JPS5812559B2 - Genshirosha Heikozo - Google Patents

Genshirosha Heikozo

Info

Publication number
JPS5812559B2
JPS5812559B2 JP50023213A JP2321375A JPS5812559B2 JP S5812559 B2 JPS5812559 B2 JP S5812559B2 JP 50023213 A JP50023213 A JP 50023213A JP 2321375 A JP2321375 A JP 2321375A JP S5812559 B2 JPS5812559 B2 JP S5812559B2
Authority
JP
Japan
Prior art keywords
shielding layer
reactor
reactor vessel
less
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50023213A
Other languages
Japanese (ja)
Other versions
JPS5198494A (en
Inventor
田中義久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP50023213A priority Critical patent/JPS5812559B2/en
Publication of JPS5198494A publication Critical patent/JPS5198494A/ja
Publication of JPS5812559B2 publication Critical patent/JPS5812559B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

【発明の詳細な説明】 本発明は、原子炉容器の放射化量を抑制して供用中の検
査時に接近可能線量以下にし、同時に生体遮へい層とし
ての普通コンクリートの放射化量を解体時に問題となら
ない許容線量以下に減少させることを主たる目的とする
原子炉遮へい構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention suppresses the amount of activation in the reactor vessel to bring it below the accessible dose during inspection during service, and at the same time reduces the amount of activation in ordinary concrete, which serves as a bioshielding layer, to avoid problems during demolition. Reactor shielding structure whose main purpose is to reduce the radiation dose below the permissible level.

さらにいえば、生本遮へい層と原子炉容器との間に中間
遮へい層を設置し、この中間遮へい層中の熱中性性子束
を抑制することにより、供用中検査の接近を可能とし、
また安全な解体除去を可能とする原子炉主遮へい構造に
関するものである。
Furthermore, by installing an intermediate shielding layer between the primary shielding layer and the reactor vessel and suppressing the thermal neutron flux in this intermediate shielding layer, it is possible to approach in-service inspections.
It also relates to the reactor main shielding structure that enables safe disassembly and removal.

最近、原子炉容器についてに、供用中の検査(ISI)
を要求される。
Recently, an in-service inspection (ISI) was conducted on the reactor vessel.
is required.

これがために、作業員が原子炉容器へ接近する必要が多
く、厳密で確率の高い安全性確保が重要課題となってい
る。
For this reason, it is often necessary for workers to approach the reactor vessel, and ensuring strict and highly reliable safety is an important issue.

原子炉容器へ接近した作業員が受ける被曝線量な、原子
炉容器外面あるいは生体コンクリートライナー等の熱中
性子照射によって生ずる長半減期の放射性同位元素の崩
壊ガンマー線が主な線源であり、その線量レベルばかな
り高い。
The main source of radiation exposure for workers who approach the reactor vessel is gamma rays, which are the decay of long-half-life radioactive isotopes produced by thermal neutron irradiation of the outer surface of the reactor vessel or biological concrete liner, etc. The level is quite high.

したがって、作業員の被曝線量を許容値以下に低減し抑
制するためには、上述の熱中性子束を減少させることが
必要である。
Therefore, in order to reduce and suppress the exposure dose of workers to a permissible value or less, it is necessary to reduce the above-mentioned thermal neutron flux.

通常、熱中性素子束に、原子炉から放出された高速中性
子が普通コンクリートの生本遮へい層中に入り、ここで
熱中性子となってこれが反射され、原子炉容器やライナ
ーを放射化する。
Normally, fast neutrons emitted from the nuclear reactor enter the thermal neutral element bundle into the raw concrete shielding layer, where they become thermal neutrons and are reflected, activating the reactor vessel and liner.

