JPH03138336A - Spike for sports shoes - Google Patents
Spike for sports shoesInfo
- Publication number
- JPH03138336A JPH03138336A JP27624189A JP27624189A JPH03138336A JP H03138336 A JPH03138336 A JP H03138336A JP 27624189 A JP27624189 A JP 27624189A JP 27624189 A JP27624189 A JP 27624189A JP H03138336 A JPH03138336 A JP H03138336A
- Authority
- JP
- Japan
- Prior art keywords
- ceq
- speed tool
- tool steel
- spikes
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001315 Tool steel Inorganic materials 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 13
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 13
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 9
- 150000004767 nitrides Chemical class 0.000 claims abstract description 8
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract 2
- 230000000386 athletic effect Effects 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 4
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- 229910052715 tantalum Inorganic materials 0.000 abstract description 3
- 229910052718 tin Inorganic materials 0.000 abstract description 3
- -1 carbon nitrides Chemical class 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 239000013049 sediment Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 22
- 238000010791 quenching Methods 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 239000004576 sand Substances 0.000 description 5
- 238000005496 tempering Methods 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000003738 black carbon Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はゴルフ用軸、野球用靴などの運動靴に装着され
るスパイクに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to spikes that are attached to athletic shoes such as golf shafts and baseball shoes.
運動靴に装着されるスパイクには従来、軟鋼が使用され
ていたが、土砂との摩擦により早期に摩耗してスパイク
の目的をなさなくなるので、頻繁に交換する必要があっ
た。その対策として近年では、運動靴用スパイクに超硬
合金もしくはセラミックスが使用されるようになってき
た。Spikes attached to athletic shoes have traditionally been made of mild steel, but they wear out quickly due to friction with earth and sand, rendering the spikes useless and requiring frequent replacement. As a countermeasure to this problem, in recent years, cemented carbide or ceramics have been used for spikes for athletic shoes.
運動靴用スパイクに超硬合金もしくはセラミックスを使
用すると、超硬合金製の場合には、土砂に対する耐摩耗
性は軟鋼に比べて格段に優れているが、比重が軟鋼の7
.8に比べて13.0と大きいので運動靴の重さが重く
なり、運動、例えば歩行においてスピードが落ちたり、
足に疲労を感じるなどの問題点があった。When spikes for athletic shoes are made of cemented carbide or ceramics, the wear resistance against dirt and sand is much better than that of mild steel, but the specific gravity is 7% higher than that of mild steel.
.. Since it is larger at 13.0 compared to 8, the weight of the athletic shoes becomes heavier, and the speed of exercise, such as walking, decreases.
There were problems such as feeling tired in the legs.
セラミックス族の場合は土砂に対する耐摩耗性は超硬合
金程度であるし、比重が4.0と小さいので運動靴が軽
くなり、運動上の効果は大きい。しかし、セラミックス
特有の脆さがあるために、石、コンクリート等と衝突し
た時欠けを生じ、スパイりとじての役目を損するという
問題点があった。In the case of ceramics, the abrasion resistance against dirt and sand is comparable to that of cemented carbide, and since the specific gravity is as low as 4.0, athletic shoes can be made lighter and have great effects on exercise. However, due to the brittleness peculiar to ceramics, there was a problem in that it would chip when it collided with stones, concrete, etc., which would impair its role as a spy door.
本発明は上記の問題点に鑑み、耐土砂摩耗性に優れ軽量
で靭性の高い運動靴用スパイクを提供することを目的と
する。In view of the above-mentioned problems, an object of the present invention is to provide spikes for athletic shoes that are lightweight and have high toughness and excellent earth and sand abrasion resistance.
