JPH03138335A - Martensitic stainless steel for cold forging and its manufacture - Google Patents

Martensitic stainless steel for cold forging and its manufacture

Info

Publication number
JPH03138335A
JPH03138335A JP27569189A JP27569189A JPH03138335A JP H03138335 A JPH03138335 A JP H03138335A JP 27569189 A JP27569189 A JP 27569189A JP 27569189 A JP27569189 A JP 27569189A JP H03138335 A JPH03138335 A JP H03138335A
Authority
JP
Japan
Prior art keywords
less
steel
stainless steel
cold
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27569189A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Hiroyuki Toki
土岐 浩之
Shoji Kanazawa
金沢 昭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP27569189A priority Critical patent/JPH03138335A/en
Publication of JPH03138335A publication Critical patent/JPH03138335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide the stainless steel with excellent cold forgeability as annealed and to improve its corrosion resistance and hardening capacity by specifying the content of Si, Mn, S, etc., and the heat treating conditions in a steel and regulating its grain size into a specified range. CONSTITUTION:The compsn. of a martensitic stainless steel for cold forging is formed from, by weight, 0.30 to 0.40% C, <=0.30% Si, <=0.40% Mn, <=0.005% S, 12.00 to 14.00% Cr and the balance Fe with inevitable impurities. The steel is subjected to heat treatment for one or two times of which heating is executed at 800 to 950 deg.C for 2 to 16hr. By this heat treatment, its grain size is regulated to 7 to 10 and carbides therein are spheroidized. In this way, its cold forgeability and mechanical strength are improved. The steel is useful as a steel for structural purposes such as house appliances, pins for stopping shingles, screws and shafts.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、家?412品、屋根板止め用のビン、ねじお
よびシャフト等に用いられる焼なまし状態で優れた冷間
鍛造性を有し、かつ耐食性と焼入硬化能が著しく優れた
高強度マルテンサイト系ステンレス鋼およびその製造方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] Does the present invention apply to houses? 412 products, high-strength martensitic stainless steel that has excellent cold forgeability in the annealed state and has outstanding corrosion resistance and quench hardenability, used for roof plate fixing bolts, screws, shafts, etc. and its manufacturing method.

[従来の技術] 低炭素13%C「マルテンサイト系ステンレス鋼(SU
S410など)は、500℃まで強さが低下せず高温ま
で耐酸化性を有するなど耐食性、耐熱性に優れているば
かりでなく、強さと靭性が高いので、家電製品、屋根板
止め用のビン、ねじおよびシャフト等の構造用鋼として
広く使用される。
[Conventional technology] Low carbon 13% C "martensitic stainless steel (SU
S410, etc.) not only have excellent corrosion resistance and heat resistance, such as oxidation resistance up to high temperatures without decreasing strength up to 500℃, but also have high strength and toughness, so they are used for home appliances and bins for roofing. , widely used as structural steel for screws and shafts, etc.

また、中炭素13%Crマルテンサイト系ステンレス鋼
(SUS420J、または5US420Jz)は、C量
が高くなり、強さ、耐摩耗性が増加するので、耐食性を
必要とする刃物や耐食性、耐摩耗性を必要とする構造用
に用いられている。
In addition, medium carbon 13% Cr martensitic stainless steel (SUS420J or 5US420Jz) has a high C content, which increases strength and wear resistance. It is used for the required structure.

[発明が解決しようとする課Wi] 前記いずれの鋼種においても、焼入焼もどし処理が強靭
性のみならず耐食性を得るために望ましく、調質して用
いられる。ところで、前記#INに対する市場からの要
請は、さらに機械的強度が高いことであって、焼入硬さ
がHvで600以上であり、さらに冷間鍛造性が容易な
ように、焼鈍状態において引張強さが55kgf/am
”以下であり、かつ耐食性を有することが望まれている
[Problems to be Solved by the Invention] For any of the above-mentioned steel types, quenching and tempering treatment is desirable in order to obtain not only toughness but also corrosion resistance, and the steel is used after being tempered. By the way, the market demand for #IN is that it has higher mechanical strength, with a quenching hardness of 600 Hv or more, and a tensile strength in the annealed state to facilitate cold forging. Strength is 55kgf/am
``It is desired that the corrosion resistance is the same as that of