本発明はこの点に着眼して、原子炉容器と普通コンクリ
ートとの間に、含水量を制限したり、熱中性子吸収物質
を混入した遮へい物質による中間遮へい層を設置するこ
とで、遮へい層から反射されてくる熱中性子束レベルを
低下させることを特急とする。
The present invention has focused on this point, and by installing an intermediate shielding layer between the reactor vessel and ordinary concrete, which is made of a shielding material that limits the water content or contains a thermal neutron absorbing substance, the shielding layer can be easily removed. The urgent task is to reduce the level of reflected thermal neutron flux.

次に、原子炉の耐用寿命が尽きて原子炉プラントを解体
する場合に、通常の原子炉では普通コンクリートによる
生木遮へい層の原子炉側前面(内面)で熱中性子束が高
い。
Next, when a nuclear reactor plant reaches the end of its useful life and is to be dismantled, thermal neutron flux is high in a normal nuclear reactor at the front (inner surface) of the reactor side of the raw wood shielding layer made of ordinary concrete.

その原因は、普通コンクリートの中に含有されている鉄
(Fe)、コバルト(Co)、スカンシウム(Sc)、
ユーロビウム(Eu)といった元素が放射化されると、
長寿命の放射性元素を生成するので、その量が問題とな
る。
The cause is iron (Fe), cobalt (Co), and scantium (Sc) contained in ordinary concrete.
When an element such as eurobium (Eu) is activated,
Since it produces long-lived radioactive elements, the amount is an issue.

したがって本発明の次なる特Bi、上述の中間遮へい層
として用いられる遮へい物質中のFeCo,Sc,Eu
といった元素の含有量を許容値以下に制限し、上述の問
題点を解消することにある。
Therefore, the next feature of the present invention is Bi, FeCo, Sc, and Eu in the shielding material used as the above-mentioned intermediate shielding layer.
The purpose is to limit the content of such elements to below a permissible value to solve the above-mentioned problems.

本発明のさらに異なる特色は、中間遮へい層の構造様式
に関し、原子炉寿命後の解体工事の便宜を考慮して、容
易に解体ならびに運搬除去の可能なブロック積方式、玉
砂利ないし細砂充填方式等で中間遮へい層を構成する点
にある。
A further feature of the present invention is that regarding the structure of the intermediate shielding layer, in consideration of the convenience of dismantling work after the life of the reactor, a block stacking method that can be easily dismantled and transported and removed, a gravel or fine sand filling method, etc. This is because it constitutes an intermediate shielding layer.

次に、本発明を図示の例により説明する。Next, the present invention will be explained using illustrated examples.

第1図は本発明による中間遮へい層を施した原子炉の一
例を表わしている。
FIG. 1 represents an example of a nuclear reactor provided with an intermediate shielding layer according to the invention.

図中1は炉心、2は反射体、3は中性子遮へい体、4ぱ
熱遮へい体、5ぱ原子炉容器、6に中間遮へい層収納容
器、7は中間遮へい層、8は普通コンクリートによる生
体遮へい層を示している。
In the figure, 1 is the reactor core, 2 is the reflector, 3 is the neutron shield, 4 is the thermal shield, 5 is the reactor vessel, 6 is the intermediate shielding layer storage container, 7 is the intermediate shielding layer, and 8 is the biological shielding made of ordinary concrete. It shows the layers.

本発明の場合、原子炉容器5と生体遮へい層8との間に
中間遮へい層7を有することが重大な特急であるが、そ
の遮へい物質として、鉄分を103ppm以下、コバル
トを10”ppm以下、スカンジウムを5X10 −2
ppm以下、ユーロビウムを10−3ppm以下に制限
し、また含水率を制限したり、あるいは熱中性子吸収物
質としてボロンないしカドミワムを混入した材料が用い
られることの特急も大切である。
In the case of the present invention, it is important to have an intermediate shielding layer 7 between the reactor vessel 5 and the biological shielding layer 8, and as the shielding material, iron content is 103 ppm or less, cobalt is 10'' ppm or less, Scandium 5X10-2
It is also important to limit eurobium to 10-3 ppm or less, limit the water content, or use materials mixed with boron or cadmium as a thermal neutron absorbing substance.

