JPH03138560A - Heat type air/fuel ratio detector - Google Patents

Heat type air/fuel ratio detector

Info

Publication number
JPH03138560A
JPH03138560A JP1277875A JP27787589A JPH03138560A JP H03138560 A JPH03138560 A JP H03138560A JP 1277875 A JP1277875 A JP 1277875A JP 27787589 A JP27787589 A JP 27787589A JP H03138560 A JPH03138560 A JP H03138560A
Authority
JP
Japan
Prior art keywords
oxygen concentration
fuel ratio
exhaust gas
air
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1277875A
Other languages
Japanese (ja)
Inventor
Takao Murase
隆生 村瀬
Tsunenori Yoshimura
吉村 恒則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1277875A priority Critical patent/JPH03138560A/en
Priority to DE19904033667 priority patent/DE4033667A1/en
Publication of JPH03138560A publication Critical patent/JPH03138560A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte

Abstract

PURPOSE:To shorten the heating time of a detection part in starting while preventing the detection part from being overheated by applying a heating body with a voltage higher than a rated voltage required to hold the detection part at specific temperature for a specific time right after the starting. CONSTITUTION:A diffusion resistance means consisting of the gas intake hole 16 and flat space 14 of an oxygen concentration detection part 10 guides combustion exhaust gas to below a specific gas diffusion resistance. An electrochemical sensing cell 8 composed of an electrode 26, an electrode 28, and a solid electrolytic body 12 detects the oxygen concentration in the guided combustion exhaust gas. An electrochemical pumping cell 6 consisting of an electrode 22, an electrode 24, and the solid electrolytic body 12 controls the oxygen concentration in the combustion exhaust gas. Then the heating body 32 is applied with the voltage higher than the rated voltage required to hold the detection part 10 at the specific temperature for the specific time right after the starting. Consequently, while the detection body is prevented from being overheated, the time required for heating up to the specific temperature at which a stable measurement can be taken can be shortened.

Description

【発明の詳細な説明】 (技術分野) 本発明は、自動車の内燃機関における燃焼制御系や各種
の工業炉等における燃焼排ガスの空燃比の測定に好適に
用いられる、加熱用の発熱体を備えた加熱型空燃比検出
器に係り、特に低温状態からの始動に際しての加熱時間
の短縮化と、始動初期における測定精度の向上が図られ
得る加熱型空燃比検出器に関するものである。
Detailed Description of the Invention (Technical Field) The present invention provides a heating element that is suitably used for measuring the air-fuel ratio of combustion exhaust gas in combustion control systems in internal combustion engines of automobiles, various industrial furnaces, etc. The present invention relates to a heated air-fuel ratio detector, and particularly to a heated air-fuel ratio detector that can shorten heating time when starting from a low temperature state and improve measurement accuracy at the initial stage of starting.

(背景技術) 従来より、自動車用内燃機関の排気ガス(燃焼排ガス)
中の酸素濃度や、工業炉、ボイラー等から排出される燃
焼排ガス中の酸素濃度を検知する酸素センサとして、酸
素イオン伝導性の固体電解質であるジルコニア磁器等を
用いた濃淡電池型や限界電流型、或いは表面へのガスの
吸着によって抵抗値が変化するチタニアや五酸化ニオブ
等を用いた酸化物半導体型のもの等が知られている。そ
して、内燃機関等においては、一般に、空気と燃料とか
ら構成される混合気の空燃比を、高精度に目標値に制御
するために、前記の如きセンサを用いて、空燃比と相関
関係を有する排気ガス中の酸素濃度を検知することによ
り、混合気の空燃比を検出して、内燃機関等に供給され
る燃料供給量をフィードバック制御するようにしている
のである。
(Background technology) Traditionally, exhaust gas (combustion exhaust gas) from automobile internal combustion engines
Concentration cell type and limiting current type oxygen sensors that use zirconia porcelain, etc., which is a solid electrolyte that conducts oxygen ions, are used as oxygen sensors to detect the oxygen concentration in combustion exhaust gas discharged from industrial furnaces, boilers, etc. Also known are oxide semiconductor types using titania, niobium pentoxide, etc. whose resistance value changes due to the adsorption of gas onto the surface. In internal combustion engines, etc., in order to control the air-fuel ratio of the air-fuel mixture composed of air and fuel to a target value with high precision, the above-mentioned sensors are generally used to measure the correlation between the air-fuel ratio and the air-fuel ratio. By detecting the oxygen concentration in the exhaust gas, the air-fuel ratio of the air-fuel mixture is detected, and the amount of fuel supplied to the internal combustion engine or the like is feedback-controlled.

ところで、このような酸素センサを利用した空燃比検出
器にあっては、被測定ガスとしての燃焼排ガスの温度が
比較的低い場合においても有効に作動させるために、か
かる空燃比検出器における少なくとも酸素濃度を検知す
る検知部を、適当なヒータ(発熱体)によって所定の高
温度に加熱、保持せしめる必要がある。
By the way, in order for an air-fuel ratio detector using such an oxygen sensor to operate effectively even when the temperature of the combustion exhaust gas as the gas to be measured is relatively low, at least oxygen in the air-fuel ratio detector is required. It is necessary to heat and maintain the detection section that detects the concentration at a predetermined high temperature using an appropriate heater (heating element).