しかるに、前記鋼種のうち、5US410は焼なまし状
態での引張強さが55kgf/am”程度あって、冷間
鍛造性については良いが、焼入れ硬さがHv430であ
って、機械的強度については満足すべきものではない、
また、5US420J、については、焼入れ硬さがHv
519であって、機械的強度についてはやや不足し、焼
なまし状態での引張強さが62kgf/am”であって
、冷間鍛造性が良くない、5US420J2については
、焼入れ硬さがHvが608と、機械的強度については
満足するが、焼なまし状態での引張強さが65kgf/
as”であって、冷間鍛造は不可能に近くまたとえ熱処
理による結晶粒度の粗大化を行っても、冷間鍛造は困難
であった。
However, among the above-mentioned steel types, 5US410 has a tensile strength of about 55 kgf/am" in the annealed state and has good cold forgeability, but has a quenched hardness of Hv430 and has poor mechanical strength. not something to be satisfied with,
In addition, for 5US420J, the quenching hardness is Hv
519, the mechanical strength is somewhat insufficient, the tensile strength in the annealed state is 62 kgf/am", and the cold forgeability is poor. Regarding 5US420J2, the quenched hardness is Hv. 608, the mechanical strength is satisfactory, but the tensile strength in the annealed state is 65 kgf/
As'', cold forging is nearly impossible, and even if the crystal grain size is coarsened by heat treatment, cold forging is difficult.

一般に冷間鍛造性を向上させようとすると強度は低下す
るものであり、冷間鍛造性と強度とは相反する特性であ
り両者を共に満足させることは困難であった。
Generally, when trying to improve cold forgeability, strength decreases; cold forgeability and strength are contradictory properties, and it has been difficult to satisfy both.

本発明はかかる問題点に対処すべく、特にSi、Mrl
、、S成分の含有量および結晶粒度につき検討した結果
なされたもので、焼もどし状態での強度を低下させるこ
となく、焼なまし状態で優れた冷間鍛造性を示し、かつ
耐食性と焼入硬化能に優れた高強度マルテンサイト系ス
テンレス鋼を提供しようとするものである。
In order to deal with such problems, the present invention particularly aims to solve the problem of Si, Mrl
This was made after studying the S component content and grain size, and it shows excellent cold forgeability in the annealed state without reducing the strength in the tempered state, and has excellent corrosion resistance and hardening properties. The purpose is to provide a high-strength martensitic stainless steel with excellent hardenability.

[課題を解決するための手段] 本発明の冷間鍛造用マルテンサイト系ステンレス鋼は、
第1発明として重量比にしてC;0.30〜0.40%
、Si;0.30%以下、Mn;0.40%以下、S:
0.005%以下、Cr;12.00〜14.00%を
含有し、残部Feならびに不純物元素からなることを要
旨とする。
[Means for solving the problems] The martensitic stainless steel for cold forging of the present invention has the following features:
As the first invention, C: 0.30 to 0.40% by weight
, Si: 0.30% or less, Mn: 0.40% or less, S:
The gist is that it contains 0.005% or less, Cr; 12.00 to 14.00%, and the remainder consists of Fe and impurity elements.

本発明は、5US410、S U S 420 J +
および5US420J2の前記のごとき欠点に鑑みて、
13%Crマルテンサイト系ステンレス鋼について、焼
なまし状態での引張強さに及ぼすC1Si、Mn、Cr
”iの合金元素の影響について鋭意研究を重ねた結果、
第1に固溶作用により素地の強度を向上させるSi、M
n量を極力低下させること、第2にMnSを生成し、冷
間鍛造時の割れの起点となるS含有量を極力低減させる
こと、さらに第3に独自の熱処理により結晶粒度を粗大
化すると共に炭化物を球状化させることにより、冷間鍛
造性を向上し、引張強さを55 kgf/ l11m”
以下に低下させることを見出だしたものである。すなわ
ち、本発明においてはS U S 420 J 2なみ
のCとCrを添加することにより、焼入れ硬さをHv6
00以上にするとともに、焼なまし状態での引張強さを
従来鋼よりも約10 kgr/ am”低下させること
に成功したものである。
The present invention is applicable to 5US410, SUS420J+
In view of the above-mentioned drawbacks of 5US420J2,
Effects of C1Si, Mn, and Cr on tensile strength in annealed state for 13%Cr martensitic stainless steel
``As a result of intensive research on the influence of alloying elements on i,
First, Si and M improve the strength of the substrate through solid solution action.
The second step is to reduce the S content as much as possible, which generates MnS and becomes the starting point for cracks during cold forging, and thirdly, by coarsening the grain size through a unique heat treatment. By making the carbide spheroidal, cold forgeability is improved and tensile strength is increased to 55 kgf/l11m.
It has been found that the temperature can be reduced to below. That is, in the present invention, by adding C and Cr equivalent to SUS 420 J 2, the quenching hardness can be increased to Hv6.
00 or higher, and succeeded in lowering the tensile strength in the annealed state by approximately 10 kgr/am" compared to conventional steel.