この中間遮へい層7の厚さ寸法に、生体遮へいである普
通コンクリートの放射化による放射能量を許容量以下に
制限する条件下で決定されるであろう。
The thickness of the intermediate shielding layer 7 will be determined under conditions that limit the amount of radioactivity due to activation of ordinary concrete, which is a bioshield, to a permissible amount or less.

また、中間遮へい層7の解体除去可能ないし容易な築造
様式としては、次のような構造が適切に採用される。
Further, as a construction style in which the intermediate shielding layer 7 can be easily dismantled or removed, the following structure is appropriately adopted.

第2図は、遮へい物質をブロック状に成形しそのブロッ
クを中間遮へい層収納容器6の中に積んで築造するブロ
ック積み方式である。
FIG. 2 shows a block stacking method in which the shielding material is formed into blocks and the blocks are stacked in the intermediate shielding layer storage container 6.

ブロックに、生体遮へしら層8の上部に開口された充填
取出口9から出し入れされる。
The block is loaded and unloaded from a filling/unloading port 9 opened at the top of the biological barrier layer 8.

第3図は、遮へい物質を玉砂利程度に粒状fヒし、それ
を収納容器6の中に充填して中間遮へい層7とする玉砂
利充填方式である。
FIG. 3 shows a gravel filling method in which a shielding material is granulated to the size of gravel and filled into a storage container 6 to form an intermediate shielding layer 7.

粒状化遮へい物質は、充填口10から供給され、解体時
には取出口11から排出される。
The granulated shielding material is supplied from the filling port 10 and discharged from the take-out port 11 during disassembly.

第4図に、遮へい物質を細砂状に微粒子化しこれを収納
容器6の中へ充填する細砂充填方式である。
FIG. 4 shows a fine sand filling method in which the shielding material is atomized into fine sand and filled into the storage container 6.

細砂状遮へい物質は、充填口10から供給され、解体時
には取出口11から排出される。
The fine sand-like shielding material is supplied from the filling port 10 and discharged from the take-out port 11 during disassembly.

かくして、本発明の上述したよりな築炉構造によれば、
炉心1から放出される中性子は、反射体2,中性子遮へ
い体3,熱遮へい体4,原子炉容器5の壁を順に透過し
て中間遮へい層7に入り、それをも透過して普通コンク
リート中に入射し減衰される。
Thus, according to the above-described solid furnace construction structure of the present invention,
Neutrons emitted from the reactor core 1 pass through the walls of the reflector 2, the neutron shield 3, the heat shield 4, and the reactor vessel 5 in order, enter the intermediate shield layer 7, and also pass through that into the ordinary concrete. is incident on and is attenuated.

その際、熱中性子に中性子遮へい体3哄遮へい体4なら
びに原子炉容器5を透過する度(漸次急激に減少され、
この状態が中間遮へい層7でも維持される。
At that time, each time a thermal neutron passes through the neutron shield 3, the shield 4, and the reactor vessel 5 (gradually sharply decreases,
This state is also maintained in the intermediate shielding layer 7.

かくて普通コンクリート面で投射化量が問題とならない
必要な熱中性子レベルにまで低下されたのちに、生木遮
へいで必要な放村線まで減衰される。
In this way, after the amount of radiation is reduced to the required level of thermal neutrons, which is not a problem, on a normal concrete surface, it is attenuated to the required radiation level by shielding with living trees.

ゆえに、中間遮へい層7により特別な遮へいを必要とせ
ず、作業員が近づいて解体しあるいはその後の運搬除去
、廃棄処分がf分に可能となる。
Therefore, the intermediate shielding layer 7 does not require any special shielding, and it becomes possible for workers to approach and disassemble, or subsequently transport, remove, and dispose of in f minutes.

さらにまた、普通コンクリート遮へい体の解体も、周辺
環境を放射能汚染させることなく在来の解体方式を実施
して行えるのである。
Furthermore, the dismantling of ordinary concrete shielding bodies can be carried out using conventional demolition methods without radioactive contamination of the surrounding environment.

