JPH03138301A - Manufacture of high density iron sintered body - Google Patents

Manufacture of high density iron sintered body

Info

Publication number
JPH03138301A
JPH03138301A JP27493389A JP27493389A JPH03138301A JP H03138301 A JPH03138301 A JP H03138301A JP 27493389 A JP27493389 A JP 27493389A JP 27493389 A JP27493389 A JP 27493389A JP H03138301 A JPH03138301 A JP H03138301A
Authority
JP
Japan
Prior art keywords
sintered body
iron
void
isolated
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27493389A
Other languages
Japanese (ja)
Inventor
Koji Hayashi
宏爾 林
Hiroshi Kihara
宏 木原
Hideki Arai
英樹 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP27493389A priority Critical patent/JPH03138301A/en
Publication of JPH03138301A publication Critical patent/JPH03138301A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered body having closeness of >=98% relative density by making carbon content in raw material iron powder used to powder metallurgical method the specific value or less. CONSTITUTION:Iron powder having <=0.01wt.% carbon content is compacted, and the obtd. compacted body is sintered. By this method, the iron sintered body having >=98% relative density of the sintered body, is obtd. What the closeness is obstructed with various kinds of gases generated or existing in isolated void in the sintered body, lies in the fact that the gas pressure in the isolated void becomes surface stress in the isolated void (driving force of shrinkage of the void) or higher. As the surface stress of void of 3mu radius is about 1.2MPa at 1400 deg.C, if the gas pressure in the isolated void is <=1.2MPa, this isolated void is shrunk and the closeness is not obstructed. Then, what the CO gas pressure equibrium to the content of carbon and oxygen in the iron becomes 1.2MPa at 1400 deg.C is 0.01wt.% carbon content in the iron. Therefore, in order to develop the closeness, the carbon content in the iron has to be <=0.01wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄粉末の焼結によって焼結体相対密度が98
%以上である高密度鉄焼結体を製造する方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is characterized in that the relative density of the sintered body is 98 by sintering iron powder.
% or more of high-density iron sintered bodies.

〔従来技術および発明が解決しようとする課題〕従来、
鉄系材料部品を粉末冶金的手法によって製造することは
一般に行われており、そのコスト面でのメリットから使
用範囲も広がっている。しかしながら、一般に焼結部品
はその内部にボアが残留しているため、溶製材に比較す
るとその諸性質が劣る場合が多い。特に、伸びや疲労強
度、衝撃値は溶製材に比べて低いため、繰り返し応力や
衝撃がかかるような箇所には焼結部品を使うことができ
ないこともある。すなわち、ボアの残留している焼結部
品においては、疲労破壊時のクラックは焼結体内部のボ
アから発生し、クラックが進むことによって破壊にいた
る。また、焼結部品に衝撃が加わった場合、焼結体内部
のボアが切り欠き効果をもつため、ボアが無い場合にく
らべ、破壊しやすい。また、純鉄は軟磁気特性に優れて
いるため軟磁性材料として多く用いられているが、軟磁
気特性は焼結体中のボアの存在によって低下する。従っ
て、これらの性質を改善し、溶製材盤にするには焼結体
内部のボアを無くす、即ち、焼結体の密度を溶製材並ま
で上げることが必要であるが、従来の粉末冶金法では焼
結部品の相対密度は高々92%程度であり、さらに高密
度品を得るためには、再圧縮の工程が必要となっている
。また、一般に高密度焼結晶が得られるとされる金属粉
末の射出成形法の場合にも、その焼結体の相対密度は9
5〜96%であり、焼結体内部に多数のボアが存在して
いる。また、焼結温度を高くしたり、焼結時間を長くし
たりしても、常圧焼結では焼結体の相対密度は96%以
上にはなりにくく、溶製材並の性質は得られない。
[Prior art and problems to be solved by the invention] Conventionally,
It is common practice to manufacture ferrous material parts by powder metallurgy, and its range of use is expanding due to its cost advantages. However, since sintered parts generally have a bore remaining inside them, their properties are often inferior to those of cast materials. In particular, since elongation, fatigue strength, and impact values are lower than those of cast materials, sintered parts may not be able to be used in areas where repeated stress or impact is applied. That is, in a sintered part in which a bore remains, a crack during fatigue failure occurs from the bore inside the sintered body, and as the crack progresses, it leads to failure. Furthermore, when an impact is applied to the sintered part, the bore inside the sintered body has a notch effect, so it is more likely to break than if there is no bore. Further, pure iron is often used as a soft magnetic material because it has excellent soft magnetic properties, but the soft magnetic properties are degraded by the presence of bores in the sintered body. Therefore, in order to improve these properties and make a molten lumber, it is necessary to eliminate the bore inside the sintered body, that is, to increase the density of the sintered body to the same level as that of molten lumber, but conventional powder metallurgy methods The relative density of sintered parts is about 92% at most, and a recompression process is required to obtain even higher density products. Furthermore, even in the case of metal powder injection molding, which is generally thought to yield high-density sintered crystals, the relative density of the sintered body is 9.
5 to 96%, and there are many bores inside the sintered body. In addition, even if the sintering temperature is increased or the sintering time is lengthened, the relative density of the sintered body is difficult to reach 96% or higher in normal pressure sintering, and properties comparable to those of ingot material cannot be obtained. .

