JPH03138383A - Method and device for plasma treatment - Google Patents

Method and device for plasma treatment

Info

Publication number
JPH03138383A
JPH03138383A JP27587489A JP27587489A JPH03138383A JP H03138383 A JPH03138383 A JP H03138383A JP 27587489 A JP27587489 A JP 27587489A JP 27587489 A JP27587489 A JP 27587489A JP H03138383 A JPH03138383 A JP H03138383A
Authority
JP
Japan
Prior art keywords
sample
temperature
plasma
temp
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27587489A
Other languages
Japanese (ja)
Other versions
JP2796377B2 (en
Inventor
Yutaka Kakehi
掛樋 豊
Yoichi Ito
陽一 伊藤
Ryoji Fukuyama
良次 福山
Tsunehiko Tsubone
恒彦 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17561641&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03138383(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27587489A priority Critical patent/JP2796377B2/en
Publication of JPH03138383A publication Critical patent/JPH03138383A/en
Application granted granted Critical
Publication of JP2796377B2 publication Critical patent/JP2796377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To subject a sample to a plasma etching treatment with high accuracy by providing a heating means and cooling device on the sample base of the plasma etching device and maintaining the sample under treatment at a specified temp. CONSTITUTION:A passage 10 for passing a refrigerant from a refrigerant supplying device 11 is provided on the sample base 2 in a treating chamber 1 and a heater 14 connected to a power source 15 is built therein. The sample 8 to be etched is mounted on the treating base 2 and after the inside of the treating chamber 1 is evacuated to a vacuum, treating gases are supplied to the chamber and a high frequency electric power is supplied from a high frequency power source 9 to generate an electric discharge and plasma, by which the surface of the sample 8 is etched with the plasma. The temp. of the sample 8 in contact with the sample base 2 is measured by a sensor 16 during the cooling of the sample base 2 by the refrigerant in this case and the discharge is started and the etching is started at the point of the time when the prescribed temp. is attained. The temp. of the sample is measured by a sensor 16 at all times during the etching treatment and is inputted to a controller 17 which turns on and off the heater power source 15 and corrects the temp. drop by the refrigerant by the heater 14. The etching treatment is thus executed at always the specified temp. so that the etching with the high accuracy is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ処理方法および装置に係り、特に、試
料を低温に冷却して処理するのに好適なプラズマ処理方
法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma processing method and apparatus, and particularly to a plasma processing method and apparatus suitable for processing a sample by cooling it to a low temperature.

〔従来の技術〕[Conventional technology]

従来、試料を水温以下の低温に冷却して処理するものと
して、例えば、特開昭63−110726号公報に記載
のように、冷却試料台に設けられたヒータと液体窒素冷
媒とを用いて加温と冷却とを行ない、冷却試料台に設け
た熱伝対の出方によりこれらを145IL、て、被エブ
チング物の温度を制御し、処理するものがあった。
Conventionally, samples have been processed by cooling them to a low temperature below water temperature. There is a method that heats and cools the object to be etched and processes it by controlling the temperature of the object to be etched using a thermocouple installed on a cooling sample stand.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はプラズマ処理中の試料の温度を一定に保
つ点について充分配慮されておらず、ブラズマな発生さ
せてからの初期時に温度変化が生じ、高精度の処理が行
なえないという問題があった。すなわち、所定の低温に
冷却された試料台に試料を配置して、試例の温度が充分
に下がってほぼ試料台温度と同じになった時点で放電を
開始し、試料のプラズマ処理を始めると、処理の初期段
階ではプラズマから試料に入熱力があり、試料温度が上
昇する。その後は、試料台の加熱、冷却を調整して試料
温度を所定温度に一定に保つことができる。このように
、放電の開始時には一時的に試料温度が変化するので、
処理中の反応が変わり高精度の処理が行なえないという
問題があった。
The above conventional technology does not give sufficient consideration to keeping the temperature of the sample constant during plasma processing, and there is a problem that temperature changes occur in the initial stage after plasma generation, making it impossible to perform high-precision processing. . In other words, a sample is placed on a sample stage that has been cooled to a predetermined low temperature, and when the temperature of the sample has dropped sufficiently and is almost the same as the sample stage temperature, discharge is started and plasma processing of the sample begins. In the early stages of processing, there is heat input from the plasma to the sample, causing the sample temperature to rise. Thereafter, the sample temperature can be kept constant at a predetermined temperature by adjusting the heating and cooling of the sample stage. In this way, the sample temperature changes temporarily at the start of the discharge, so
There was a problem in that the reaction during processing changed, making it impossible to perform highly accurate processing.