そこで、従来から、かかる加熱のために、例えば、特開
昭55−140145号公報や特開昭57−14255
5号公報等に示されている如く、外部からの給電によっ
て酸素濃度検知部を加熱する発熱体を内蔵し、またそれ
を一体的に設けてなる構造の空燃比検出器が明らかにさ
れている。また、そこにおいて、かかる発熱体に供給さ
れる電圧は、余り大きくすると、酸素濃度検知部の過熱
による損傷等の問題が惹起されることから、通常、該検
知部を所定温度に保持するために必要とされる熱量を、
該発熱体によって得ることのできる一定の大きさ(定格
電圧)に設定されることとなる。
Therefore, conventionally, for such heating, for example, Japanese Patent Application Laid-Open No. 55-140145 and Japanese Patent Application Laid-open No. 57-14255
As shown in Publication No. 5, etc., an air-fuel ratio detector has been disclosed that has a built-in heating element that heats the oxygen concentration detection section by external power supply, and is also provided integrally with the heating element. . In addition, if the voltage supplied to the heating element is too large, problems such as damage to the oxygen concentration detection section due to overheating will occur, so it is usually necessary to maintain the detection section at a predetermined temperature. the amount of heat required,
It will be set to a certain size (rated voltage) that can be obtained by the heating element.

しかしながら、そのように、発熱体に対する供給電圧を
、酸素濃度検知部の保温のために必要とされる発熱量に
基づいて設定せしめてなる、従来の装置にあっては、低
温状態からの始動に際し、かかる発熱体によって、検知
部を、計測可能な温度まで昇温するのに長い時間を要す
るといった問題点を内在していたのであり、そのために
、内燃機関等では、エンジン始動時における作動制御の
安定性が得難いといった不具合を有していたのである。
However, in conventional devices in which the voltage supplied to the heating element is set based on the amount of heat required to keep the oxygen concentration sensor warm, it is difficult to start the device from a low temperature. However, due to such a heating element, it takes a long time to heat up the detection part to a measurable temperature. Therefore, in internal combustion engines, it is difficult to control the operation when starting the engine. The problem was that it was difficult to obtain stability.

また、特に、特開昭59−190652号公報等に示さ
れているように、前記検知部が、燃焼排ガスを所定のガ
ス拡散抵抗の下に導く拡散抵抗手段と、該拡散抵抗手段
を介して導かれた燃焼排ガス中の酸素濃度を検出する酸
素濃度検出手段と、該酸素濃度検出手段による検出値に
基づいて、かかる拡散抵抗手段を介して導かれた燃焼排
ガス中の酸素濃度を制御する酸素ポンプ手段とを含んで
構成され、該酸素ポンプ手段を流れる電流によって、燃
焼排ガスの空燃比を測定するようにした空燃比検出器に
あっては、かかる拡散抵抗手段の形成および酸素ポンプ
手段の配設によって装置が大型化し、その昇温により長
い時間が必要となるために、上述の如き、低温状態から
の始動に際しての加熱時間の問題が、−層大きな問題と
なっていたのであり、更にそれに加えて、低温時には、
かかる酸素ポンプ手段に対する通電性が不良となるため
に、始動初期における出力が不安定となり易いといった
不具合をも有していたのである。
In particular, as shown in Japanese Unexamined Patent Publication No. 59-190652, the detection section includes a diffusion resistance means for guiding the combustion exhaust gas under a predetermined gas diffusion resistance, and oxygen concentration detection means for detecting the oxygen concentration in the guided combustion exhaust gas; and oxygen concentration detection means for controlling the oxygen concentration in the combustion exhaust gas guided through the diffusion resistance means based on the detected value by the oxygen concentration detection means. In an air-fuel ratio detector that includes a pump means and measures the air-fuel ratio of combustion exhaust gas by a current flowing through the oxygen pump means, formation of the diffusion resistance means and arrangement of the oxygen pump means are required. As the equipment becomes larger and requires a longer time to heat up, the problem of heating time when starting from a low temperature, as mentioned above, has become an even bigger problem. In addition, at low temperatures,
Since the current conductivity to the oxygen pump means is poor, there is also a problem that the output tends to become unstable at the initial stage of startup.

(解決課題) ここにおいて、本発明は、上述の如き事情を背景として
為されたものであって、その解決課題とするところは、
酸素濃度検知部における過熱を防止しつつ、始動時にお
ける該検知部の加熱時間の短縮化が有利に図られ得る加
熱型空燃比検出器を提供することにある。
(Problem to be solved) Here, the present invention has been made against the background of the above-mentioned circumstances, and the problem to be solved is:
It is an object of the present invention to provide a heated air-fuel ratio detector that can advantageously shorten the heating time of the oxygen concentration detection section at the time of startup while preventing overheating in the oxygen concentration detection section.

(解決手段) そして、かかる課題を解決するために、本発明にあって
は、燃焼排ガス中の酸素濃度を検知する酸素濃度検知部
と、外部からの給電によって該検知部を加熱する発熱体
とを有する加熱型空燃比検出器において、始動直後の所
定時間、前記検知部を所定温度に保持するために必要と
される定格電圧よりも高い電圧を、前記発熱体に対して
供給する給電手段を設けたことを、その特徴とするもの
である。
(Solution Means) In order to solve this problem, the present invention includes an oxygen concentration detection section that detects the oxygen concentration in combustion exhaust gas, and a heating element that heats the detection section by external power supply. In the heating type air-fuel ratio detector, a power supply means supplies a voltage higher than a rated voltage required to maintain the detection part at a predetermined temperature to the heating element for a predetermined time immediately after starting. It is characterized by the fact that it has been established.