ところで、従来の粉末冶金的手法において焼結体密度が
上がらなかった原因は、原料粉末の粒径が大きく、成形
体に含まれるボアが大きいため収縮しにくいことにある
。また、成形体の密度を92%以上に上げ、成形体に含
まれるボアの大きさを小さくすれば理論的には、十分収
縮しうるが、実際にはやはり焼結体相対密度は95%以
上にはなりにくい。このように、成形体密度を上げた場
合や、金属射出成形の様な平均粒径20Ja以下の粉末
を用いた場合にも焼結体相対密度が95%以上にならな
い原因は、焼結体中の空隙が孤立化し、閉空孔となった
後にも発生し続けるガスのためである。例えば、一般に
金属射出成形で用いられている平均粒径5I!mのカー
ボニル鉄粉には、酸素が約0.7重量%、炭素が約0.
03重量%含まれており、この粉末を成形し、水素雰囲
気中で1400℃で焼結した焼結体中には酸素が約0.
01重量%、炭素が約0.03重量%含まれている。一
方、1400℃における鉄の酸化物と水素および炭素と
の平衡は以下の様になる。
By the way, the reason why the density of the sintered compact cannot be increased in the conventional powder metallurgy method is that the grain size of the raw material powder is large and the bore included in the compact is difficult to shrink. In addition, theoretically, sufficient shrinkage can be achieved by increasing the density of the compact to 92% or more and reducing the size of the bore contained in the compact, but in reality, the relative density of the sintered compact is still over 95%. It is difficult to become. In this way, the reason why the relative density of the sintered body does not reach 95% or more even when the density of the compact is increased or when powder with an average particle size of 20 Ja or less is used as in metal injection molding is that This is because gas continues to be generated even after the voids become isolated and become closed pores. For example, the average particle size 5I, which is commonly used in metal injection molding! m carbonyl iron powder contains about 0.7% by weight of oxygen and about 0.7% by weight of carbon.
This powder is molded and sintered at 1400°C in a hydrogen atmosphere.The sintered body contains approximately 0.3% oxygen by weight.
0.01% by weight, and approximately 0.03% by weight of carbon. On the other hand, the equilibrium between iron oxide, hydrogen and carbon at 1400°C is as follows.