本発明の目的は、プラズマ処理中の試料温度を一定に保
ち、高精度の処理が行なえるプラズマ処理方法および装
置を提供することにある。
An object of the present invention is to provide a plasma processing method and apparatus that can maintain a constant sample temperature during plasma processing and perform highly accurate processing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、処理室内に設けられ低温に冷却される試料
台と、試料台に試料を配置する手段と、試料台に配置さ
れた試料の温度降下途中で処理室内にプラズマを発生さ
せる手段とを具備した*!1とじ、低温に冷却された試
料台に試料を配置する工程と、試料台の低温熱により試
料が冷却され温度降下している途中に放電を開始する工
程とを有する方法とすることにより、達成される。
The above purpose is to provide a sample stage installed in a processing chamber and cooled to a low temperature, a means for placing a sample on the sample stage, and a means for generating plasma in the processing chamber while the temperature of the sample placed on the sample stage is decreasing. Equipped*! This is achieved by using a method that includes the steps of placing the sample on a sample stand cooled to a low temperature, and starting electric discharge while the sample is being cooled by the low-temperature heat of the sample stand and its temperature is decreasing. be done.

〔作  用〕[For production]

低温に冷却された試料台に試料を配置して、試料の温度
が降下している途中に放電を開始させる。
A sample is placed on a sample stage cooled to a low temperature, and discharge is started while the temperature of the sample is decreasing.

これにより、試料はプラズマから熱を受けるが、試料は
まで試料台の低温熱による冷却段歯にあり、この入熱と
冷却(放熱)がバランスして放電開始時の試料温度が一
定に保てるので、試料処理中の初めから終わりまで試料
温度を一定に保つことができ、高精度の処理を行なうこ
とができる。
As a result, the sample receives heat from the plasma, but the sample is still in the cooling stage due to the low-temperature heat of the sample stage, and this heat input and cooling (heat radiation) are balanced and the sample temperature at the start of discharge can be kept constant. The sample temperature can be kept constant from the beginning to the end during sample processing, and highly accurate processing can be performed.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図ないし第3図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第2図にプラズマ処理装置として、この場合、マイクロ
波プラズマエツチング装置を示す。該装置は次のように
構成されている。処理室l内に試料台2を設け、処理室
!上部に放電管3を設け、処理室lと放電管3とで囲ま
れた空間内に図示を省略した処理ガス供給装置から処理
ガスを供給され、また、図示を省略した真空排気装置に
より真空排気されるようになっている。放電管3の外周
には導波管4が設けられ、導波管4の端部にはマイクロ
波発振器5が設けてあり、マイクロ波発振器5は制御装
fi17によってON・OFF制御される。放電管3に
対応して導波管4のさらに外周には磁場発生用コイル6
が設けられ、放電管3内に磁場を発生可能となっている
。磁場発生用コイル6につながるコイル電波7は制御装
置[17によってON・OFF制御される。
FIG. 2 shows a plasma processing apparatus, in this case a microwave plasma etching apparatus. The device is constructed as follows. A sample stage 2 is installed in the processing chamber l, and the processing chamber! A discharge tube 3 is provided in the upper part, and a processing gas is supplied from a processing gas supply device (not shown) into the space surrounded by the processing chamber 1 and the discharge tube 3, and is evacuated by a vacuum exhaust device (not shown). It is now possible to do so. A waveguide 4 is provided around the outer periphery of the discharge tube 3, and a microwave oscillator 5 is provided at the end of the waveguide 4, and the microwave oscillator 5 is ON/OFF controlled by a control device fi17. A magnetic field generating coil 6 is provided on the outer periphery of the waveguide 4 in correspondence with the discharge tube 3.
is provided so that a magnetic field can be generated within the discharge tube 3. The coil radio waves 7 connected to the magnetic field generating coil 6 are ON/OFF controlled by a control device [17].