また、本発明の第2発明は、前記第1発明鋼にさらにM
o;1.5%以下、Ti;0.20%以下、V;0.1
5%以下、Nb;Q、10%以下ノうち1種または21
11以上を含有させたことを要旨とする。
Further, the second invention of the present invention further provides M in the first invention steel.
o: 1.5% or less, Ti: 0.20% or less, V: 0.1
5% or less, Nb; Q, 10% or less of 1 or 21
The gist is that 11 or more are contained.

これにより、第1発明鋼の焼入焼もどし状態での引張強
さをさらに改善し、また材料使用時の強度と耐食性を向
上させたものである。
This further improves the tensile strength of the first invention steel in the quenched and tempered state, and also improves the strength and corrosion resistance when the material is used.

さらに、本発明の第3発明の冷間鍛造用マルテンサイト
系ステンレス鋼の製造方法は、第1発明鋼を800〜9
50℃の温度で2〜16時間加熱する熱処理を1回ない
し2回以上施して、結晶粒度を7〜10としかつ炭化物
を球状化させて冷間鍛造性を改善したことを要旨とする
。また、第4発明の冷間鍛造性マルテンサイト系ステン
レス鋼の製造方法は、第2発明鋼を800〜950℃の
温度で2〜16時間加熱する熱処理を1回ないし2回以
上施して、結晶粒度を7〜10としかつ炭化物を球状化
させて冷rrf1鍛造性を改善したことを要旨とする。
Furthermore, the method for producing a martensitic stainless steel for cold forging according to the third invention of the present invention includes a method for manufacturing a martensitic stainless steel for cold forging according to the third invention.
The gist is that a heat treatment of heating at a temperature of 50° C. for 2 to 16 hours is performed once or twice or more to obtain a crystal grain size of 7 to 10 and to make the carbide spheroidal, thereby improving cold forgeability. Further, the method for manufacturing a cold-forgeable martensitic stainless steel according to the fourth invention is such that the steel of the second invention is subjected to a heat treatment of heating the steel at a temperature of 800 to 950°C for 2 to 16 hours once or twice or more, thereby crystallizing the steel. The gist is that the cold rrf1 forgeability is improved by setting the grain size to 7 to 10 and making the carbide spheroidal.

次に、本発明の冷間鍛造用マルテンサイト系ステンレス
鋼の成分限定の理由について説明する。
Next, the reason for limiting the composition of the martensitic stainless steel for cold forging of the present invention will be explained.

C:0.30〜0.40% Cは焼入硬さをHv600以上を確保するに必要な元素
であり、この強度を得るために下限を0゜30%とした
。しかし、C量が増加すると焼鈍状態における引張強さ
が増加し冷間鍛造性が大幅に低下するので、上限を0.
40%とした。
C: 0.30-0.40% C is an element necessary to ensure a hardness of Hv600 or more, and in order to obtain this strength, the lower limit was set to 0°30%. However, as the amount of C increases, the tensile strength in the annealed state increases and the cold forgeability decreases significantly, so the upper limit is set to 0.
It was set at 40%.

Si;0.30%以下 Siは脱酸に効果のある元素であるが、強力なフェライ
ト生成元素でもあり、かっ固溶強化作用により強度を増
加し、冷間鍛造性を低下させる元素でもあるので、その
含有量を極力低下させる必要があり、上限を0.30%
とした。
Si: 0.30% or lessSi is an element that is effective in deoxidizing, but it is also a strong ferrite-forming element, which increases strength through solid solution strengthening and reduces cold forgeability. , it is necessary to reduce its content as much as possible, and the upper limit is 0.30%.
And so.

Mn;0.40%以下 Mnは脱酸に効果のある元素であると共に強力なオース
テナイト生成元素であるが、反面固溶作用により強度を
増加し、冷間鍛造性を大幅に低下させる元素であるので
、その含有量を極力低下させる必要があり、上限を0.
40%とした。
Mn: 0.40% or less Mn is an element that is effective in deoxidizing and is a strong austenite forming element, but on the other hand, it is an element that increases strength due to solid solution action and significantly reduces cold forgeability. Therefore, it is necessary to reduce the content as much as possible, and the upper limit should be set at 0.
It was set at 40%.