PeO+ H2Fe+HaO ΔG□=  RT−In are @ P++zo/a
p@o I pH2F e O+ C−一−→F e 
+ CDΔG□=  RT ・In ap@e Pco
/arso ” ”cコLm、で、aFs’ also
 ’ acはそれぞれ鉄、酸化鉄(Fen) 、炭素の
活量、P mzot P ll2T  P coはそれ
ぞれ1(20,H,、CO各ガスの圧力を表す。aFs
’aFeoを1とし、aoがRa0ultの法則に従う
として計算すると、水素1気圧(P [12= 1 a
tm)のもとでは、焼結体内部の孤立空隙内に発生する
H2Oの平衡ガス圧は0.1MPaであり、COの平衡
ガス圧は2.5MPaである。また、焼結体中に含まれ
る酸素と炭素がすべてCOガスとなり、焼結体中のボア
に閉じ込められているとすると、その圧力は25、3M
Paとなり、COガスの平衡圧より高いため、焼結体内
部の孤立空隙内のガス圧は2.5MPaになる。一方、
焼結体内部に存在する数ミクロン程度の孤立空隙の表面
張力の作用によって生じる表面応力(空隙の収縮力)σ
は、 σ=2r/r で表される。ここで、Tは鉄の表面エネルギー、rは孤
立空隙の半径である。ここで、γは1.87 N7mで
あり、rが3μとすると、このσの値は1.2MPa程
度であり、焼結体内部の孤立空隙内に発生するガス圧が
それ以上となると空隙の収縮が阻害され、焼結体の密度
も上がらなくなる。以上のことは、8.0ガスを除けば
他の還元性雰囲気や、不活性雰囲気、真空中でもおこり
、焼結体内部の孤立空隙内で発生するCOガスの圧力の
ために、焼結体密度が上がらず、焼結体相対密度96%
以上のものが得られないことになる。
PeO+ H2Fe+HaO ΔG□= RT-In are @ P++zo/a
p@o I pH2F e O+ C-1-→F e
+ CDΔG□= RT ・In ap@e Pco
/arso ” “ccoLm, aFs' also
' ac is the activity of iron, iron oxide (Fen), and carbon, respectively;
'aFeo is 1 and ao follows Ra0ult's law. If calculated, hydrogen 1 atm (P [12= 1 a
tm), the equilibrium gas pressure of H2O generated in the isolated void inside the sintered body is 0.1 MPa, and the equilibrium gas pressure of CO is 2.5 MPa. Furthermore, if all the oxygen and carbon contained in the sintered body become CO gas and are confined in the bore in the sintered body, the pressure will be 25.3M.
Pa, which is higher than the equilibrium pressure of CO gas, so the gas pressure in the isolated void inside the sintered body is 2.5 MPa. on the other hand,
Surface stress (contractile force of voids) σ caused by surface tension of isolated voids of several microns inside the sintered body
is expressed as σ=2r/r. Here, T is the surface energy of iron, and r is the radius of the isolated void. Here, γ is 1.87 N7m, and if r is 3 μ, the value of σ is about 1.2 MPa, and if the gas pressure generated in the isolated void inside the sintered body exceeds this value, the void Shrinkage is inhibited and the density of the sintered body does not increase. The above phenomenon occurs in other reducing atmospheres, inert atmospheres, and vacuums, except for 8.0 gas, and due to the pressure of CO gas generated in isolated voids inside the sintered body, the sintered body density does not increase, and the relative density of the sintered body is 96%.
You won't get anything more than that.

この発明は上記事実に鑑みて成されたものであり、その
目的は、鉄系粉末を焼結することによって焼結体の相対
密度を98%以上まで高め緻密化した焼結部品を製造す
ることにある。
This invention was made in view of the above facts, and its purpose is to increase the relative density of the sintered body to 98% or more by sintering iron-based powder, and to manufacture a dense sintered part. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、炭素含有量が0.01重量%以下である鉄
粉末を用い、これを成形し得られた成形体を焼結するこ
とによって焼結体相対密度98%以上の鉄焼結体を得る
ことを特徴とする高密度鉄焼結体の製造方法によって達
成される。
The above purpose is to produce an iron sintered body with a relative density of 98% or more by using iron powder with a carbon content of 0.01% by weight or less and sintering the resulting compact. This is achieved by a method for producing a high-density iron sintered body, which is characterized by obtaining.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

まず、焼結体内部の孤立空隙内に発生する、あるいは存
在している各種ガスによって緻密化が阻害されるのは、
前述の様に孤立空隙内部のガス圧が孤立空隙の表面応力
(空隙の収縮の駆動力)以上となるためであるが、14
00℃において半径3J−の空隙の表面応力は約1.2
MPaであり、従って孤立空隙内部のガス圧が14MP
a以下であればこの孤立空隙は収縮し、緻密化は阻害さ
れないことになる。そして、1400℃において鉄中の
炭素、酸素と平衡なCOガス圧が1.2MPaとなるの
は鉄中に含まれる炭素量が0.01重量%の場合である
ので、緻密化を起こさせるには鉄中に含まれる炭素量が
0.01重量%以下としなければならない。一般の粉末
冶金で用いられるアト′ンイズ鉄粉や金属粉末射出成形
で用いられるカーボニル鉄粉は炭素含有量0.0079
%以上であり、この条件に適しない。炭素含有io、o
i%以下の粉末としては、低炭素鉄を出発原料とし、そ
れを酸化し、粉砕・還元した粉砕粉が適している。
First, densification is inhibited by various gases generated or present in isolated voids inside the sintered body.
As mentioned above, this is because the gas pressure inside the isolated void exceeds the surface stress of the isolated void (the driving force for contraction of the void), but 14
At 00°C, the surface stress of a void with a radius of 3 J is approximately 1.2
MPa, therefore the gas pressure inside the isolated cavity is 14 MPa.
If it is less than a, this isolated void will shrink and densification will not be inhibited. At 1400°C, the CO gas pressure in equilibrium with carbon and oxygen in iron is 1.2 MPa when the amount of carbon contained in iron is 0.01% by weight, so it is difficult to cause densification. The amount of carbon contained in the iron must be 0.01% by weight or less. Atomized iron powder used in general powder metallurgy and carbonyl iron powder used in metal powder injection molding have a carbon content of 0.0079.
% or more and is not suitable for this condition. Carbon containing io, o
As the powder of i% or less, a pulverized powder obtained by using low carbon iron as a starting material, oxidizing it, pulverizing and reducing it is suitable.