試料台2上部には試料8を配置可能で、図示を省略した
保持手段によって試料8を保持可能になっている。保持
手段としては、例えば、試料8の外周を押えるクランプ
や試料8を全面的に吸着する静電チャック等がある。試
料台8には高周波電源9が接続してあり、プラズマ中の
イオンを引き込んで異方性のエツチングが可能にしであ
る。試料台2内には冷媒流路10を設け、冷媒流jI!
110に冷媒供給装置11を接続して試料台2を低温に
冷却可能にしである。試料台2の試料配置面と冷媒流路
lOとの間にはヒータ14を設け、ヒータ14によって
試料台2を加温可能にしである。ヒータ14につながる
ヒータ劃15は制御装置17によってON・OFF制御
および加熱量調整制御される。温度センサ16が、この
場合、試料8の裏面に当接するように試料台2に設けら
れ、温度センサ16の信号は制御装7117に入力され
る。この場合、試料8の中央に位置するように試料台2
の中心に伝熱ガス供給路化を設け、伝熱ガス供給j21
12に伝熱ガス供給装5113を接続して、試料8裏面
と試料台2との間隙に伝熱ガス、例えば、Heガスを供
給可能になっている。
A sample 8 can be placed on the upper part of the sample stage 2, and can be held by a holding means (not shown). Examples of the holding means include a clamp that holds down the outer periphery of the sample 8, an electrostatic chuck that attracts the entire surface of the sample 8, and the like. A high frequency power source 9 is connected to the sample stage 8, and draws in ions in the plasma to enable anisotropic etching. A refrigerant flow path 10 is provided in the sample stage 2, and the refrigerant flow jI!
A coolant supply device 11 is connected to 110 so that the sample stage 2 can be cooled to a low temperature. A heater 14 is provided between the sample placement surface of the sample stage 2 and the coolant flow path lO, so that the sample stage 2 can be heated by the heater 14. A heater section 15 connected to the heater 14 is controlled to be turned on and off and to adjust the amount of heating by a control device 17. In this case, the temperature sensor 16 is provided on the sample stage 2 so as to be in contact with the back surface of the sample 8, and the signal from the temperature sensor 16 is input to the control device 7117. In this case, the sample stage 2 should be positioned at the center of the sample 8.
A heat transfer gas supply channel is installed in the center of the heat transfer gas supply j21.
A heat transfer gas supply device 5113 is connected to 12 so that heat transfer gas, for example, He gas, can be supplied to the gap between the back surface of the sample 8 and the sample stage 2.

制御装置j17は、図示を省略した搬送手段によって試
料台2に試料8が配置された後、伝熱ガス供給!113
に指令を出して試料8裏面に伝熱ガスを供給し、例えば
、試料8の試料台2への配置わら所定時間経過したらマ
イクロ波発振器5およびコイル電源7に指令を出して、
放電管3内にブラズマを発生させる。ま−た、このとき
所定時間の経過ではなくて、温度センサ16からの試料
8の温度の信号を受けて、所定温度になったらマイクロ
波発振n5およびコイル電源7に指令を出して、放電管
3内にプラズマを発生させるようにしても良い。
After the sample 8 is placed on the sample stage 2 by a transport means (not shown), the control device j17 supplies heat transfer gas! 113
A command is issued to supply a heat transfer gas to the back surface of the sample 8, and, for example, after a predetermined period of time has elapsed after the sample 8 has been placed on the sample stage 2, a command is issued to the microwave oscillator 5 and the coil power supply 7,
Plasma is generated within the discharge tube 3. Also, at this time, instead of receiving a signal of the temperature of the sample 8 from the temperature sensor 16, the command is sent to the microwave oscillator n5 and the coil power source 7 when the temperature reaches the predetermined temperature, not when a predetermined time has elapsed. Plasma may be generated within 3.