S:0.005%以下 Sは冷開鍛造時、割れの起点となるMnSを生成し、冷
間鍛造性を著しく低下させるとともに、耐食性をも劣化
させる元素であり、上限を0,005%とした。なお、
さらに冷間鍛造性を向上させるためには0.002%以
下にすることが好ましい。
S: 0.005% or less S is an element that generates MnS, which becomes a starting point for cracks, during cold open forging, and significantly reduces cold forgeability, as well as deteriorating corrosion resistance.The upper limit is 0.005%. did. In addition,
Furthermore, in order to improve cold forgeability, the content is preferably 0.002% or less.

Cr;12.OO〜14.OO% C「はステンレス鋼の耐食性を付与する基本元素であり
、この効果を大きくするには12.00%以上含有させ
る必要があるため、その下限を12.00%とした。一
方、C「は強力なフェライト生成元素でもあり、焼入性
を損なうので、その上限を14.00%とした。
Cr;12. OO~14. OO% C'' is a basic element that imparts corrosion resistance to stainless steel, and to increase this effect it is necessary to contain it at 12.00% or more, so the lower limit was set at 12.00%.On the other hand, C'' is also a strong ferrite-forming element and impairs hardenability, so its upper limit was set at 14.00%.

Mo;1.5%以下、Ti;0.20%以下、V;0.
15%以下、Nb、0.10%以下 Mo、Ti、V、Nbは焼もどし状態での引張強さの改
善に寄与する元素であるが、反面強力なフェライト生成
元素であり、焼入性を損なうので、その上限をMoは1
.5%、Tiは0.20%、■は0゜15%、Nbは0
.10%とした。
Mo: 1.5% or less, Ti: 0.20% or less, V: 0.
15% or less, Nb, 0.10% or less Mo, Ti, V, and Nb are elements that contribute to improving the tensile strength in the tempered state, but on the other hand, they are strong ferrite-forming elements and reduce hardenability. Therefore, the upper limit of Mo is 1.
.. 5%, Ti is 0.20%, ■ is 0°15%, Nb is 0
.. It was set at 10%.

本発明の製造方法において、加熱温度を800〜950
℃としたのは、加熱温度が800℃未満では所望の結晶
粒度を得るためには34時間保持しなければならなくな
り、生産性が大幅に低下するためであり、加熱温度が9
50℃を越えると、結晶粒度が大きくなりすぎるからで
ある。また、結晶粒度を7〜10に設定したのは、結晶
粒度が7以下になると、冷間鍛造後の製品肌が悪くなる
ためであり、結晶粒度が10以上になると焼なまし状態
での引張強さが55kgf/am”が保障できないため
である。
In the manufacturing method of the present invention, the heating temperature is 800 to 950.
℃ because if the heating temperature is less than 800℃, it will have to be held for 34 hours to obtain the desired crystal grain size, which will significantly reduce productivity.
This is because if the temperature exceeds 50°C, the crystal grain size becomes too large. In addition, the grain size was set to 7 to 10 because if the grain size is 7 or less, the product texture after cold forging will deteriorate, and if the grain size is 10 or more, the tensile strength in the annealed state will deteriorate. This is because the strength cannot be guaranteed to be 55 kgf/am.

〔作用] 本発明の第1発明鋼は、特にSi量を0.30%以下、
Mn量を0.40%以下、S量を0.005%以下とい
う低い値とし、これらとC,Crの最適範囲との相乗効
果により、従来鋼の欠点である冷間鍛造性を・改善した
ものである。また、従来鋼の結晶粒度が微細(約14)
であったものを、上記組成範囲と関連して熱処理条件を
考慮することにより、結晶粒度を7〜10となし、さら
に炭化物を球状化することにより、従来鋼5US420
J、と同等の機械的強度を保持しつつ、冷間鍛造性を改
善したものである。
[Function] In particular, the first invention steel of the present invention has a Si content of 0.30% or less,
By setting the Mn content to a low value of 0.40% or less and the S content to a low value of 0.005% or less, and the synergistic effect of these and the optimal range of C and Cr, cold forgeability, which is a drawback of conventional steel, has been improved. It is something. In addition, the grain size of conventional steel is fine (approximately 14).
By considering the heat treatment conditions in relation to the above composition range, the grain size was set to 7 to 10, and the carbides were made spheroidized, thereby converting the conventional steel 5US420.
It has improved cold forgeability while maintaining mechanical strength equivalent to J.