次に、ある焼結温度において孤立空隙が収縮する駆動力
、すなわち、その孤立空隙に作用する表面応力は前述の
様に、孤立空隙の半径に反比例する。そして、焼結温度
において空隙内部のガス圧に緻密化を阻害されない様な
孤立空隙の半径は数層以下であるので、粉末の粒径に合
わせて成形体の密度を変え、内部の空隙の大きさを制御
する必要がある。例えば、平均粒径10−以下の粉末で
は、成形体相対密度50%以上、25#lの粉末では8
0%以上にすることが望ましい。成形体の形状は格別限
定されるものではなく、また、成形方法も従来公知の方
法を採ることができる。
Next, the driving force that causes the isolated void to contract at a certain sintering temperature, that is, the surface stress that acts on the isolated void, is inversely proportional to the radius of the isolated void, as described above. At the sintering temperature, the radius of an isolated void where densification is not inhibited by the gas pressure inside the void is several layers or less, so the density of the compact is changed according to the particle size of the powder, and the internal void size is need to be controlled. For example, for a powder with an average particle size of 10 - or less, the relative density of the compact is 50% or more, and for a powder of 25 #l, it is 8.
It is desirable to set it to 0% or more. The shape of the molded body is not particularly limited, and the molding method can be any conventionally known method.

また、面相焼結によって焼結体相対密度98%以上の鉄
系焼結体を得るには、焼結温度として1250℃以上の
温度が好ましい。特に、δ相になる1400℃以上の温
度で焼結することは拡散速度が大きくなるので一層好ま
しい。焼結は炭素を含まない還元ガス雰囲気中、不活性
ガス雰囲気中(常圧〜減圧下)および真空下にて行うこ
とができるが、低酸素の焼結体を得るには炭素を含まな
い還元ガス雰囲気中で行うことが好ましい。
Further, in order to obtain an iron-based sintered body having a relative density of 98% or more by phase sintering, the sintering temperature is preferably 1250° C. or higher. In particular, it is more preferable to sinter at a temperature of 1400° C. or higher to form the δ phase because the diffusion rate increases. Sintering can be performed in a reducing gas atmosphere that does not contain carbon, in an inert gas atmosphere (at normal pressure to reduced pressure), or under vacuum, but in order to obtain a low-oxygen sintered body, reduction that does not contain carbon is necessary. Preferably, this is carried out in a gas atmosphere.

〔作 用〕[For production]

この発明の方法によれば、鉄系粉末中の炭素量が0.0
1重量%以下であるので、その成形体の焼結時にCOガ
スの圧力によって焼結体内部の孤立空隙の収縮が妨げら
れることがなく、相対密度98%以上の焼結体が得られ
る。
According to the method of this invention, the amount of carbon in the iron-based powder is 0.0
Since it is 1% by weight or less, the contraction of isolated voids inside the sintered body is not hindered by the pressure of CO gas during sintering of the compact, and a sintered body with a relative density of 98% or more can be obtained.

〔実施例〕〔Example〕

以下、実施例によってこの発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 原料粉末として、平均粒径25−の低炭素鉄粉く酸素量
、0.4重量%、炭素量、0.006重量%)を用い、
3t/crlの圧力でプレス成形し、直径20市高さ1
0 mm 、相対密度85%の成形体を得た。
Example 1 Low carbon iron powder with an average particle size of 25% (oxygen content: 0.4% by weight, carbon content: 0.006% by weight) was used as the raw material powder,
Press-formed at a pressure of 3t/crl, diameter 20 city height 1
A molded article having a diameter of 0 mm and a relative density of 85% was obtained.

また、比較として、平均粒径5−のカーボニル鉄粉(酸
素量、0.3重量%、炭素量、0.03重量%)の成形
体も同様にして得た。
For comparison, a molded body of carbonyl iron powder (oxygen content, 0.3% by weight, carbon content, 0.03% by weight) with an average particle size of 5 was also obtained in the same manner.