本発明は、平衡炭素量(Ceq)が重量比で、Ceq=
0.06 Cr+0.033W+0.063Mo+0.
2Vとするとき、C: 2.0〜3.5%の範囲で、0
.1≦C−Ceq≦0.6を満足し、さらにCr :
3〜10%、W:1〜20%、Mail〜11%(ただ
し18≦W十2Mo≦24)、V:5.6〜15%、C
,o:15%以下、Si:2%以下、M n : 1%
以下、残部Feおよび不純物からなる高速度工具鋼のア
トマイズ粉末を88−98%と、Tj、Zr、V、Nb
、Hf、Taの窒化物、炭化物、炭窒化物の1種または
2種以上を合計で2〜12%を均一に混合した後成形焼
結してなる超硬度高速度工具鋼を用いたことを特徴とす
る運動靴用スパイクである。In the present invention, the equilibrium carbon content (Ceq) is a weight ratio, and Ceq=
0.06 Cr+0.033W+0.063Mo+0.
When 2V, C: 0 in the range of 2.0 to 3.5%
.. 1≦C-Ceq≦0.6, and further Cr:
3-10%, W: 1-20%, Mail-11% (however, 18≦W12Mo≦24), V: 5.6-15%, C
, o: 15% or less, Si: 2% or less, M n : 1%
Hereinafter, the atomized powder of high speed tool steel consisting of the balance Fe and impurities is 88-98%, Tj, Zr, V, Nb
, Hf, Ta nitride, carbide, carbonitride, or two or more types in total of 2 to 12% in total are uniformly mixed and then formed and sintered to use a super hard high speed tool steel. This is a distinctive feature of spikes for athletic shoes.
次に本発明における各添加元素の作用およびその添加範
囲限定理由を述べる。Next, the effect of each additive element in the present invention and the reason for limiting the range of addition thereof will be described.
本発明の運動靴用スパイクの素材の組成のうち、Cの含
有量は最も重要な構成要素である。Among the compositions of the material of the spikes for athletic shoes of the present invention, the content of C is the most important component.
Cは同時に含有されるCr、W、Mo、Vと結合してM
、C,MCなどの炭化物を形成し、耐摩耗性を付与する
とともに、焼入硬化熱処理によりマルテンサイト基地の
硬さを高め、さらに焼もどし二次硬化量を増す作用があ
る。上記の炭化物形成元素であるCr、W、Mo、Vと
Cが過不足なく結合して、炭化物を形成する平衡炭素量
Ceqは、次式となることが理論的に知られている。C combines with Cr, W, Mo, and V contained at the same time to form M
, C, MC, etc., which imparts wear resistance, increases the hardness of the martensite base through quench hardening heat treatment, and further increases the amount of secondary hardening by tempering. It is theoretically known that the equilibrium carbon amount Ceq at which the carbide-forming elements Cr, W, Mo, and V and C combine in just the right amount to form a carbide is expressed by the following formula.
Ceq=0.06(%Cr) +0.033(%W)+
0.063(%Mo)十0.2(%■)
従来の高速度工具鋼においては、C含有量と平衡炭素1
ceqの差、C−Ceqはマイナスとなるように調整さ
れている(例えば、JIS 5KH59は、はぼ−0.
3、A151M42では−0,05)。Ceq=0.06(%Cr) +0.033(%W)+
0.063 (% Mo) 10.2 (%■) In conventional high-speed tool steel, the C content and equilibrium carbon 1
The difference in ceq, C-Ceq, is adjusted to be negative (for example, JIS 5KH59 has a difference of -0.
3, -0.05 for A151M42).
本発明において、W、Mo、V量やTiN等の分散粒子
の量が比較的少なくても、HRC72以上の超硬度が得
られ、実用性の高いスパイクを得る目的で、スパイク用
の材質として多数の高速度工具鋼につき、実験、検討し
たところ、Ceq=0.06Cr十0.033W +0
.063Mo+0.2Vとするとき、18≦W十2 M
O≦24の範囲でC−Ceqを従来のようにマイナス
にせず、0.1≦C−Ceq≦0.6を満足するように
Cを含有させればよいことを新規に発見した。In the present invention, even if the amount of W, Mo, V or dispersed particles such as TiN is relatively small, superhardness of HRC72 or higher can be obtained, and in order to obtain highly practical spikes, many materials are used for spikes. As a result of experiments and studies on high-speed tool steel, Ceq = 0.06Cr + 0.033W +0
.. When 063Mo+0.2V, 18≦W12 M
It was newly discovered that C-Ceq should not be made negative in the range of O≦24, but should be contained so as to satisfy 0.1≦C-Ceq≦0.6.