また、本発明の一つの態様においては、前記酸素濃度検
知部が、前記燃焼排ガスを所定のガス拡散抵抗の下に導
く拡散抵抗手段と、該拡散抵抗手段を介して導かれた燃
焼排ガス中の酸素濃度を検出する酸素濃度検出手段と、
該酸素濃度検出手段による検出値に基づいて、かかる拡
散抵抗手段を介して導かれた燃焼排ガス中の酸素濃度を
制御する酸素ポンプ手段とを含んで構成されることとな
(実施例) 以下、本発明を更に具体的に明らかにするために、図面
に示される実施例に基づいて、本発明の構成を詳細に説
明することとする。
Further, in one aspect of the present invention, the oxygen concentration detection section includes a diffusion resistance means for guiding the combustion exhaust gas under a predetermined gas diffusion resistance, and a diffusion resistance means for guiding the combustion exhaust gas under a predetermined gas diffusion resistance, and a diffusion resistance means for guiding the combustion exhaust gas under a predetermined gas diffusion resistance. oxygen concentration detection means for detecting oxygen concentration;
and an oxygen pump means for controlling the oxygen concentration in the combustion exhaust gas guided through the diffusion resistance means based on the value detected by the oxygen concentration detection means (Example). In order to clarify the present invention more specifically, the configuration of the present invention will be explained in detail based on embodiments shown in the drawings.

先ず、第1図には、本発明に従う加熱型空燃比検出器の
一つの具体的な形態が示されている。かかる図中、10
は、酸素濃度検出器の検出素子の酸素濃度検知部を、そ
の横断面において略図的に示したものである。そこにお
いて、かかる検知部10は、イツトリア添加ジルコニア
磁器等の酸素イオン伝導性の固体電解質層の複数が積層
されて一体焼成されることによって得られた、板状の長
手の固体電解質体12を有している。
First, FIG. 1 shows one specific form of a heated air-fuel ratio detector according to the present invention. In this figure, 10
1 is a schematic cross-sectional view of the oxygen concentration detection section of the detection element of the oxygen concentration detector. The detection unit 10 includes a plate-like elongated solid electrolyte body 12 obtained by laminating and integrally firing a plurality of oxygen ion conductive solid electrolyte layers such as zirconia porcelain doped with ittria. are doing.

そして、この固体電解質体12内には、細隙な円形の平
坦空間14が、板面方向に設けられていると共に、この
平坦空間14の中心部が、固体電解質体12を貫通して
形成されたガス導入孔16を通じて、外部の被測定ガス
存在空間18に連通せしめられている。そして、被測定
ガスとしての燃焼排ガスが、かかるガス導入孔16を通
じて、所定の拡散抵抗の下、平坦空間14内に導入せし
められるようになっている。なお、本実施例では、これ
らガス導入孔16および平坦空間14によって、拡散抵
抗手段が構成されている。
In this solid electrolyte body 12, a narrow circular flat space 14 is provided in the direction of the plate surface, and the center part of this flat space 14 is formed by penetrating the solid electrolyte body 12. It is communicated with an external measurement gas existing space 18 through a gas introduction hole 16 . The combustion exhaust gas as the gas to be measured is introduced into the flat space 14 through the gas introduction hole 16 under a predetermined diffusion resistance. In this embodiment, the gas introduction hole 16 and the flat space 14 constitute a diffusion resistance means.

さらに、かかる固体電解質体12には、その平坦空間1
4内の雰囲気に実質的に晒される面に接して第一の電極
22が、また被測定ガス存在空間18の被測定ガスに対
して実質的に直接に晒される面に接して第二の電極24
が、互いに、固体電解質体12を挟んで対向位置する状
態で設けられている。そして、これら第一の電極22、
第二の電極24および固体電解質体12により、電気化
学的ボンピングセル6が構成されている。
Furthermore, the solid electrolyte body 12 has a flat space 1
A first electrode 22 is in contact with a surface that is substantially exposed to the atmosphere in the gas-to-be-measured space 18, and a second electrode is in contact with a surface that is substantially directly exposed to the gas in the gas-to-be-measured space 18. 24
are provided facing each other with the solid electrolyte body 12 in between. And these first electrodes 22,
The second electrode 24 and the solid electrolyte body 12 constitute an electrochemical bombing cell 6.

また一方、前記固体電解質体12内には、前記平坦空間
14に対して所定路離隔たった位置に独立して、空気通
路20が形成されている。そして、かかる空気通路20
内に、所定の酸素濃度を有する基準ガスとしての空気が
導かれるようになっている。
On the other hand, an air passage 20 is formed independently within the solid electrolyte body 12 at a position a predetermined distance apart from the flat space 14 . And such air passage 20
Air as a reference gas having a predetermined oxygen concentration is introduced into the chamber.

さらに、かかる固体電解質体12には、その平坦空間1
4内の雰囲気に実質的に晒される面に接して第三の電極
26が、また空気通路20内に導かれる基準ガスとして
の空気に晒される面に接して第四の電極28が、互いに
、固体電解質体12を挟んで対向位置する状態で設けら
れている。そして、これら第三の電極26、第四の電極
28および固体電解質体12により、電気化学的センシ
ングセル8が構成されている。
Furthermore, the solid electrolyte body 12 has a flat space 1
The third electrode 26 is in contact with the surface substantially exposed to the atmosphere in the air passage 20, and the fourth electrode 28 is in contact with the surface exposed to the air as a reference gas introduced into the air passage 20. They are provided in opposing positions with the solid electrolyte body 12 in between. The third electrode 26, fourth electrode 28, and solid electrolyte body 12 constitute an electrochemical sensing cell 8.