なお、第5図には本発明が奏する作用効果、すなわち中
間遮へい層7が実際にどの程度の威力を動くかの一例を
グラフとして表わ1〜だ。
In addition, FIG. 5 shows an example of the effects achieved by the present invention, that is, how much force the intermediate shielding layer 7 actually moves, as a graph.

このデータで使用された中間遮へい層の遮へい物質の組
成は、含水量を零、Feほ1 03ppm+ Coぱ1
0 −2ppm,Scfd5×10−2ppm,EuU
10 ppmとした密度3. 4 5gr/c cの重
コンクリート骨材を50c1rLの壁厚として実施した
The composition of the shielding material of the intermediate shielding layer used in this data was zero water content, 103 ppm Fe + 103 ppm Copper.
0-2ppm, Scfd5×10-2ppm, EuU
Density set to 10 ppm3. A heavy concrete aggregate of 4.5gr/cc was carried out with a wall thickness of 50c1rL.

なお熱中性子吸収物質は混入しなかった。第5図は速中
性子、熱中性子およびガンマ線の減衰状況を表わしたも
ので、特に曲線AH中間遮へい層も全部普通コンクリー
トで築造された従来構造のものの熱中性子束を、そして
曲線Bは上記した組成の遮へい物質を用いて中間遮へい
層を築造した本発明の熱中性子束を表わしている。
Note that no thermal neutron absorbing substance was mixed. Figure 5 shows the attenuation of fast neutrons, thermal neutrons, and gamma rays. In particular, curve AH shows the thermal neutron flux of a conventional structure in which the intermediate shielding layer is also entirely made of ordinary concrete, and curve B shows the thermal neutron flux of the structure described above. The thermal neutron flux of the present invention is shown in which an intermediate shielding layer is constructed using a shielding material of .

この第5図のグラフで一目瞭然であるように本発明によ
れば、原子炉容器周辺の放射能レベル、中間遮へい層の
放射能レベルが従来のものより大幅に低減され、かつそ
のレベルUISI時あるいは解体除去時に必要な線量捷
で減衰されていることも明確に理解される。
As is clear from the graph in FIG. 5, according to the present invention, the radioactivity level around the reactor vessel and the radioactivity level in the intermediate shielding layer are significantly reduced compared to conventional ones, and at the time of UISI or It is also clearly understood that the dose is attenuated by the dose reduction required during dismantling and removal.

又熱中性子吸収物質を混入した場合は、更に熱中性子束
レベルを低下させることができる。
Furthermore, when a thermal neutron absorbing substance is mixed, the thermal neutron flux level can be further reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による原子炉のかんたんな垂直断面図、
第2図一第4図は中間遮へい層の築造様式を表わした部
分断面図、第5図は速中性子、熱中性子の減衰レベルを
表わしたグラフである。 1……炉心、2……反射体、3……中性子遮へい体、4
……熱遮へい体、5……原子炉容器、6……中間遮へい
層収納容器、7……中間遮へい層、8……生体遮へい層
、9……充填取出口、10……充填口、11……取出口
FIG. 1 is a simple vertical cross-sectional view of a nuclear reactor according to the present invention;
Figures 2 and 4 are partial sectional views showing the construction style of the intermediate shielding layer, and Figure 5 is a graph showing the attenuation levels of fast neutrons and thermal neutrons. 1...Reactor core, 2...Reflector, 3...Neutron shield, 4
...Thermal shield, 5...Reactor vessel, 6...Intermediate shielding layer storage container, 7...Intermediate shielding layer, 8...Biological shielding layer, 9...Filling/unloading port, 10...Filling port, 11 ...Exit.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉容器と普通コンクリートによる生体遮へい層
との間に中間遮へい層を設け、該中間遮へい層を形成す
るコンクリートの成分を、FelO3ppm以下、Co
102ppm以下,Sc5×10−2ppm以下、Eu
lO−3ppm以下に{〜、更に熱中性子吸収物質を加
えると共に水分の含有量をほゞゼロにしたことを特徴と
する原子炉遮へい構造。
1. An intermediate shielding layer is provided between the reactor vessel and the biological shielding layer made of ordinary concrete, and the components of the concrete forming the intermediate shielding layer are FelO3ppm or less, Co
102 ppm or less, Sc5×10-2 ppm or less, Eu
1. A nuclear reactor shielding structure characterized by adding a thermal neutron absorbing substance to 1O-3 ppm or less and reducing the water content to almost zero.
JP50023213A 1975-02-25 1975-02-25 Genshirosha Heikozo Expired JPS5812559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50023213A JPS5812559B2 (en) 1975-02-25 1975-02-25 Genshirosha Heikozo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50023213A JPS5812559B2 (en) 1975-02-25 1975-02-25 Genshirosha Heikozo