C−Ceqが0.1未満では、上述したように多量のW
、Mo、V、TiNを含有せしめないと、HRC72以
上の超硬度が得られない。逆にC−Ceqが0.6を越
えると焼入硬化熱処理時に安定な残留オーステナイトが
著しく増加し、また、残留オーステナイトの分解温度が
高温側に移行するので、焼もどしにより二次硬化させて
も、HRC72以上の超硬度が得られなくなる。すなわ
ち、18≦W十2Mo≦24の範囲で、0.1≦C−C
eq≦0.6の条件でのみ、本願の目的は達成できる。When C-Ceq is less than 0.1, a large amount of W
, Mo, V, and TiN, superhardness of HRC 72 or higher cannot be obtained. On the other hand, if C-Ceq exceeds 0.6, stable retained austenite increases significantly during quench hardening heat treatment, and the decomposition temperature of retained austenite shifts to a higher temperature side, so even if secondary hardening is performed by tempering, , it becomes impossible to obtain a superhardness of HRC72 or higher. That is, in the range of 18≦W12Mo≦24, 0.1≦C−C
The purpose of the present application can be achieved only under the condition of eq≦0.6.
Cは同時に含有されるCr、w、Mo、vの量によって
適宜に変えるべきであることは上述したごとくである。As mentioned above, C should be appropriately changed depending on the amounts of Cr, w, Mo, and v contained at the same time.
後述する本発明のCr、 W、 Mo、 Vの含有量の
範囲で、かつ0.1≦C−Ceq≦0.6を満足させる
には少なくとも2.0%は必要である。At least 2.0% is required to satisfy 0.1≦C-Ceq≦0.6 within the content range of Cr, W, Mo, and V of the present invention, which will be described later.
一方、上記の条件を滴だしていてもC含有量が3.5%
を越えると靭性の低下が著しくなるのでC含有量は、2
.0〜3.5%の範囲で、かツ0.1≦C−Ceq≦0
.6に限定した。On the other hand, even if the above conditions are met, the C content remains at 3.5%.
If the C content exceeds 2, the decrease in toughness will be significant.
.. Within the range of 0 to 3.5%, 0.1≦C-Ceq≦0
.. Limited to 6.
Crは焼入れ硬化性を高める作用があるが、3%未満で
はこの効果が少なく、逆に10%を越えると残留オース
テナイト量が増大し、焼入れ焼もどし硬さを下げるので
Crの含有量は3〜10%に限定した。Cr has the effect of increasing quench hardenability, but if it is less than 3%, this effect is small; on the other hand, if it exceeds 10%, the amount of retained austenite increases and the quenching and tempering hardness decreases, so the Cr content should be 3 to 3%. It was limited to 10%.
特に、真空焼入れなど冷却速度の遅い焼入れ炉で熱処理
してもHRC72以上の超硬度を得るためには、Crの
含有量は6%を越えて10%以下が望ましい。In particular, in order to obtain a superhardness of HRC 72 or higher even when heat treated in a quenching furnace with a slow cooling rate such as vacuum quenching, the Cr content is desirably more than 6% and 10% or less.