そして、このような構造とされた検出素子の酸素濃度検
知部10にあっては、そのセンシングセル8にて発生す
る起電力が、差動アンプ36に入力せしめられるように
なっている。また、該差動アンプ36において、第三の
電極26が露呈される検出部10の平坦空間14内の雰
囲気を常に中性付近に保つべく、かかるセンシングセル
Bの起電力が、参照電圧37と比較され、その比較結果
に応じた電圧が出力されることとなるのであり、更にこ
の差動アンプ36の出力は、V−■コンバータ38に入
力されることによって、所定のプラス電流またはマイナ
ス電流に変換せしめられるようになっている。
In the oxygen concentration detection section 10 of the detection element having such a structure, the electromotive force generated in the sensing cell 8 is input to the differential amplifier 36. In addition, in the differential amplifier 36, the electromotive force of the sensing cell B is adjusted to be equal to the reference voltage 37 in order to keep the atmosphere in the flat space 14 of the detection unit 10 where the third electrode 26 is exposed always around neutrality. The voltage is compared and a voltage corresponding to the comparison result is output.Furthermore, the output of the differential amplifier 36 is inputted to the V-■ converter 38, thereby converting it into a predetermined positive or negative current. It is now possible to convert it.

さらに、このV−1コンバータ38から出力される電流
は、ボンピングセル6を構成する第一の電極22と第二
の電極24との間に流され、それによって、かかるポン
ピングセル6によって、前記平坦空間14内の雰囲気を
中性付近に近づけるように、酸素イオンを第一の電極2
2から第二の電極24側に、或いはその逆に移動せしめ
て、酸素ポンプ作用を為すようになっている。
Further, the current output from this V-1 converter 38 is caused to flow between the first electrode 22 and the second electrode 24 that constitute the pumping cell 6, and thereby, the pumping cell 6 supplies the flat space. Oxygen ions are transferred to the first electrode 2 so that the atmosphere inside the electrode 14 approaches neutrality.
2 to the second electrode 24 side, or vice versa, to perform an oxygen pumping action.

そして、このように、ポンピングセル6を構成する第一
の電極22と第二の電極24との間に流されるボンピン
グ電流=1pが、測定されるようになっているのであり
、そこにおいて、かかるボンピング電流は、良く知られ
ているように、被測定ガスである燃焼排ガスの空燃比に
対して一定の関係を有するものであることから、該ボン
ピング電流を測定することによって、目的とする燃焼排
ガスの空燃比を検出することができるのである。
In this way, the pumping current = 1p flowing between the first electrode 22 and the second electrode 24 constituting the pumping cell 6 is measured. As is well known, the pumping current has a certain relationship with the air-fuel ratio of the combustion exhaust gas, which is the gas to be measured. The air-fuel ratio can be detected.

また一方、前述の如き検出素子の酸素濃度検知0 部10を構成する固体電解質体12には、第二の電極2
4が設けられていない側の面において、電気絶縁性の所
定のセラミックス層30が一体的に設けられていると共
に、このセラミックス層30の内部に、発熱体としての
ヒータエレメント32が、埋設状態下に配されている。
On the other hand, a second electrode 2 is provided on the solid electrolyte body 12 constituting the oxygen concentration detection section 10 of the detection element as described above.
A predetermined electrically insulating ceramic layer 30 is integrally provided on the side where 4 is not provided, and a heater element 32 as a heating element is embedded inside this ceramic layer 30. It is arranged in

そして、かかるヒータエレメント32は、その接続端子
を介して接続された外部電源34からの給電により発熱
せしめられ、それによって前記検出部10が、所定の有
効な作動温度に加熱、保持せしめられ得るようになって
いるのである。
The heater element 32 is supplied with power from an external power source 34 connected through its connection terminal to generate heat, so that the detection section 10 can be heated and maintained at a predetermined effective operating temperature. It has become.

そこにおいて、かかる外部電源34にあっては、ヒータ
エレメント32に対して接続されることにより、前記検
知部10を計測可能な所定温度に保持せしめるだけの熱
量を該ヒータエレメント32によって発生せしめ得るだ
けの定格電圧(本実施例では、8V)を供給する定格電
源44と、ヒータエレメント32に対して接続されるこ
とにより、かかる定格電圧よりも所定量だけ大きな電圧
(本実施例では、12■)を供給する加熱電源46とに
よって構成されており、そして、それら定格電源44と
加熱電源46とが、切換機構48による切換作動に基づ
いて、ヒータエレメント32に対して、選択的に接続せ
しめられるようになっている。
Therefore, when the external power source 34 is connected to the heater element 32, the heater element 32 can generate enough heat to maintain the detection section 10 at a measurable predetermined temperature. By being connected to the heater element 32 and the rated power supply 44 that supplies the rated voltage (8 V in this example), a voltage that is higher than the rated voltage by a predetermined amount (12V in this example) is generated. The rated power source 44 and the heating power source 46 are selectively connected to the heater element 32 based on the switching operation by the switching mechanism 48. It has become.

また、かかる切換機構48においては、その切換作動が
、タイマ回路等によって時間的に作動せしめられる制御
機構50によって制御されるようになっており、所謂タ
イムスイッチ的な作動を行なうようになっている。より
具体的には、前述の如き、検知部10における空燃比の
測定に際して、かかる検知部10を測定可能な所定温度
にまで昇温せしめる場合、その始動初期においては、ヒ
ータエレメント32に対して加熱電源46が接続され、
そして所定時間経過後に、切換機構48が切換作動せし
められて、ヒータエレメント32に対して定格電源44
が接続せしめられることとなるのである。
Further, in the switching mechanism 48, the switching operation thereof is controlled by a control mechanism 50 which is activated temporally by a timer circuit or the like, so that the switching mechanism 48 performs a so-called time switch-like operation. . More specifically, when measuring the air-fuel ratio in the detection unit 10 as described above, when raising the temperature of the detection unit 10 to a predetermined temperature at which the detection unit 10 can be measured, at the initial stage of startup, heating is applied to the heater element 32. The power supply 46 is connected,
After a predetermined period of time has elapsed, the switching mechanism 48 is operated to switch the rated power supply 44 to the heater element 32.
will be connected.