従って、本第1発明によれば、焼なまし状態での引張強
さは55 kgf / +ua2以下であり、冷間鍛造
性を改善することができ、また焼入れ硬さは)−1v6
00以上であり、かつ焼もどし状態での引張強さと強度
を向上させ、さらに耐食性を向上させることができる。
Therefore, according to the first invention, the tensile strength in the annealed state is 55 kgf / +ua2 or less, the cold forgeability can be improved, and the quenched hardness is -1v6
00 or more, and can improve tensile strength and strength in a tempered state, and further improve corrosion resistance.

さらに、Siの低下により従来鋼に比べ、焼戻し状態で
の靭性を著しく改善できる。
Furthermore, due to the reduction in Si content, the toughness in the tempered state can be significantly improved compared to conventional steels.

そのため、本発明鋼は家電製品、屋根板止め用ビン、ね
じおよびシャフト等の構造用鋼として好適なマルテンサ
イト系ステンレス鋼である。
Therefore, the steel of the present invention is a martensitic stainless steel suitable as structural steel for home appliances, roof plate fixing bins, screws, shafts, and the like.

また、第2発明は、第1発明にMo、Ti、V、Nbの
1種または2種以上を特定量含有させているので、第1
発明と同様の作用が得られるほか、さらに強度および耐
食性が改善される。
Moreover, the second invention is characterized in that the first invention contains a specific amount of one or more of Mo, Ti, V, and Nb.
In addition to obtaining the same effect as the invention, strength and corrosion resistance are further improved.

本発明の冷間鍛造用マルテンサイト系ステンレス鋼の製
造方法は、第1発明鋼または第2発明鋼を、800〜9
50℃の温度で2〜16時間加熱する熱処理を1回ない
し2回以上施して、結晶粒度を7〜10としかつ炭化物
を球状化させたので、従来鋼と同等の焼入れ硬さを保持
しつつ冷間鍛造性の優れた鋼を製造することができる。
The method for producing martensitic stainless steel for cold forging of the present invention includes the first invention steel or the second invention steel having a
Heat treatment at a temperature of 50°C for 2 to 16 hours is performed once or twice to reduce the grain size to 7 to 10 and to make the carbide spheroidal, so it maintains the same quenched hardness as conventional steel. It is possible to produce steel with excellent cold forgeability.

[実施例] 次に、本発明の特徴を従来鋼、比較鋼と対比させつつ、
実施例によって明らかにする。
[Example] Next, while comparing the characteristics of the present invention with conventional steel and comparative steel,
This will be clarified by examples.

第1表はこれら供試鋼の化学成分を示すものである。第
1表において、A−に鋼は本発明鋼で、A−Dは第1発
明鋼、E−には第2発明鋼である。
Table 1 shows the chemical composition of these test steels. In Table 1, A- is the steel of the present invention, A-D is the first invention steel, and E- is the second invention steel.

また、L−P鋼は比較鋼であって、LはC含有量が本発
明の組成範囲より高い比較鋼、MはC含有量が本発明の
組成範囲より低い比較鋼、NはSi含有量が本発明の組
成範囲より高い比較鋼、0はMn含有量が本発明の組成
範囲より高い比較鋼、PはCr含有量が本発明の組成範
囲より低い比較鋼である。QおよびRは従来鋼であって
、Qは5US410、Rは5US420J2にそれぞれ
相当する組成である。
In addition, L-P steel is a comparative steel, L is a comparative steel whose C content is higher than the composition range of the present invention, M is a comparative steel whose C content is lower than the composition range of the present invention, and N is a Si content. 0 is a comparative steel whose Mn content is higher than the composition range of the present invention, P is a comparative steel whose Cr content is lower than the composition range of the present invention. Q and R are conventional steels, with Q having a composition corresponding to 5US410 and R having a composition corresponding to 5US420J2, respectively.

(以下余白) 第1表の供試鋼について、第2表に示す温度および時間
で保持し、冷却速度25℃/Hrで600℃まで炉冷し
、その後空冷という条件で焼なましを施したものについ
て、その引張強さ、絞り、結晶粒度を測定し、結果を第
2表に示した。
(Left below) The test steels in Table 1 were annealed under the conditions of holding at the temperature and time shown in Table 2, furnace cooling at a cooling rate of 25°C/Hr to 600°C, and then air cooling. The tensile strength, area of area, and crystal grain size were measured, and the results are shown in Table 2.