また、制御装置i17は、温度センサ16からの信号に
よってヒータ劃15を制御してヒータ14による加温1
1整、または、伝熱ガス供給装F!1113を制御して
伝熱ガスの供給圧力を調整し、試料8に伝わる低温の熱
量なt14整可能となっている。
Further, the control device i17 controls the heater 15 based on the signal from the temperature sensor 16 to perform heating by the heater 14.
1, or heat transfer gas supply equipment F! 1113 to adjust the supply pressure of the heat transfer gas, the amount of low-temperature heat transmitted to the sample 8 can be adjusted t14.

制御装置17によりプラズマを発生させるタイミングは
、第1図に示す1点で行なう。
The timing at which plasma is generated by the control device 17 is determined at one point shown in FIG.

第1図は、試料台2に配置された試料8の温度変化を示
す図で、実線は本実施例の試料温度曲線を示す。点線は
試料の温度が試料台温度とほぼ等しくなって放電を開始
したときの試料温度曲線を示す。
FIG. 1 is a diagram showing the temperature change of the sample 8 placed on the sample stage 2, and the solid line shows the sample temperature curve of this example. The dotted line shows the sample temperature curve when the sample temperature becomes approximately equal to the sample stage temperature and discharge starts.

点線で示されたように。試料温度は試料台に配置される
とある一定時間tz(試料台2と試料8との間の熱通過
率によって異なる)で試料台温度に近づく。この後に、
エツチング処理のための放電を開始すると、試料温度は
プラズマからの入熱量Qと熱抵抗Rとから定まる温度Δ
T−Q−R分上昇する。このため、放電を開始してから
その後の試料温度は変化し、常に一定とはならない。な
お、この場合の設定条件は、配置前の試料温度=20℃
、試料台温度ニー196℃、試料の熱容量:870J/
d−に1人熱量:5682W/m’(100W/64 
ンf’)、ハ)、熱通過率:123.3W/ゴ・Kであ
る。この条件における放電開始点す。
as indicated by the dotted line. When the sample is placed on the sample stand, the temperature of the sample approaches the sample stand temperature after a certain period of time tz (which varies depending on the heat transfer rate between the sample stand 2 and the sample 8). After this,
When the discharge for etching treatment starts, the sample temperature becomes Δ, which is determined from the heat input Q from the plasma and the thermal resistance R.
Increase by T-QR. For this reason, the sample temperature changes after the start of discharge and is not always constant. In this case, the setting conditions are: sample temperature before placement = 20°C
, sample stage temperature knee 196℃, sample heat capacity: 870J/
Heat energy per person in d-: 5682W/m' (100W/64
f'), c), heat transfer rate: 123.3 W/G·K. The discharge starting point under this condition is

すなわち、時間t2は24秒であった。That is, time t2 was 24 seconds.

また、実線で示したように、放電によって受ける温度上
昇分△Tをあらかじめ考慮し、試料温度が、この場合、
−150℃に達した時点で放電を開始させると、プラズ
マからの入熱量と試料台への放出熱量とが鈎り合い、−
150”Cの一定温度に保つことができる。この場合の
放電開始点1、すなわち、時間t1は10.5秒であっ
た。
In addition, as shown by the solid line, taking into consideration the temperature rise △T caused by the discharge, the sample temperature in this case is
When the discharge is started when the temperature reaches -150℃, the amount of heat input from the plasma and the amount of heat released to the sample stage are combined, and -
The temperature can be maintained at a constant temperature of 150''C. In this case, the discharge start point 1, that is, the time t1, was 10.5 seconds.