なお、かかる切換機構48によって、始動(加熱初期)
から電源を切り換えられるまでの時間は、1 2 空燃比検出器の配設環境や初期温度、或いはその構造や
サイズ等によって異なるが、本実施例構造の如き、ダブ
ルセル型の標準タイプのもので、自動車用エンジンの空
燃比検出用のものにあっては、始動初期温度を室温とし
た場合、通常、5〜60秒程度に設定されることとなる
。けだし、余り長時間加熱電源に接続すると、検知部の
過熱による損傷の問題が惹起される恐れがあり、一方、
加熱時間が短か過ぎると、充分な効果が得られ難いから
である。
Note that this switching mechanism 48 allows the startup (initial stage of heating)
The time it takes for the power to be switched from 1 to 2 varies depending on the installation environment and initial temperature of the air-fuel ratio sensor, its structure and size, etc., but for a standard type double cell type like the structure of this example, In the case of an air-fuel ratio detection device for an automobile engine, when the initial starting temperature is room temperature, the time period is normally set to about 5 to 60 seconds. However, if the sensor is connected to a heating power source for too long, it may cause damage to the sensor due to overheating.
This is because if the heating time is too short, it is difficult to obtain sufficient effects.

因みに、上述の如き構造とされた空燃比検出器を、自動
車用の2000ccガソリンエンジンに装着し、エンジ
ンを常温より始動すると同時に、ヒータエレメント32
に対して、始動初期の10秒間だけ加熱電源46を接続
し、その後、定格電源44を接続せしめた場合の、検知
部10における加熱状況を実測した。なお、かかる測定
に際し、検知部10の温度は、第一の電極22と第二の
電極24との対向面間に位置する部位(第1図中、a部
)について測定した。そして、その結果が、第2図に示
されている。また、かかる測定と同時に、始動初期から
連続して、定格電源44乃至は加熱電源46のみを、ヒ
ータエレメント32に対して接続せしめた場合の、検知
部10における加熱状況を実測し、その結果を、比較例
として、第2図に併せ示した。
Incidentally, an air-fuel ratio detector having the above-described structure is installed in a 2000cc automobile gasoline engine, and at the same time when the engine is started from room temperature, the heater element 32
In contrast, the heating situation in the detection unit 10 was actually measured when the heating power source 46 was connected for 10 seconds at the beginning of startup, and then the rated power source 44 was connected. In this measurement, the temperature of the detection unit 10 was measured at a portion located between the facing surfaces of the first electrode 22 and the second electrode 24 (section a in FIG. 1). The results are shown in FIG. In addition, at the same time as this measurement, we actually measured the heating status in the detection unit 10 when only the rated power source 44 or the heating power source 46 was connected to the heater element 32 continuously from the initial stage of startup, and reported the results. , is also shown in FIG. 2 as a comparative example.

かかる実測結果からも明らかなように、上述の如き、ヒ
ータエレメント32に対して電圧を供給する外部電源3
4が、定格電源44と加熱電源46とに切り換えられ得
る構造とされた空燃比検出器にあっては、従来の、ヒー
タエレメント(32)に対して定格電圧のみが供給され
る構造のものに比して、酸素濃度検知部10の過熱を防
止しつつ、該検知部10を、測定可能な温度まで加熱す
るに必要な暖機時間が有利に短縮され得るのである。
As is clear from these actual measurement results, the external power supply 3 that supplies voltage to the heater element 32 as described above
4 is an air-fuel ratio detector having a structure that can be switched between the rated power source 44 and the heating power source 46, compared to the conventional one having a structure in which only the rated voltage is supplied to the heater element (32). In comparison, the warm-up time required to heat the oxygen concentration detection section 10 to a measurable temperature can be advantageously shortened while preventing the oxygen concentration detection section 10 from overheating.

そして、それによって、低温状態からの始動時における
空燃比の構出に際しても、速やかに、安定な出力を得る
ことができるのであり、以て内燃機関の制御も良好に為
され得ることとなるのである。
As a result, even when setting the air-fuel ratio when starting from a low temperature state, stable output can be obtained quickly and the internal combustion engine can be controlled well. be.

また、上述の如き空燃比検出器においては、空3 4 燃比の検出を、ヒータエレメント32に対して接続され
る外部電源34が、定格電源44に切り換えられた後に
行なうようにすることによって、始動初期における不安
定な出力の除去が、容易に且つ有効に為され得るといっ
た利点をも有しているjのである。
Furthermore, in the air-fuel ratio detector as described above, the air-fuel ratio is detected after the external power supply 34 connected to the heater element 32 is switched to the rated power supply 44, thereby making it possible to detect the air-fuel ratio at startup. It also has the advantage that initially unstable output can be removed easily and effectively.

そして、特に、酸素濃度検出手段としての電気化学的セ
ンシングセルと共に、電気化学的ボンピングセルを含む
ダブルセル型の空燃比検出器においては、従来、装置が
大型化するために加熱に長時間を要することに加えて、
かかるボンピングセル6に対して電流通電を無理なく行
なうためには、固体電解質体12が一定温度以上(一般
に、600°C以上)となっていることが必要であるた
めに、低温な始動初期には出力が不安定となり易いとい
う、不利な点を有していたのであるが、上述の如く、ヒ
ータエレメント32に対して接続される外部電源34を
切り換えることによって、それらの問題が、極めて有効
に軽減乃至は解消され得ることとなるのである。
In particular, in double-cell air-fuel ratio detectors that include an electrochemical sensing cell as an oxygen concentration detection means and an electrochemical bombing cell, conventionally, the device is large and requires a long time to heat. In addition,
In order to easily apply current to the bombing cell 6, it is necessary for the solid electrolyte body 12 to be at a certain temperature or higher (generally 600°C or higher). However, as mentioned above, by switching the external power supply 34 connected to the heater element 32, these problems can be alleviated very effectively. Or, it can be resolved.

