方向から低放射化合金材
1に照射される。この時、放射線照射による低放射化合
金材1の放射化は、極めて少ない。
In the figure, the low activation alloy material 1 is irradiated with radiation from the direction of the arrow. At this time, activation of the low activation alloy material 1 due to radiation irradiation is extremely small.

低放射化合金材1を透過した中性子線は、中性子吸収及
び遮蔽材として機能する成型パネル2により吸収・遮蔽
される。従って、鉄筋4コンクリ一ト5構遺体に達する
中性子線量は極く僅がであり、この僅かの中性子線はコ
ンクリート5中に枠体1〜3でシールされて保持されて
いる水分により減衰されると共に、この僅かな量の中性
子線照射によって鉄筋4やコンクリート5の放射化は少
ない。
The neutron beam that has passed through the low activation alloy material 1 is absorbed and shielded by the molded panel 2 that functions as a neutron absorbing and shielding material. Therefore, the amount of neutron radiation reaching the reinforced concrete 5 structure is extremely small, and this small amount of neutron radiation is attenuated by the moisture held in the concrete 5 sealed by the frames 1 to 3. At the same time, due to this small amount of neutron beam irradiation, the reinforcing bars 4 and concrete 5 are hardly activated.

このようにして、放射線源から本発明に係る放射線遮蔽
構造体に照射される放射線は殆んどが遮蔽されるが、中
性子線のエネルギーや密度がごく高い場合には、鉄筋4
コンクリート5構造物に達して誘導γ線を発生すること
もある。しかしながらこの様な場合にあっても、この誘
導γ線は鉄板3により遮蔽される。
In this way, most of the radiation irradiated from the radiation source to the radiation shielding structure according to the present invention is shielded, but if the energy or density of the neutron beam is extremely high, the reinforcing steel 4
It may also reach concrete 5 structures and generate induced gamma rays. However, even in such a case, the induced gamma rays are blocked by the iron plate 3.

第2図(A)〜(C)は、本発明に係る構築方法の一実
施例を施工順に従って示す立面図である。
FIGS. 2(A) to 2(C) are elevational views showing one embodiment of the construction method according to the present invention according to the construction order.

先ず、同図(A)において、床上に鉄筋4を配筋する。First, in the same figure (A), reinforcing bars 4 are arranged on the floor.

次いで、同図(B)において、この鉄筋4の一方の外側
に低放射化合金材1と成型パネル2とからなる2層構造
体の型枠を配設し、他方の外側に鉄板3でなる型枠を配
設する。
Next, in the same figure (B), a formwork of a two-layer structure consisting of a low activation alloy material 1 and a molded panel 2 is placed on one outside of this reinforcing bar 4, and a formwork made of a steel plate 3 is placed on the other outside. Place formwork.

この後、同図(C)において、上記2層構造体1〜2及
び鉄板3とで画成される型枠の内部にコンクリート5を
打設する。
Thereafter, as shown in FIG. 3C, concrete 5 is placed inside a formwork defined by the two-layer structures 1 and 2 and the iron plate 3.

この型枠1〜3は、取り外すことなく、そのまま本発明
に係る放射線遮蔽構造体の一部として使用する。
The formworks 1 to 3 are used as a part of the radiation shielding structure according to the present invention without being removed.

以上のようにして、本発明に係る放射線遮蔽構造体を用
いて原子力施設の壁体を構築する。
As described above, a wall of a nuclear facility is constructed using the radiation shielding structure according to the present invention.

(発明の効果) 以上詳述した本発明においては、次のような効果を奏す
ることができる。
(Effects of the Invention) The present invention described in detail above can have the following effects.

(1)小規模から大規模の放射線使用施設に好適に適用
することができる。
(1) It can be suitably applied to small-scale to large-scale facilities that use radiation.

(2)放射化が極めて低く、かつ高効率で放射線を遮蔽
することができるため、高エネルギー・高密度粒子を扱
う施設に好適に適用でき、この施設従事者の被爆量を低
減することができる。
(2) Since activation is extremely low and radiation can be shielded with high efficiency, it can be suitably applied to facilities that handle high-energy and high-density particles, reducing the amount of radiation exposure for workers at these facilities. .

(3)解体の際は、内部の鉄筋コンクリートの放射化は
極めて低いため、解体作業は比較的容易であり、解体コ
スト、廃棄物処理コストは比較的安価となる。
(3) During demolition, the radioactivity of the reinforced concrete inside is extremely low, so demolition work is relatively easy, and demolition costs and waste treatment costs are relatively low.

(4)低放射化合金材及び鉄板をコンクリート打設の際
め成型用型枠として使用することができるため、構築も
容品であり、設備コストが安価となる。
(4) Since low activation alloy materials and steel plates can be used as formwork for forming concrete during concrete pouring, construction is simple and equipment costs are low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る放射線遮蔽構造体の一実施例を示
す平断面図、第2図(A)〜(C)は本発明に係る放射
線遮蔽構造体の構築方法の一実施例を施工順に示す立面
図、第3図は公知の高エネルギー粒子遮蔽構造を示す説
明図である。 1・・・・・・低放射化合金材 2・・・・・・中性子線吸収及び/又は遮蔽材3・・・
・・・鉄 板 4・・・・・・鉄 筋 5・・・・・・コンクリート 第2図 tlE3図
FIG. 1 is a plan cross-sectional view showing one embodiment of the radiation shielding structure according to the present invention, and FIGS. 2 (A) to (C) are construction examples of the method for constructing the radiation shielding structure according to the present invention. The elevational views and FIG. 3 shown in order are explanatory views showing a known high-energy particle shielding structure. 1...Low activation alloy material 2...Neutron beam absorption and/or shielding material 3...
...Steel plate 4...Reinforcement bar 5...Concrete Figure 2 tlE3