WおよびMoは前述のごとくCと結合してM、C型の炭
化物を形成し、運動靴のスパイク等の土砂に対する耐摩
耗性を高める作用と、焼入硬化熱処理時に基地中に固溶
し、焼もどし熱処理によってこれが微細な炭化物として
析出し、二次硬化度を高める作用がある0本発明のスパ
イクが熱処理をして安定してHRC72以上の超硬度を
得るという目的を達成するには、W:1〜20%、Ma
il〜11%の範囲でW+2Mo量が18%以上を含有
せしめる必要がある。しかし、W+2Mo量が24%を
越えると材料が高価になるのみならず、靭性も低下する
のでW。As mentioned above, W and Mo combine with C to form M and C type carbides, which have the effect of increasing the wear resistance against earth and sand such as the spikes of athletic shoes, and solid solution in the matrix during quench hardening heat treatment. This is precipitated as fine carbides by tempering heat treatment and has the effect of increasing the degree of secondary hardening. :1~20%, Ma
It is necessary to contain 18% or more of W+2Mo in the range of il to 11%. However, if the amount of W+2Mo exceeds 24%, the material not only becomes expensive but also has a lower toughness.
Moの含有量はW+2Mo量で18〜24%に限定した
。The content of Mo was limited to 18 to 24% in W+2Mo amount.
なお、本発明では原子パーセントで等量のWとMoはほ
ぼ等価の作用を有している。Note that, in the present invention, W and Mo in equal amounts in atomic percent have approximately equivalent effects.
■もW、Moと同じくCと結合して、MC型炭化物を形
成する。このMC型炭化物の硬さは、1(v2500〜
3000であり、M、C型炭化物の硬さHV1500〜
1800と比較して著しく高い硬さである。このため特
に耐摩耗性を重視するスパイク等の部品においては、■
含有量の多い高速度工具鋼を用いると寿命が向上する。(2) also combines with C, like W and Mo, to form an MC type carbide. The hardness of this MC type carbide is 1 (v2500 ~
3000, and the hardness of M and C type carbides is HV1500~
It has significantly higher hardness than 1800. For this reason, in parts such as spikes where wear resistance is particularly important, ■
Using a high-speed tool steel with a high content increases the service life.
■含有量を必要以」二に多くしても被研削性を悪くし、
靭性を低下させ、少なすぎると耐摩耗性向上の効果が不
足するので■含有量は5.6〜15%に限定した。■ Even if the content is increased more than necessary, the grindability will deteriorate.
(2) The content was limited to 5.6 to 15% because it lowers toughness and, if too small, the effect of improving wear resistance is insufficient.
Goは、基地に固溶し焼もどし硬さを高める作用がある
。しかし、多量に含有すると、靭性が著しく低下するの
で、Goの含有量は15%以下に限定した。Go is dissolved in the matrix and has the effect of increasing the tempering hardness. However, if Go is contained in a large amount, the toughness will be significantly reduced, so the content of Go is limited to 15% or less.
Siは本発明に使用される鋼の脱酸を目的として2%以
下含有させるが、特にSi0.8〜2%の範囲では、脱
酸効果の他に基地の硬度を高める効果、および耐食性を
高める効果、さらにはアトマイズ作業性を向上させる効
果が現れる。2%を越えると靭性の低下が著しくなる。Si is contained at 2% or less for the purpose of deoxidizing the steel used in the present invention, but especially in the range of 0.8 to 2% Si, in addition to the deoxidizing effect, it also has the effect of increasing the hardness of the matrix and improving the corrosion resistance. effect, and furthermore, an effect of improving the atomization workability. If it exceeds 2%, the toughness will be significantly reduced.
Mnも脱酸効果があり、さらに焼入れ性を高める作用が
あるので1%以下含有させる。特に、上記のSi含有量
が高い場合には、フェライトを安定化し、A1変態点を
上昇させるSLの弊害をMnによって緩和できるので、
Mn0.25〜1.0%含有させるとよい。Mn also has a deoxidizing effect and also has the effect of increasing hardenability, so it is contained in an amount of 1% or less. In particular, when the above-mentioned Si content is high, Mn can stabilize the ferrite and alleviate the adverse effects of SL, which increases the A1 transformation point.
It is preferable to contain Mn in an amount of 0.25 to 1.0%.