なお、−ト記実施例における空燃比検出器の説明では、
その具体的な説明は行なわなかったが、電気化学的ボン
ピングセル6を有しない酸素センザ構造からなる加熱型
空燃比検出器に対しても、本発明は、有利に適用され得
るものである。
In addition, in the explanation of the air-fuel ratio detector in the embodiment described in (G),
Although not specifically described, the present invention can also be advantageously applied to a heated air-fuel ratio detector having an oxygen sensor structure without the electrochemical pumping cell 6.

また、酸素濃度検知部を構成する酸素濃度検出手段の構
造としても、例示の如き濃淡電池型のものの他、酸化物
半導体型のものや、或いは限界電流型のもの等、公知の
各種構造のものが、何れも採用可能である。
In addition, the structure of the oxygen concentration detection means constituting the oxygen concentration detection section may be of various known structures, such as a concentration cell type as illustrated, an oxide semiconductor type, or a limiting current type. However, any of them can be adopted.

さらに、前記実施例では、自動車用ガソリンエンジンに
用いられる空燃比検出器を参照しつつ、説明を行なった
ことから、加熱電源46として、自動車用バッテリー電
源として通常用いられる12■電源が用いられていたが
、かかる加熱電源46の電圧は、特に限定されるもので
はない。
Furthermore, since the above embodiment has been described with reference to an air-fuel ratio detector used in an automobile gasoline engine, the heating power source 46 is a 12-inch power source that is normally used as an automobile battery power source. However, the voltage of the heating power source 46 is not particularly limited.

そして、かかる加熱電源46の電圧や、加熱電源46か
ら定格電源44に切り換えるまでの時間は、要求される
空燃比検出器の性能等に応じて、適宜室められるもので
あって、例えば、酸素濃度5 6 検知部における良好な計測が可能な温度にまで至らない
時間で、加熱電源から定格電源に切り換えるような制御
も可能である。
The voltage of the heating power source 46 and the time required to switch from the heating power source 46 to the rated power source 44 are determined as appropriate depending on the required performance of the air-fuel ratio detector, etc. It is also possible to perform control such that the heating power source is switched to the rated power source before the temperature reaches a temperature that allows good measurement in the concentration 5 6 detection unit.

また、酸素濃度検知部10の温度或いは酸素濃度検知部
10が晒されている雰囲気温度を直接又は間接的に検知
する手段、例えば加熱型空燃比検出器のヒーク抵抗、エ
ンジンの水温乃至は油温、機関回転数、バッテリ電圧、
吸入空気温度等により、定格電圧より高い電圧を供給す
る所定時間を決定或いは計測し、例えば高温下の始動時
には、初期から定格電圧のみの給電が行なわれるように
することによって、かかる検知部10の過熱を防止する
ことも可能である。
In addition, means for directly or indirectly detecting the temperature of the oxygen concentration detection section 10 or the temperature of the atmosphere to which the oxygen concentration detection section 10 is exposed, such as the heat resistance of a heated air-fuel ratio detector, the water temperature or oil temperature of the engine, may be used. , engine speed, battery voltage,
By determining or measuring a predetermined time for supplying a voltage higher than the rated voltage based on the intake air temperature, etc., and ensuring that only the rated voltage is supplied from the beginning when starting under high temperature, for example, the detection unit 10 can be It is also possible to prevent overheating.

加えて、前記具体例では、本発明を、自動車用エンジン
の制御用に用いられる空燃比検出器に対して適用したも
のの一例を示したが、その他、本発明は、各種工業用炉
等における燃焼排ガス中の酸“素濃度を検出することに
より、空燃比を測定する空燃比検出器についても、有利
に適用され得ることは、勿論である。
In addition, although the above specific example shows an example in which the present invention is applied to an air-fuel ratio detector used for controlling an automobile engine, the present invention is also applicable to combustion in various industrial furnaces, etc. Of course, the present invention can also be advantageously applied to an air-fuel ratio detector that measures the air-fuel ratio by detecting the oxygen concentration in exhaust gas.

以上、本発明の一具体例に基づいて、本発明の構成を詳
述してきたが、本発明は、かかる具体例および上記具体
的記載にのみ限定して解釈されるものでは決してなく、
本発明の趣旨を逸脱しない限りにおいて、当業者の知識
に基づき、種々なる変更、修正、改良等を加えた態様に
おいて実施され得るものであり、またそのような実施態
様が、本発明の趣旨を逸脱しない限り、何れも、本発明
の範囲内に含まれるものであることは、言うまでもない
ところである。
Although the configuration of the present invention has been described above in detail based on one specific example of the present invention, the present invention is by no means to be interpreted as being limited only to such specific example and the above specific description.
Without departing from the spirit of the present invention, the present invention may be implemented with various changes, modifications, improvements, etc. based on the knowledge of those skilled in the art, and such embodiments may overcome the spirit of the present invention. It goes without saying that all of these are included within the scope of the present invention as long as they do not deviate from them.