また、第2表は1000℃で1時間保持し油焼入れをし
たものの硬さ、また上記焼入後750℃でIHr焼もど
しを行ったものについて、硬さと引張強さおよび腐食減
量を示したものである。腐食減量については、5%Na
Cl−2%820240℃の水溶液に24時間浸漬した
後、腐食減量を測定したものである。
In addition, Table 2 shows the hardness of the product that was oil-quenched at 1000°C for 1 hour, and the hardness, tensile strength, and corrosion loss of the product that was IHr tempered at 750°C after the above-mentioned quenching. It is. Regarding corrosion loss, 5% Na
The corrosion loss was measured after 24 hours of immersion in a Cl-2% 820240°C aqueous solution.

なお、引張強さおよび絞りについてはJIS4号の試験
片を作成して測定したものである。
Note that the tensile strength and area of area were measured by creating a JIS No. 4 test piece.

(以下余白) 第2表から明らかなように、C含有量が本発明の組成範
囲より高かった比較例しでは、焼鈍状態での引張強さが
57.9〜59.2kgf/論論2であって、焼なまし
状態における冷間鍛造性に劣る。また、C含有量が本発
明の組成範囲より低かった比較例Mでは、焼鈍状態での
引張強さが53kgf/m論2程度と冷間鍛造性に優れ
るものの、焼入れ硬さがHv574であって、機械的強
度において劣る。
(Left below) As is clear from Table 2, in the comparative example in which the C content was higher than the composition range of the present invention, the tensile strength in the annealed state was 57.9 to 59.2 kgf/2. Therefore, cold forgeability in the annealed state is poor. In addition, in Comparative Example M, in which the C content was lower than the composition range of the present invention, the tensile strength in the annealed state was about 53 kgf/m theory 2 and excellent cold forgeability, but the quenched hardness was Hv574. , inferior in mechanical strength.

一方、SiまたはMnの含有量が本発明の組成範囲より
高かった比較例NおよびOでは、焼鈍状態での引張強さ
が57.3〜60.3kgf/am”であって、冷間鍛
造性に劣る。また、Crの含有量が低かった比較例Pで
は、冷間鍛造性および焼入れ硬さは優れているものの、
腐食減量が8.9g/m”・Hrと耐食性に劣る。
On the other hand, in Comparative Examples N and O in which the content of Si or Mn was higher than the composition range of the present invention, the tensile strength in the annealed state was 57.3 to 60.3 kgf/am'', and the cold forgeability was Comparative example P, which had a low Cr content, had excellent cold forgeability and quenching hardness, but
Corrosion loss is 8.9 g/m"Hr, which is poor in corrosion resistance.

5US410相当の従来鋼Qは、焼鈍状態での引張強さ
が51 kg4/ −m”台であって、冷間鍛造性に優
れるが、焼入れ硬さがHv422と機械的強度が不充分
であり、S U S 420 J zに相当する従来鋼
Rは、焼鈍状態での引張強さが58.5〜59.7kg
f/−一2であって、冷間鍛造性に劣る。
Conventional steel Q equivalent to 5US410 has a tensile strength in the annealed state of 51 kg4/-m" and has excellent cold forgeability, but has an insufficient mechanical strength with a quenching hardness of Hv422. Conventional steel R, which corresponds to SUS 420 Jz, has a tensile strength of 58.5 to 59.7 kg in the annealed state.
f/--2, and poor cold forgeability.

これに対して本発明鋼であるA〜に鋼では、焼鈍状態に
おいて、8.4〜9.5と所望の結晶粒度を有するとと
もに、引張強さが53.6〜57.6kgf/am”で
あって冷間鍛造性に優れ、また焼入れ硬さはHv615
〜674であって機械的強度に優れており、本発明の効
果を確認することができた。
On the other hand, steel A~, which is the steel of the present invention, has a desired grain size of 8.4 to 9.5 and a tensile strength of 53.6 to 57.6 kgf/am'' in the annealed state. It has excellent cold forging properties and has a quenched hardness of Hv615.
674, which showed excellent mechanical strength, and the effect of the present invention could be confirmed.

なお、本発明鋼であるA−に鋼の焼鈍状態における炭化
物のミクロ組織を調べたところ、炭化物が球状化してお
り、本発明方法の熱処理により、炭化物が球状化でき、
かつ所望の冷間鍛造性の得られることが確認できた。ま
た、本発明鋼および従来鋼の焼鈍状態における衝撃値を
測定したところ、本発明鋼は従来鋼に比較して約8 k
gf簡/ am”改善されることが判明した。
In addition, when the microstructure of the carbides in A-, which is the steel of the present invention, was examined in the annealed state, the carbides were spheroidized, and the heat treatment of the method of the present invention made the carbides spheroidal.
It was also confirmed that the desired cold forgeability was obtained. In addition, when the impact values of the inventive steel and the conventional steel were measured in the annealed state, the inventive steel had a lower impact value of approximately 8 k compared to the conventional steel.
gf/am” was found to be improved.