Ti、Zr、V、Nb、Hf、Taの窒化物、炭化物、
炭窒化物を分散せしめると硬さを高める効果がある。Nitride, carbide of Ti, Zr, V, Nb, Hf, Ta,
Dispersing carbonitride has the effect of increasing hardness.
一方、本発明のごとくC含有量が平衡炭素量(Ceq)
より、0.1〜0.6高めとなれば、焼入れ硬化処理時
にオーステナイト結晶粒が粗大化し、マルテンサイト組
織が粗れて、靭性が極端に低下するのが従来の常識であ
る。On the other hand, as in the present invention, the C content is equal to the equilibrium carbon amount (Ceq)
It is conventional wisdom that if the value is higher than 0.1 to 0.6, the austenite crystal grains will become coarse during the quench hardening process, the martensite structure will become rough, and the toughness will be extremely reduced.
しかし本発明においては、TI、Zr、V、Nb、Hf
。However, in the present invention, TI, Zr, V, Nb, Hf
.
Taの窒化物、炭化物、炭窒化物の1種または2種以上
を合計で、2〜12%を均一に分散せしめることにより
、この欠点を解消することができ、材料の溶融開始温度
直下の高いオーステナイト化温度域で焼入硬化処理を行
なっても著しく微細な組織となることを発見した。This drawback can be overcome by uniformly dispersing one or more Ta nitrides, carbides, and carbonitrides in a total amount of 2 to 12%. We discovered that even if quench hardening treatment is performed in the austenitizing temperature range, a significantly finer structure can be obtained.
すなわち、上記窒化物、炭化物、炭窒化物の1種または
2種以上を分散せしめることにより、C含有量をCeq
mより高めとすることで生じる欠点をうまく補い、本発
明の目的を達成させている。That is, by dispersing one or more of the above nitrides, carbides, and carbonitrides, the C content can be reduced to Ceq
This successfully compensates for the drawbacks caused by setting it higher than m, and achieves the object of the present invention.
しかし、2%未滴では、上記効果が少なく、一方12%
を越えると効果が飽和するばかりでなく、スパイクに仕
上げるときの被研削性、および使用時の靭性を著しく低
下させるので、上記窒化物、炭化物、炭窒化物の分散量
は合計で2〜12%に限定した。However, with 2% undropped, the above effect is small, while with 12%
Exceeding this value not only saturates the effect, but also significantly reduces the grindability when finishing into spikes and the toughness during use, so the amount of dispersion of the nitrides, carbides, and carbonitrides should be 2 to 12% in total. limited to.
窒化物、炭化物、炭窒化物を基質中に均一に分散せしめ
る方法としては、上記の化学組成からなる高速度工具鋼
の粉末を水、ガス、油などのアトマイズ法で製造し、こ
の粉末と窒化物、炭化物、炭窒化物の粉末とを混合した
後、成形、焼結するのが最も適している。A method for uniformly dispersing nitrides, carbides, and carbonitrides in a matrix is to produce high-speed tool steel powder with the above chemical composition by atomizing water, gas, oil, etc. The most suitable method is to mix the powder, carbide, or carbonitride powder, then mold and sinter it.
混合に際しては、焼結後の最終炭素含有量を調節するこ
と、および焼結性を向上させるなどの目的で、黒鉛粉末
、ブラックカーボンなどの炭素粉末を同時に添加混合す
るとよい。さらに、Cr。When mixing, carbon powder such as graphite powder or black carbon may be added and mixed at the same time for the purpose of adjusting the final carbon content after sintering and improving sinterability. Furthermore, Cr.
Ni、Mo、W、Cu、Go、Fe粉末の1種または2
種以上を合計で5%以下同時に混合させると、焼結性を
向上させる効果がある。One or two of Ni, Mo, W, Cu, Go, Fe powder
Simultaneously mixing 5% or less of these species in total has the effect of improving sinterability.