(発明の効果) 上述の説明から明らかなように、本発明に従う空燃比検
出器にあっては、始動初期における酸素濃度検知部の加
熱が、発熱体に対して、定格電圧よりも大きな電圧を、
所定時間だけ供給することによって行なわれるところか
ら、その過熱を防止しつつ、安定した測定が可能な所定
温度までの加熱に要する時間が有利に短縮され得るので
あり、それによって検出器の応答性および始動初期にお
ける出力の安定性が、共に有利に向上され得るこ7 8 ととなるのである。
(Effects of the Invention) As is clear from the above description, in the air-fuel ratio detector according to the present invention, heating of the oxygen concentration detection section at the initial stage of startup causes a voltage higher than the rated voltage to be applied to the heating element. ,
Since this is done by supplying electricity for a predetermined period of time, the time required to heat up to a predetermined temperature that allows stable measurements can be advantageously shortened while preventing overheating, thereby improving the responsiveness of the detector and The stability of the output at the initial stage of startup can also be advantageously improved.

また、酸素濃度を検出するセンシングセルと共に、酸素
ポンピングセルを備えたダブルセル型の空燃比検出器に
対して、本発明を適用することによって、従来、そのよ
うなダブルセル型の空燃比検出器で問題とされていた、
大型であるが故に必要とされる長い加熱時間や、或いは
始動初期における酸素ポンピングセルへの通電性不良故
に惹起される出力の不安定さが、何れも有効に軽減乃至
は解消され得ることとなるのである。
Furthermore, by applying the present invention to a double-cell type air-fuel ratio detector that is equipped with an oxygen pumping cell as well as a sensing cell that detects oxygen concentration, it is possible to solve the problems that conventionally existed with such double-cell type air-fuel ratio detectors. It was said that
It is possible to effectively reduce or eliminate the long heating time required due to the large size, or the instability of output caused by poor conductivity to the oxygen pumping cell at the initial stage of startup. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従う加熱型空燃比検出器の一実施例
を示す概略系統図である。また、第2図は、第1図に示
されている如き構造の加熱型空燃比検出器を用いて、ガ
ソリンエンジンの空燃比を測定した際の、始動初期にお
ける検知部の加熱状態を実測した結果を、比較例と共に
示すグラフである。 6:電気化学的ポンピングセル 9 電気化学的センシングセル 検知部      12:固体電解質体平坦空間   
  16:ガス導入孔 被測定ガス存在空間 空気通路     22 第二の電極    26 第四の電極    30 ヒータエレメント 34 定格電源     46 切換機構     50 第一の電極 第三の電極 セラミックス層 外部電源 加熱電源 制御機構
FIG. 1 is a schematic system diagram showing one embodiment of a heated air-fuel ratio detector according to the present invention. In addition, Figure 2 shows the actual heating state of the detection part at the initial stage of startup when measuring the air-fuel ratio of a gasoline engine using a heated air-fuel ratio detector having the structure shown in Figure 1. It is a graph showing the results together with comparative examples. 6: Electrochemical pumping cell 9 Electrochemical sensing cell detection section 12: Solid electrolyte body flat space
16: Gas introduction hole Measured gas presence space Air passage 22 Second electrode 26 Fourth electrode 30 Heater element 34 Rated power supply 46 Switching mechanism 50 First electrode Third electrode Ceramic layer External power supply Heating power supply control mechanism

Claims (2)

【特許請求の範囲】[Claims] (1)燃焼排ガス中の酸素濃度を検知する酸素濃度検知
部と、外部からの給電によって該検知部を加熱する発熱
体とを有する加熱型空燃比検出器において、 始動直後の所定時間、前記検知部を所定温度に保持する
ために必要とされる定格電圧よりも高い電圧を、前記発
熱体に対して供給する給電手段を設けたことを特徴とす
る加熱型空燃比検出器。
(1) In a heated air-fuel ratio detector that includes an oxygen concentration detection section that detects the oxygen concentration in combustion exhaust gas and a heating element that heats the detection section by external power supply, the detection is performed for a predetermined period of time immediately after startup. A heating type air-fuel ratio detector, characterized in that a heating type air-fuel ratio detector is provided with a power supply means for supplying a voltage higher than a rated voltage required for maintaining the heating element at a predetermined temperature to the heating element.
(2)前記酸素濃度検知部が、前記燃焼排ガスを所定の
ガス拡散抵抗の下に導く拡散抵抗手段と、該拡散抵抗手
段を介して導かれた燃焼排ガス中の酸素濃度を検出する
酸素濃度検出手段と、該酸素濃度検出手段による検出値
に基づいて、かかる拡散抵抗手段を介して導かれた燃焼
排ガス中の酸素濃度を制御する酸素ポンプ手段とを含ん
で構成されている請求項(1)記載の加熱型空燃比検出
器。
(2) The oxygen concentration detection unit includes a diffusion resistance means for guiding the combustion exhaust gas under a predetermined gas diffusion resistance, and oxygen concentration detection for detecting the oxygen concentration in the combustion exhaust gas guided through the diffusion resistance means. Claim (1) comprising means for controlling the oxygen concentration in the combustion exhaust gas guided through the diffusion resistance means based on the detected value by the oxygen concentration detection means. The heated air-fuel ratio detector described.
JP1277875A 1989-10-25 1989-10-25 Heat type air/fuel ratio detector Pending JPH03138560A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1277875A JPH03138560A (en) 1989-10-25 1989-10-25 Heat type air/fuel ratio detector
DE19904033667 DE4033667A1 (en) 1989-10-25 1990-10-23 Oxygen concn. sensor for gas mixt. has heater - operable at two different potentials to minimise preparation time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277875A JPH03138560A (en) 1989-10-25 1989-10-25 Heat type air/fuel ratio detector

Publications (1)

Publication Number Publication Date
JPH03138560A true JPH03138560A (en) 1991-06-12

Family

ID=17589505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277875A Pending JPH03138560A (en) 1989-10-25 1989-10-25 Heat type air/fuel ratio detector

Country Status (2)