このように、試料の冷却途中で放電を開始させることに
よって、試料への入熱と試料からの放熱をバランスさせ
ることができるので、試料の温度を一定に保つことが可
能となる。
In this way, by starting the discharge during the cooling of the sample, it is possible to balance the heat input to the sample and the heat dissipated from the sample, making it possible to keep the temperature of the sample constant.

なお、この場合の例では、試料の冷却温度を一150℃
で一定に保ったが、試料の設定温度を変えたい場合には
、ヒータ14で試料台2の温度を変えるか、または、伝
熱ガスのガス圧力を変えて熱通過率を変えることによっ
て行なえる。
In this case, the cooling temperature of the sample is -150℃.
However, if you want to change the set temperature of the sample, you can do so by changing the temperature of the sample stage 2 with the heater 14 or by changing the gas pressure of the heat transfer gas to change the heat transfer rate. .

上記構成の装置において、あらかじめ放電開始の1点の
時間tl、すなわち、試料を試料台に配置してからの時
間を求めておけば、制御値[17によって時間管理をし
、放電を発生させるという簡単な制御で、試料温度を一
定に保つことができる。
In the apparatus with the above configuration, if the time tl at one point of discharge start, that is, the time from when the sample is placed on the sample stage, is determined in advance, the time can be managed using the control value [17] and the discharge can be generated. Sample temperature can be kept constant with simple control.

また、あらかじめ放電開始の1点の試料温度を求めてお
けば、温度センサ16からの信号を入力して制御値[1
7によって温度管理をし、放電を発生させれば、さらに
精度良く試料温度を一定に保つことができる。
Moreover, if the sample temperature at one point at the start of discharge is determined in advance, the signal from the temperature sensor 16 can be input to control the control value [1
If the temperature is controlled by 7 and a discharge is generated, the sample temperature can be kept constant with even higher accuracy.

なお、試料8と試料台2との接触には不安定な要素があ
り、熱抵抗は試料の配置毎にいくらかのばらつきが生じ
る恐れがある。このため、試料温度を検出してフィード
バック制御を加えることにより、さらに優れた温度制御
が可能となる。この場合の制御系の具体例を第3図(a
)ないしくd)に示す。
Note that there is an unstable element in the contact between the sample 8 and the sample stage 2, and there is a possibility that the thermal resistance will vary to some extent depending on the placement of the sample. Therefore, by detecting the sample temperature and adding feedback control, even more excellent temperature control becomes possible. A specific example of the control system in this case is shown in Figure 3 (a
) or d).

第4図(1)は、試料温度を検出し、伝熱ガス供給装置
j13に含まれている流量制御弁(NFC)により、試
料裏面に供給する伝熱ガスの流量を調整して圧力を制御
するものである。第4図(b)は、伝熱ガスの圧力を検
出し、該圧力を制御するものである。第4図(C)は、
試料温度を検出し、ヒータを調整して試料温度を制御す
るものである。第4図(d)は、試料台温度を検出し、
ヒータを調整して試料台温度を制御するものである。(
b)および(d)に関しては、試料の温度と伝熱ガスま
たは試料台温度との関係を求めておく必要がある。
Figure 4 (1) shows how the sample temperature is detected and the pressure is controlled by adjusting the flow rate of the heat transfer gas supplied to the back surface of the sample using the flow control valve (NFC) included in the heat transfer gas supply device j13. It is something to do. FIG. 4(b) detects the pressure of heat transfer gas and controls the pressure. Figure 4 (C) is
It detects the sample temperature and controls the sample temperature by adjusting the heater. FIG. 4(d) detects the sample stage temperature,
The sample stage temperature is controlled by adjusting the heater. (
Regarding b) and (d), it is necessary to determine the relationship between the temperature of the sample and the temperature of the heat transfer gas or sample stage.