次に一実施例に基づいて本発明をさらに詳細に説明する
。ゴルフシューズに装着するスパイクを製作するため、
まず第1表に示すスパイク用素材を準備した。この素材
はアトマイズした粉末を焼結して製造したものである。Next, the present invention will be explained in more detail based on one embodiment. In order to make spikes to be attached to golf shoes,
First, the spike materials shown in Table 1 were prepared. This material is manufactured by sintering atomized powder.
この素材からゴルフシューズに装着するスパイクを製作
するとともに素材の特性を知るため、比重、シャルピー
値(10Rノツチ)、硬さ(試料A、 BおよびEは焼
入焼もどし後)を測定した。結果を第2表に示す、第2
表によれば、比重は超硬合金が最も太きく 13.0を
示し、セラミックスが最も小さく4.0を示している。Spikes to be attached to golf shoes were made from this material, and the specific gravity, Charpy value (10R notch), and hardness (Samples A, B, and E were quenched and tempered) were measured in order to understand the characteristics of the material. The results are shown in Table 2.
According to the table, cemented carbide has the highest specific gravity at 13.0, and ceramic has the lowest specific gravity at 4.0.
超硬度高速度工具鋼と軟鋼は同じレベルの比重を示して
いる。Superhard high-speed tool steel and mild steel exhibit the same level of specific gravity.
シャルピー値は超硬合金が最も低(0,4kg−m/−
を示しているが、超硬度高速度工具鋼は0.6kJ−m
/−を示している。さらに硬さを測定した結果、超硬度
高速度工具鋼は、超硬合金やセラミックスはど硬くはな
いが、軟鋼よりもはるかに高い硬さを示している。The Charpy value is the lowest for cemented carbide (0.4 kg-m/-
However, ultra-hard high-speed tool steel is 0.6 kJ-m.
/- is shown. Further hardness measurements showed that ultrahard high-speed tool steel is much harder than mild steel, although it is not as hard as cemented carbide or ceramics.
次に製作したスパイクをゴルフシューズに装着して寿命
試験を行なった。試験は1日18ホールずつ使用して、
毎日欠けや折れの有無の確認および摩耗量を測定した。Next, the manufactured spikes were attached to golf shoes and a lifespan test was conducted. The test consisted of 18 holes per day.
The presence or absence of chips and bends was checked every day, and the amount of wear was measured.
結果を第2表に併示する。The results are also shown in Table 2.
寿命試験の結果、超硬合金製、セラミックス製のスパイ
クは早期に欠けや折れが発生して使用できなくなった。As a result of life tests, spikes made of cemented carbide and ceramics chipped or broke early, making them unusable.
軟鋼製は20日間で2.1mmも摩耗したが、本発明に
係る超硬度高速度工具R製は60日間で0.4mmの摩
耗であり、軟鋼製に比べ実質的に15〜20倍程度寿命
向上していることがわかった。The soft steel tool wore 2.1 mm in 20 days, but the carbide high-speed tool R according to the present invention wore 0.4 mm in 60 days, which means it has a lifespan approximately 15 to 20 times longer than that of the mild steel tool. I found that it was improving.
本発明によれば、従来不十分であった運動靴に装着する
スパイクの耐摩耗性が大幅に向上し、長期間に使用でき
、スパイクを度々交換することもなく、運動靴の信頼性
の向上が達成できる。According to the present invention, the wear resistance of the spikes attached to athletic shoes, which was insufficient in the past, has been significantly improved, allowing them to be used for a long time, eliminating the need to frequently replace the spikes, and improving the reliability of athletic shoes. can be achieved.
Claims (1)
=0.06Cr+0.033W+0.063Mo+0.
2Vとするとき、C:2.0〜3.5%の範囲で、0.