次いで、上記成形体を10−’Torr程度の真空中で
1400℃で1時間焼結した。焼結体の密度、組織の結
果を第1表に示す。カーボニル鉄粉では焼結体相対密度
は96%より高くならず、また焼結体組織も空隙の存在
が認められるが、低炭素鉄粉末では空隙のほとんどない
緻密な焼結体が得られた。
Next, the molded body was sintered at 1400°C for 1 hour in a vacuum of about 10-' Torr. Table 1 shows the results of the density and structure of the sintered body. With carbonyl iron powder, the relative density of the sintered body did not become higher than 96%, and the presence of voids was observed in the structure of the sintered body, but with the low carbon iron powder, a dense sintered body with almost no voids was obtained.

第1表 〔発明の効果〕 本発明の方法によれば、鉄粉末として炭素含有量が0.
01重量%以下の低炭素鉄粉末を用いるため、焼結体内
部の孤立空隙内のガスの圧力を下げることが出来、焼結
体相対密度98%以上の焼結体を1回の焼結によって得
ることができる。
Table 1 [Effects of the Invention] According to the method of the present invention, the iron powder has a carbon content of 0.
Since low carbon iron powder of 0.1% by weight or less is used, it is possible to reduce the gas pressure in isolated voids inside the sintered body, and a sintered body with a relative density of 98% or more can be produced by one sintering process. Obtainable.

Claims (1)

【特許請求の範囲】 1、原料粉末として炭素含有量が0.01重量%以下で
ある鉄粉末を用い、これを成形し、得られた成形体を焼
結することによって焼結体相対密度98%以上の鉄焼結
体を得ることを特徴とする高密度鉄焼結体の製造方法。 2、鉄の含有量が99重量%以上である鉄粉末を用いる
請求項1に記載の高密度鉄焼結体の製造方法。 3、1250℃以上において焼結する請求項1に記載の
高密度鉄焼結体の製造方法。
[Claims] 1. Using iron powder with a carbon content of 0.01% by weight or less as a raw material powder, molding it and sintering the resulting molded body, the relative density of the sintered body is 98. A method for producing a high-density iron sintered body, characterized by obtaining an iron sintered body of % or more. 2. The method for producing a high-density iron sintered body according to claim 1, wherein iron powder having an iron content of 99% by weight or more is used. 3. The method for producing a high-density iron sintered body according to claim 1, wherein the sintering is performed at 1250°C or higher.
JP27493389A 1989-10-24 1989-10-24 Manufacture of high density iron sintered body Pending JPH03138301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27493389A JPH03138301A (en) 1989-10-24 1989-10-24 Manufacture of high density iron sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27493389A JPH03138301A (en) 1989-10-24 1989-10-24 Manufacture of high density iron sintered body

Publications (1)

Publication Number Publication Date
JPH03138301A true JPH03138301A (en) 1991-06-12

Family

ID=17548569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27493389A Pending JPH03138301A (en) 1989-10-24 1989-10-24 Manufacture of high density iron sintered body

Country Status (1)

Country Link
JP (1) JPH03138301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7726881B2 (en) * 2004-08-05 2010-06-01 Panasonic Corporation Hydrodynamic bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7726881B2 (en) * 2004-08-05 2010-06-01 Panasonic Corporation Hydrodynamic bearing device

Similar Documents

Publication Publication Date Title
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
CA2823267C (en) Iron based powders for powder injection molding
US3999216A (en) Material for magnetic transducer heads
JPH01142002A (en) Alloy steel powder for powder metallurgy
US4719078A (en) Method of sintering compacts
KR100496173B1 (en) Method for the preparation of a rare earth permanent magnet
US5067979A (en) Sintered bodies and production process thereof
JPH03138301A (en) Manufacture of high density iron sintered body
US3109735A (en) Sintering method
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
JPS62196306A (en) Production of double layer tungsten alloy
JP2689486B2 (en) Method for producing low oxygen powder high speed tool steel
JPH02205655A (en) Manufacture of high density ferrous sintered body
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JPS6314838A (en) Production of fe-si type sintered soft magnetic material
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
JP2945115B2 (en) Method for producing large sintered body made of iron-based metal powder
JPH03277734A (en) Manufacture of high density nickel series sintered body
US2970052A (en) Method for hardening metals
JPH01184204A (en) Method for pretreating injecting molded body for producing sintered member
JP3135555B2 (en) High speed tool steel sintered body
JPS6358897B2 (en)
JPH04176802A (en) Production of high density sintered body
JPS6358896B2 (en)
JPS6248721B2 (en)