Publications (2)

Publication Number Publication Date
JPS5198494A JPS5198494A (en) 1976-08-30
JPS5812559B2 true JPS5812559B2 (en) 1983-03-09

Family

ID=12104373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50023213A Expired JPS5812559B2 (en) 1975-02-25 1975-02-25 Genshirosha Heikozo

Country Status (1)

Country Link
JP (1) JPS5812559B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513808A (en) * 1978-06-30 1980-01-31 Tokyo Shibaura Electric Co Pipeline shielding device
JPS5759194A (en) * 1980-09-26 1982-04-09 Tokyo Electric Power Co Method of protecting activation of nuclear reactor structure material

Also Published As

Publication number Publication date
JPS5198494A (en) 1976-08-30

Similar Documents

Publication Publication Date Title
El-Samrah et al. Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: A review
US7250119B2 (en) Composite materials and techniques for neutron and gamma radiation shielding
JPS5812559B2 (en) Genshirosha Heikozo
JPS5827100A (en) Method of transporting spent nuclear fuel
US20100004498A1 (en) Reducing the profile of neutron-activated 60Co and removing in layers at the primary system of a permanently shut down nuclear power plant in order to accelerate its dismantling
US Nuclear Regulatory Commission. Office of Nuclear Reactor Regulation Draft Programmatic Environmental Impact Statement Related to Decontamination and Disposal of Radioactive Wastes Resulting from March 28, 1979, Accident, Three Mile Island Nuclear Station, Unit 2: Docket No. 50-320, Metropolitan Edison Company, Jersey Central Power and Light Company, Pennsylvania Electric Company
Hileman Nuclear waste disposal
JPH0677067B2 (en) Radiation shielding structure
KR101740607B1 (en) Processing method of reducing bulk of used nuclear fuel for heavy water reactor
Gholamzadeh et al. The effect of the number of spent fuel casks on the dose of the outer part of the hall concrete wall
Maheras et al. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation
Barré Nuclear Safety and Waste Management
Ramprasath et al. Radiation Environment in Nuclear Fuel Cycle Facilities
Mota Modeling and Analysis of the Transport and Disposal of Beryllium Moderator Blocks and Greater than Class C (GTCC) Waste
Ahlstroem Current once-through fuel cycle and future trends
Forsberg Repository Applications for Depleted Uranium (DU)
JPS6138491A (en) Fuel aggregate for nuclear reactor
Kessler Technical Aspects of Nuclear Fuel Cycles
Plants BOOK OF EXTENDED SYNOPSES
Mandahl et al. Handling of waste at Swedish nuclear power plants
JPS62261993A (en) Shielding structure of nuclear reactor
Kim et al. Radiation shielding evaluation of IP-2 packages for low-and intermediate-level radioactive waste
Quapp DUCRETE TM Shielding Applications in the Yucca Mountain Repository
LeMone et al. Waste minimization technology and its effect on commercial low-level waste repository planning
Task Committee on Nuclear Effects of the Committee on Air, Noise and Radiation Management of the Environmental Engineering Division, American Society of Civil Engineers Nuclear Waste Management