1≦C−C_e_q≦0.6を満足し、さらにCr:3
〜10%、W:1〜20%、Mo:1〜11%(ただし
18≦W+2Mo≦24)、V:5.6〜15%、Co
:15%以下、Si:2%以下、Mn:1%以下、残部
Feおよび不純物からなる高速度工具鋼のアトマイズ粉
末を88〜98%と、Ti、Zr、V、Nb、Hf、T
aの窒化物、炭化物、炭窒化物の1種または2種以上を
合計で2〜12%を均一に混合した後成形焼結してなる
超硬度高速度工具鋼を用いたことを特徴とする運動靴用
スパイク。1 Equilibrium carbon content (C_e_q) is the weight ratio, C_e_q
=0.06Cr+0.033W+0.063Mo+0.
When 2V, C: 0.0 to 3.5%.
1≦C−C_e_q≦0.6, and further Cr:3
~10%, W: 1-20%, Mo: 1-11% (however, 18≦W+2Mo≦24), V: 5.6-15%, Co
: 15% or less, Si: 2% or less, Mn: 1% or less, the balance is 88 to 98% of the atomized powder of high speed tool steel consisting of Fe and impurities, Ti, Zr, V, Nb, Hf, T.
It is characterized by using a super hard high-speed tool steel obtained by uniformly mixing 2 to 12% of one or more of nitrides, carbides, and carbonitrides in a total of 2 to 12% and then forming and sintering it. Spikes for athletic shoes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27624189A JPH03138336A (en) | 1989-10-24 | 1989-10-24 | Spike for sports shoes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27624189A JPH03138336A (en) | 1989-10-24 | 1989-10-24 | Spike for sports shoes |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03138336A true JPH03138336A (en) | 1991-06-12 |
Family
ID=17566667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27624189A Pending JPH03138336A (en) | 1989-10-24 | 1989-10-24 | Spike for sports shoes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03138336A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5578773A (en) * | 1991-08-07 | 1996-11-26 | Erasteel Kloster Aktiebolag | High-speed steel manufactured by powder metallurgy |
-
1989
- 1989-10-24 JP JP27624189A patent/JPH03138336A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5578773A (en) * | 1991-08-07 | 1996-11-26 | Erasteel Kloster Aktiebolag | High-speed steel manufactured by powder metallurgy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101333740B1 (en) | Powder metallugically manufactured steel, a tool comprising the steel and a method for manufacturing the tool | |
EP2138597A1 (en) | Hot-worked steel material having excellent machinability and impact value | |
KR101498076B1 (en) | Metallurgical powder composition and method of production | |
EP0930374B1 (en) | Production of cold working tool steel | |
EP3169821B1 (en) | Cold work tool steel | |
KR950005927B1 (en) | Wear-resistant steel | |
CA2359188C (en) | High-hardness powder metallurgy tool steel and article made therefrom | |
JP3095845B2 (en) | High speed steel for end mills | |
KR100210867B1 (en) | Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability machinability and hardenability and method of manufacturing the same | |
JP6710484B2 (en) | Powder high speed tool steel | |
US2036245A (en) | Alloy | |
JPH03138336A (en) | Spike for sports shoes | |
JP3297500B2 (en) | High-strength steel bar with excellent machinability | |
KR950005928B1 (en) | Wear resistant steel | |
JP6537342B2 (en) | High-speed nitrided powder tool steel with excellent hardness, toughness and wear resistance | |
JP4148311B2 (en) | Lead-free mechanical structural steel with excellent machinability and small strength anisotropy | |
JP2003313635A (en) | Hot work tool steel with high toughness | |
JPH05171373A (en) | Powder high speed tool steel | |
JPH0941102A (en) | Sintered head alloy | |
JPH05239589A (en) | High strength nonheat-treated steel | |
JPH08134623A (en) | Carbide-dispersed carburized steel parts | |
JPS62124259A (en) | Super head high-speed tool steel | |
JPH10158780A (en) | Cold tool steel for plasma carburizing | |
JPH05163551A (en) | Powder high-speed tool steel | |
JPH05171374A (en) | Powder high speed tool steel |