[発明の効果コ 本発明の冷間鍛造用マルテンサイト系ステンレス鋼およ
びその製造方法は、特にSi量を0.30%以下、Mn
量を0.40%以下、S量を0.005%以下という低
い値とし、これらとC,Crの最適範囲との相乗効果と
、上記組成範囲と関連して熱処理条件を考慮することに
より、結晶粒度を7〜10となし、冷間鍛造性と機械的
強度を改善したものである0本発明によれば、焼なまし
状態テノ引張強さハ53.6〜57.6kgf/mm”
テあり、冷間鍛造性を改善することができ、また焼入れ
硬さはHv615〜674であり、かつ焼もどし状態で
の強度を向上させ、さらに耐食性を向上させることがで
きる。そのため、本発明鋼は家電製品、屋根板止め用ビ
ン、ねじおよびシャフト等の構造用鋼として用いられる
マルテンサイト系ステンレス鋼として極めて有用である
[Effects of the Invention] The martensitic stainless steel for cold forging of the present invention and its manufacturing method are particularly advantageous in that the Si content is 0.30% or less and the Mn content is 0.30% or less.
By setting the S content to a low value of 0.40% or less and the S content to a low value of 0.005% or less, and considering the synergistic effect between these and the optimum range of C and Cr, and the heat treatment conditions in relation to the above composition range, According to the present invention, which has a crystal grain size of 7 to 10 and improved cold forgeability and mechanical strength, the tensile strength in annealed state is 53.6 to 57.6 kgf/mm.
It is possible to improve the cold forgeability, the quenching hardness is Hv615 to 674, and the strength in the tempered state can be improved, and the corrosion resistance can be further improved. Therefore, the steel of the present invention is extremely useful as a martensitic stainless steel used as structural steel for home appliances, roof plate fixing bins, screws, shafts, and the like.

Claims (1)

【特許請求の範囲】 (1)重量比にしてC;0.30〜0.40%、Si;
0.30%以下、Mn;0.40%以下、S;0.00
5%以下、Cr;12.00〜14.00%を含有し、
残部Feならびに不純物元素からなることを特徴とする
冷間鍛造用マルテンサイト系ステンレス鋼。(2)重量
比にしてC;0.30〜0.40%、Si;0.30%
以下、Mn;0.40%以下、S;0.005%以下、
Cr;12.00〜14.00%を含有し、さらにMo
;1.5%以下、Ti;0.20%以下、V;0.15
%以下、Nb;0.10%以下のうち1種または2種以
上を含有し、残部Feならびに不純物元素からなること
を特徴とする冷間鍛造用マルテンサイト系ステンレス鋼
。 (3)重量比にしてC;0.30〜0.40%、Si;
0.30%以下、Mn;0.40%以下、S;0.00
5%以下、Cr;12.00〜14.00%を含有し、
残部Feならびに不純物元素からなる鋼を、800〜9
50℃の温度で2〜16時間加熱する熱処理を1回ない
し2回以上施して、結晶粒度を7〜10としかつ炭化物
を球状化させて冷間鍛造性を改善したことを特徴とする
冷間鍛造用マルテンサイト系ステンレス鋼の製造方法。 (4)重量比にしてC;0.30〜0.40%、Si;
0.30%以下、Mn;0.40%以下、S;0.00
5%以下、Cr;12.00〜14.00%を含有し、
さらにMo;1.5%以下、Ti;0.20%以下、V
;0.15%以下、Nb;0.10%以下のうち1種ま
たは2種以上を含有し、残部Feならびに不純物元素か
らなる鋼を、800〜950℃の温度で2〜16時間加
熱する熱処理を1回ないし2回以上施して、結晶粒度を
7〜10としかつ炭化物を球状化させて冷間鍛造性を改
善したことを特徴とする冷間鍛造用マルテンサイト系ス
テンレス鋼の製造方法。
[Claims] (1) C; 0.30 to 0.40% by weight, Si;
0.30% or less, Mn; 0.40% or less, S; 0.00
Contains 5% or less, Cr; 12.00 to 14.00%,
A martensitic stainless steel for cold forging, characterized in that the remainder consists of Fe and impurity elements. (2) C: 0.30-0.40%, Si: 0.30% by weight
Hereinafter, Mn: 0.40% or less, S: 0.005% or less,
Contains Cr; 12.00 to 14.00%, and further contains Mo
; 1.5% or less, Ti; 0.20% or less, V; 0.15
% or less, Nb; 0.10% or less, and the remainder consists of Fe and impurity elements. (3) C: 0.30 to 0.40%, Si;
0.30% or less, Mn; 0.40% or less, S; 0.00
Contains 5% or less, Cr; 12.00 to 14.00%,
Steel consisting of the balance Fe and impurity elements is heated to 800 to 9
A cold workpiece characterized by having been subjected to heat treatment at a temperature of 50°C for 2 to 16 hours once or twice or more to obtain a crystal grain size of 7 to 10 and to spheroidize carbides to improve cold forgeability. A method for manufacturing martensitic stainless steel for forging. (4) C: 0.30 to 0.40%, Si;
0.30% or less, Mn; 0.40% or less, S; 0.00
Contains 5% or less, Cr; 12.00 to 14.00%,
Furthermore, Mo: 1.5% or less, Ti: 0.20% or less, V
0.15% or less, Nb; 0.10% or less, and the remainder is Fe and impurity elements. Heat treatment in which steel is heated at a temperature of 800 to 950°C for 2 to 16 hours. A method for producing martensitic stainless steel for cold forging, characterized in that cold forgeability is improved by applying the following steps once or twice or more to obtain a crystal grain size of 7 to 10 and to spheroidize carbides.
JP27569189A 1989-10-23 1989-10-23 Martensitic stainless steel for cold forging and its manufacture Pending JPH03138335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27569189A JPH03138335A (en) 1989-10-23 1989-10-23 Martensitic stainless steel for cold forging and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27569189A JPH03138335A (en) 1989-10-23 1989-10-23 Martensitic stainless steel for cold forging and its manufacture