Claims (1)

【特許請求の範囲】[Claims] 一方の面の外層が低放射化合金板で形成されかつその内
層に中性子吸収及び遮蔽材からなるパネルが積層され、
他方の面に鉄板が配設され、該パネルと該鉄板との間に
鉄筋が配筋されるとともにコンクリートが打設されてな
ることを特徴とする放射線遮蔽構造体。
The outer layer on one side is formed of a low activation alloy plate, and the inner layer is laminated with a panel made of a neutron absorbing and shielding material,
A radiation shielding structure characterized in that a steel plate is disposed on the other surface, reinforcing bars are arranged between the panel and the steel plate, and concrete is poured.
JP14836989A 1989-06-13 1989-06-13 Radiation shielding structure Expired - Lifetime JPH0677067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14836989A JPH0677067B2 (en) 1989-06-13 1989-06-13 Radiation shielding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14836989A JPH0677067B2 (en) 1989-06-13 1989-06-13 Radiation shielding structure

Publications (2)

Publication Number Publication Date
JPH0313895A true JPH0313895A (en) 1991-01-22
JPH0677067B2 JPH0677067B2 (en) 1994-09-28

Family

ID=15451222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14836989A Expired - Lifetime JPH0677067B2 (en) 1989-06-13 1989-06-13 Radiation shielding structure

Country Status (1)

Country Link
JP (1) JPH0677067B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064077A1 (en) * 2003-01-13 2004-07-29 Jan Forster Construction for buildings protected against radiation
WO2006072279A1 (en) * 2004-12-29 2006-07-13 Gesellschaft für Schwerionenforschung mbH Multi-layered radiation protection wall and radiation protection chamber
JP2010281647A (en) * 2009-06-03 2010-12-16 Taisei Corp Activation reducing method
JP2012055701A (en) * 2011-10-24 2012-03-22 Sumitomo Heavy Ind Ltd Accelerated particle irradiation equipment
JP2016102650A (en) * 2014-11-27 2016-06-02 株式会社安藤・間 Neutron shield structure and neutron irradiation chamber
CN108766608A (en) * 2018-08-14 2018-11-06 中国核工业华兴建设有限公司 A kind of nuclear power station barrier shield SC fractal structures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064077A1 (en) * 2003-01-13 2004-07-29 Jan Forster Construction for buildings protected against radiation
WO2006072279A1 (en) * 2004-12-29 2006-07-13 Gesellschaft für Schwerionenforschung mbH Multi-layered radiation protection wall and radiation protection chamber
US7820993B2 (en) 2004-12-29 2010-10-26 Gsi Helmholtzzentrum Fur Schwerionenforschung Gmbh Multi-layered radiation protection wall and radiation protection chamber
JP2010281647A (en) * 2009-06-03 2010-12-16 Taisei Corp Activation reducing method
JP2012055701A (en) * 2011-10-24 2012-03-22 Sumitomo Heavy Ind Ltd Accelerated particle irradiation equipment
JP2016102650A (en) * 2014-11-27 2016-06-02 株式会社安藤・間 Neutron shield structure and neutron irradiation chamber
CN108766608A (en) * 2018-08-14 2018-11-06 中国核工业华兴建设有限公司 A kind of nuclear power station barrier shield SC fractal structures

Also Published As

Publication number Publication date
JPH0677067B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
JP5284647B2 (en) Multi-layer radiation barrier and radiation protection room
WO2006034779A1 (en) Multilayered construction body protecting against radiation
JPH0313895A (en) Radiation shield structure
Deju et al. Review on radioactive concrete recycling methods
CN106782728A (en) A kind of movable box type combines shielding harness
JP3926823B2 (en) Radiation shielding material
JP4643193B2 (en) Construction method of shielding concrete considering activation
Griffin A clean technology approach for nuclear fuel reprocessing
Done et al. Management of the Concrete and Cast Iron Waste Resulted from the Decommissioning of the VVR-S Nuclear Research Reactor Block from IFIN-HH
Perler et al. Dismantling of the DIORIT research reactor-Conditioning of activated graphite
Chang et al. A new proposal for controlled recycling of decommissioning concrete waste as part of engineered barriers of a radioactive waste repository and related comprehensive safety assessment
CN116230280A (en) Split-type shielding building block without direct through gap
Cooper et al. The removal cross-section of iron at 14· 1 MeV
GURAU et al. RECYCLE AND REUSE OF CONCRETE RESULTED FROM DEMOLISHING OF THE BIOLOGICAL PROTECTION OF THE VVR-S NUCLEAR RESEARCH REACTOR FROM MAGURELE
JPS5812559B2 (en) Genshirosha Heikozo
Cheon et al. Development of Radioactive Concrete Waste Management Process during Decommissioning NPPs
JP2003344586A (en) Disposal container and disposal method for radioactive waste
Hwang et al. Safety Analysis of Concrete Treatment Workers in Decommissioning of Nuclear Power Plant
Malkapur et al. 1Department of Civil Engineering, Faculty of Engineering and Technology, MS Ramaiah University of AppliedSciences, Bengaluru, India; 2Department of Civil Engineering, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore, India
Cutoiu Aspects of Radioactive waste management
HU231202B1 (en) Concrete wall for adsorbing neutron radiation and method for producing thereof
Dworschak et al. Waste management strategies for fusion materials
Vicente Waste management experience at IPEN-Brazil
JPH0659071A (en) Construction engineering for atomic power station building
Alder Preliminary studies of packaging and disposal of decommissioning waste in Switzerland