以上、本−実施例によれば、試料台に試料を配置してか
ら試料の温度が降下して行く途中で放電を開始させるの
で、プラズマからの試料への入熱量を試料から試料台へ
の放熱分とすることができ、放電を開始しても試料21
ytが上昇しないので、試料の処理の始めから終わりま
で一定の試料温度に保つことができる。これにより、処
理中の反応が常に安定、すなわち、プラズマ中のラジカ
ルと試料との反応確率が一定で、試料温度が低くければ
ラジカルの反応が小さ畷なり、イオンによる異方性エツ
チングが可能となるので、微細なエツチングも精度良く
処理が行なえるという効果がある。
As described above, according to this embodiment, since the discharge is started while the temperature of the sample is decreasing after the sample is placed on the sample stage, the amount of heat input from the plasma to the sample is reduced from the sample to the sample stage. The amount of heat dissipated can be taken as
Since yt does not increase, the sample temperature can be kept constant from the beginning to the end of sample processing. As a result, the reaction during processing is always stable, that is, the probability of reaction between radicals in the plasma and the sample is constant, and if the sample temperature is low, the reaction of radicals becomes small, making it possible to perform anisotropic etching with ions. Therefore, there is an effect that even fine etching can be processed with high precision.

なお、本−実施例はマイクロ波プラズマエ雫チングの場
合を例に述べたが、RIg等他の方式でも同様である。
Although this embodiment has been described using microwave plasma drop etching as an example, the same applies to other methods such as RIg.

また、プラズマ処理としてエツチングの場合を例に述べ
たが、CVDやスパッタ等の成層処理にも適用可能であ
る。
Furthermore, although etching has been described as an example of plasma treatment, it is also applicable to layering treatments such as CVD and sputtering.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラズマ中の試料温度を一定に保つこ
とができ、高精度の処理が行なえるという効果がある。
According to the present invention, the temperature of the sample in plasma can be kept constant, and highly accurate processing can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

181図は本発明のプラズマ処理方法を実行したときの
一実m例である試料温度の経時度化を示す図、1142
図は′s1図を実施する本発明のブラズ字処理装置の一
実施例のマイクロ波プラズマエツチング装置を示す構成
図、第3図(1)ないしくd)は第2図のMlの制御例
を示す制御系の構成図である。 1・・・・・・処理室、2・・・・・・試料台、5・・
・・・・マイクロ波発振器、6・・・・・・磁場発生コ
イル、11・・・・・・冷媒供’iti図 42目 片開(5)
Figure 181 is a diagram showing the change in sample temperature over time, which is an example of when the plasma processing method of the present invention is executed;
The figure is a block diagram showing a microwave plasma etching apparatus which is an embodiment of the braz pattern processing apparatus of the present invention that implements the 's1 diagram. FIG. 2 is a configuration diagram of a control system shown in FIG. 1...Processing chamber, 2...Sample stand, 5...
...Microwave oscillator, 6...Magnetic field generating coil, 11...Refrigerant supply Figure 42 Eyes open (5)

Claims (4)