Publications (1)

Publication Number Publication Date
JPH03138335A true JPH03138335A (en) 1991-06-12

Family

ID=17559014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27569189A Pending JPH03138335A (en) 1989-10-23 1989-10-23 Martensitic stainless steel for cold forging and its manufacture

Country Status (1)

Country Link
JP (1) JPH03138335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037173A (en) * 2004-07-28 2006-02-09 Nisshin Steel Co Ltd Martensitic stainless steel for dicing saw tape frame and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037173A (en) * 2004-07-28 2006-02-09 Nisshin Steel Co Ltd Martensitic stainless steel for dicing saw tape frame and production method therefor
JP4587731B2 (en) * 2004-07-28 2010-11-24 日新製鋼株式会社 Martensitic stainless steel for dicing saw tape frame and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0081592B1 (en) Brake discs of low-carbon martensitic stainless steel
JPS6311423B2 (en)
KR100466080B1 (en) Rolling bearing steel, a method for the production thereof, and a rolling bearing component
JPS6223929A (en) Manufacture of steel for cold forging
JPS619519A (en) Manufacture of high strength steel superior in sulfide corrosion cracking resistance
JP2001316767A (en) Hot rolled steel having extremely high elastic limit and mechanical strength and particularly useful for production of automotive parts
JPS6128742B2 (en)
JPH03138335A (en) Martensitic stainless steel for cold forging and its manufacture
KR100435481B1 (en) Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface
JPS6137333B2 (en)
JPS6130653A (en) High strength spring steel
JPH04329824A (en) Production of martensitic stainless steel for cold forging
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JPS61166919A (en) Manufacture of unrefined warm-forged article having high toughness
JP2719916B2 (en) Martensitic stainless steel for cold forging and its manufacturing method
JPH02310342A (en) Martensitic stainless steel for cold forging and its manufacture
KR900007446B1 (en) Method for producing a high tensile steel having a good properties of strength resistant abraison resistant carrosion
JPS63162810A (en) Manufacture of non-heattreated hot forged product
JPS5852532B2 (en) Manufacturing method for tempered high-strength steel with excellent uniform elongation properties
JPS6148557A (en) Machine structural steel
JPH02179841A (en) Non-heattreated steel for induction hardening and its manufacture
JPH108209A (en) Non-heat treated steel excellent in cold workability, its production, and production of non-heat treated steel forged member
JPS60238416A (en) Manufacture of sucker rod for wet environment containing hydrogen sulfide
JPS61166920A (en) Manufacture of unrefined warm-forged article having high strength
JPH0310051A (en) High-carbon and high-nitrogen stainless steel having high strength and high toughness and its production