Country Link
JP (1) JPH03138560A (en)
DE (1) DE4033667A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069140A (en) * 2007-08-23 2009-04-02 Ngk Spark Plug Co Ltd Gas sensor control apparatus
JP2009529691A (en) * 2006-03-16 2009-08-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for operating gas sensor
JP2009248836A (en) * 2008-04-09 2009-10-29 Catis Pacific Mfg Corp Ltd Caster with double footboards
CN101893597A (en) * 2009-05-22 2010-11-24 罗伯特.博世有限公司 Be used to regulate the method for processes sensor element
WO2014185815A1 (en) * 2013-10-08 2014-11-20 Rassomagin Vasily Radionovich Method for measuring the flow rate of a liquid medium and device for implementing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513490A1 (en) * 1995-04-14 1996-10-17 Roth Technik Gmbh Heatable gas component concentration sensor for motor vehicle exhausts
DE102005020363A1 (en) * 2005-05-02 2006-11-16 Robert Bosch Gmbh Device and method for operating a sensor for gases, in particular a lambda probe
DE102008038583B4 (en) 2007-08-23 2024-02-08 Ngk Spark Plug Co., Ltd. Gas sensor control device with two resistance setpoints to shorten the activation time of the gas sensor element
DE102011080717A1 (en) * 2011-08-10 2013-02-14 Robert Bosch Gmbh Apparatus for operating a heater of a gas sensor, method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883241A (en) * 1981-11-13 1983-05-19 Nissan Motor Co Ltd Controller for heater containing oxygen concentration sensor
JPS62179655A (en) * 1986-02-01 1987-08-06 Ngk Insulators Ltd Method and apparatus for detecting air/fuel ratio

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2913866A1 (en) * 1979-04-06 1980-10-23 Bosch Gmbh Robert MEASURING PROBE FOR DETERMINING COMPONENTS IN FLOWING GASES
DE8101584U1 (en) * 1981-01-23 1981-06-25 Robert Bosch Gmbh, 7000 Stuttgart "ELECTROCHEMICAL PROBE FOR DETERMINING THE OXYGEN CONTENT IN GASES"
NZ199685A (en) * 1981-02-18 1985-04-30 Micropore International Ltd Cooker element with temperature warning indication
JPS59190652A (en) * 1983-04-12 1984-10-29 Mitsubishi Electric Corp Rich-burn sensor
DE3334434A1 (en) * 1983-09-23 1985-04-11 I.G. Bauerhin GmbH elektro-technische Fabrik, 6466 Gründau Heating cushions having two heating circuits for switching stages I-III

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883241A (en) * 1981-11-13 1983-05-19 Nissan Motor Co Ltd Controller for heater containing oxygen concentration sensor
JPS62179655A (en) * 1986-02-01 1987-08-06 Ngk Insulators Ltd Method and apparatus for detecting air/fuel ratio

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529691A (en) * 2006-03-16 2009-08-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for operating gas sensor
KR101104445B1 (en) * 2006-03-16 2012-01-12 로베르트 보쉬 게엠베하 Method and apparatus for operating sensor
US8201993B2 (en) 2006-03-16 2012-06-19 Robert Bosch Gmbh Method for operating a gas sensor
JP2009069140A (en) * 2007-08-23 2009-04-02 Ngk Spark Plug Co Ltd Gas sensor control apparatus
JP2009248836A (en) * 2008-04-09 2009-10-29 Catis Pacific Mfg Corp Ltd Caster with double footboards
CN101893597A (en) * 2009-05-22 2010-11-24 罗伯特.博世有限公司 Be used to regulate the method for processes sensor element
CN101893597B (en) * 2009-05-22 2014-10-22 罗伯特.博世有限公司 Method for conditioning sensor element
WO2014185815A1 (en) * 2013-10-08 2014-11-20 Rassomagin Vasily Radionovich Method for measuring the flow rate of a liquid medium and device for implementing same

Also Published As

Publication number Publication date
DE4033667C2 (en) 1993-03-04
DE4033667A1 (en) 1991-05-02

Similar Documents

Publication Publication Date Title
US4359030A (en) System for feedback control of air/fuel ratio in IC engine with means to control supply of current to oxygen sensor
JP3760558B2 (en) Oxygen sensor heater control device
JP2004069547A (en) Control device of air/fuel ratio sensor
US20090084677A1 (en) Gas sensor control apparatus
JP2020008558A (en) Gas sensor
JP2002071633A (en) Heater control device for air-fuel ratio sensor
JP3800068B2 (en) Gas concentration sensor heater control device
JP4410881B2 (en) Temperature adjustment method for measurement sensor
US4721084A (en) Method for controlling an oxygen concentration sensor for sensing an oxygen concentration in an exhaust gas of an internal combustion engine
JPH03138560A (en) Heat type air/fuel ratio detector
US20150293053A1 (en) Gas sensor control device
JP5021601B2 (en) Gas sensor system
JP2000227364A (en) Exhaust gas temperature measuring apparatus
CN111024796B (en) Gas sensor
JPS60239664A (en) Heating apparatus of oxygen sensor
JP4228488B2 (en) Gas concentration sensor heater control device
JPH11344466A (en) Heater control device of gas concentration sensor
JP2001133429A (en) Method for recalibrating offset of onboard nox sensor
CN116490771A (en) Gas sensor
JP2002250710A (en) Method for diagnosing abnormality of gas concentration sensor
JP7194555B2 (en) gas sensor
JPH07119740B2 (en) Temperature controller for oxygen concentration sensor
JP6805072B2 (en) Gas concentration detector
JP2004205357A (en) Detection method of gas concentration
JP5502041B2 (en) Gas sensor control device and gas sensor control method