【特許請求の範囲】[Claims] 1.低温に冷却された試料台に試料を配置する工程と、
前記試料台の低温熱により前記試料が冷却され濃度降下
している途中に放電を開始する工程とを有することを特
徴とするプラズマ処理方法。
1. a step of placing the sample on a sample stage cooled to a low temperature;
A plasma processing method comprising the step of starting discharge while the sample is being cooled by low-temperature heat of the sample stage and its concentration is decreasing.
2.前記放電開始は、前記試料が前記試料台に配置され
てからの所定時間で放電開始、または、前記試料の温度
を測定し所定温度に達したときに放電を開始する請求項
1記載のプラズマ処理方法。
2. The plasma processing according to claim 1, wherein the discharge starts at a predetermined time after the sample is placed on the sample stage, or when the temperature of the sample is measured and reaches a predetermined temperature. Method.
3.処理室内に設けられ低温に冷却される試料台と、該
試料台に試料を配置する手段と、前記試料台に配置され
た試料の温度降下塗中で前記処理室内にプラズマを発生
させる手段とを具備したことを特徴とするプラズマ処理
装置。
3. A sample stand provided in a processing chamber and cooled to a low temperature, means for placing a sample on the sample stand, and means for generating plasma in the processing chamber during temperature-lowering coating of the sample placed on the sample stand. A plasma processing apparatus characterized by comprising:
4.前記プラズマの発生手段は、前記試料が前記試料台
に配置されてからの所定時間でプラズマを発生、または
、前記試料の温度を測定し所定温度に達したときにプラ
ズマを発生する請求項3記載のプラズマ処理装置。
4. 4. The plasma generating means generates the plasma at a predetermined time after the sample is placed on the sample stage, or generates the plasma when the temperature of the sample reaches a predetermined temperature after measuring the temperature of the sample. plasma processing equipment.
JP27587489A 1989-10-25 1989-10-25 Plasma processing method and apparatus Expired - Fee Related JP2796377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27587489A JP2796377B2 (en) 1989-10-25 1989-10-25 Plasma processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27587489A JP2796377B2 (en) 1989-10-25 1989-10-25 Plasma processing method and apparatus

Publications (2)

Publication Number Publication Date
JPH03138383A true JPH03138383A (en) 1991-06-12
JP2796377B2 JP2796377B2 (en) 1998-09-10

Family

ID=17561641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27587489A Expired - Fee Related JP2796377B2 (en) 1989-10-25 1989-10-25 Plasma processing method and apparatus

Country Status (1)

Country Link
JP (1) JP2796377B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032060A1 (en) * 1997-01-21 1998-07-23 Komatsu Ltd. Fluid temperature control device and method therefor
JP2006351887A (en) * 2005-06-17 2006-12-28 Hitachi High-Technologies Corp Plasma processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032060A1 (en) * 1997-01-21 1998-07-23 Komatsu Ltd. Fluid temperature control device and method therefor
JP2006351887A (en) * 2005-06-17 2006-12-28 Hitachi High-Technologies Corp Plasma processing device

Also Published As

Publication number Publication date
JP2796377B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US6532796B1 (en) Method of substrate temperature control and method of assessing substrate temperature controllability
US5948283A (en) Method and apparatus for enhancing outcome uniformity of direct-plasma processes
KR20010071880A (en) Method and apparatus for plasma processing
JPH11154669A (en) Method and device for measuring and controlling semiconductor-wafer temperature based on gas-temperature measurement
KR20160146534A (en) Temperature control method and plasma processing apparatus
JP2015092580A (en) Temperature controller for controlling sample temperature, sample stand for mounting sample, and plasma processing apparatus comprising them
JPH03138383A (en) Method and device for plasma treatment
JP3096743B2 (en) Lamp annealing furnace temperature controller
JP3931357B2 (en) Manufacturing method of semiconductor device
JPH03145121A (en) Temperature controller for heat treatment of semiconductor
JPH0567672A (en) Vacuum processing device
JP2000232098A (en) Control method for sample temperature and vacuum process device
JP2003195952A (en) Device and method for adjusting temperature of object by using heating medium fluid
JP2016213359A (en) Plasma processing device and plasma processing method
JP2613296B2 (en) Vacuum processing method and device
US20240309504A1 (en) Substrate processing apparatus and gas supply method thereof
JP2002203849A (en) Plasma treatment device and plasma treatment method
JPH06188220A (en) Microwave plasma treatment and device therefor
KR19980066300A (en) Wafer temperature controller
JP2582251Y2 (en) Microwave plasma CVD equipment
JPH0758080A (en) Method and apparatus for plasma treatment and temperature control method thereof
JPH0549904A (en) Vacuum treatment and equipment therefor
KR20240140454A (en) Substrate processing apparatus and Gas supply method thereof
JPS6329735Y2 (en)
JP2024061227A (en) Wafer temperature control device, wafer temperature control method and wafer temperature control program

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees