JPH0313801B2 - - Google Patents

Info

Publication number
JPH0313801B2
JPH0313801B2 JP2655681A JP2655681A JPH0313801B2 JP H0313801 B2 JPH0313801 B2 JP H0313801B2 JP 2655681 A JP2655681 A JP 2655681A JP 2655681 A JP2655681 A JP 2655681A JP H0313801 B2 JPH0313801 B2 JP H0313801B2
Authority
JP
Japan
Prior art keywords
circuit
signal
atc
output
chart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2655681A
Other languages
Japanese (ja)
Other versions
JPS57142106A (en
Inventor
Masashi Okuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2655681A priority Critical patent/JPS57142106A/en
Publication of JPS57142106A publication Critical patent/JPS57142106A/en
Publication of JPH0313801B2 publication Critical patent/JPH0313801B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
    • B61L3/16Continuous control along the route
    • B61L3/22Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation
    • B61L3/221Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation using track circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 この発明は、自動列車制御(略称ATC)装置
において、受信したATC信号のデイジタル化に
よりその選択回路を構成した車上受信器に関する
もので、信号選択回路の小形化を図ると共に、
ATC閉そく区間の境界近傍において混合して受
信される信号の何れか一つを確実に選択するこの
種機器の提供を目的とする。
[Detailed Description of the Invention] The present invention relates to an on-board receiver in an automatic train control (abbreviated as ATC) device, in which a selection circuit is constructed by digitizing received ATC signals, and it is possible to downsize the signal selection circuit. While aiming for
The object of the present invention is to provide a device of this kind that reliably selects any one of the mixed signals received near the boundary of an ATC block section.

第1図は従来のATC車上受信器構成の1例を
示す回路ブロツク図で、RAは地上に布設されて
いる1対の軌条に対向する如く車上に垂設される
2個の受信コイルを組合せてなる車上アンテナ回
路、Tは整合変成器、F1,F2は周波数の異なる
信号搬送波f1,f2をそれぞれ選択通過させるフイ
ルタおよび増巾器、検波器等からなる検波回路、
Flは低速ATC信号flを選択通過させるフイルタ
およびレベル検知器、増巾器、整流器等からなる
信号選択回路で、ATC信号flの受信により受信
リレーRlを駆動する。同様にFm、Fhはそれぞれ
中速ATC信号fm、高速ATC信号fhの選択回路
で、ATC信号fmまたはfhを受信してそれぞれの
受信リレーRmまたはRhを駆動する。また第2図
は第1図の受信リレーRl,Rm,Rhの接点を組
合せて構成した下位速度優先回路の1例で、下位
(低速)速度ATC信号受信リレーの復旧条件のも
とでのみ上位(高速)の速度制御が許される。
Figure 1 is a circuit block diagram showing an example of a conventional ATC on-board receiver configuration, where RA is a block diagram of two receiving coils installed vertically above the car, facing a pair of rails laid on the ground. T is a matching transformer, F 1 and F 2 are a detection circuit consisting of a filter, an amplifier, a detector, etc., which selectively pass signal carrier waves f 1 and f 2 of different frequencies, respectively;
Fl is a signal selection circuit consisting of a filter that selectively passes the low-speed ATC signal fl, a level detector, an amplifier, a rectifier, etc., and drives the reception relay Rl by receiving the ATC signal fl. Similarly, Fm and Fh are selection circuits for a medium-speed ATC signal fm and a high-speed ATC signal fh, respectively, which receive the ATC signal fm or fh and drive the respective receiving relays Rm or Rh. Figure 2 is an example of a lower speed priority circuit configured by combining the contacts of the receiving relays Rl, Rm, and Rh shown in Figure 1. (high speed) speed control is permitted.

上記第1図について説明したように、従来は検
波回路F1,F2に含めてある帯域通過フイルタに
より搬送波f1と搬送波f2に分離して復調したATC
信号を、選択回路Fl,Fm,Fhによつて低速
(ls)、中速(ms)、高速(hs)のATC信号にそれ
ぞれ分離、選択して第2図に示す下位速度優先回
路から出力する。しかるに選択回路Fl,Fm,Fh
等は、ATC信号が信号対雑音比(S/N)の点
から、通常10〜100(Hz)程度の低い周波数
を採用しているため、それら低周波の選択フイル
タはLCフイルタ、アクテイブCRフイルタなどに
よりアナログ的に処理されていて回路部品が大形
になることを免れ得ない欠点があつた。
As explained with reference to Fig. 1 above, in the past, ATC separated into carrier wave f 1 and carrier wave f 2 and demodulated using band pass filters included in detection circuits F 1 and F 2 .
The signals are separated into low-speed (ls), medium-speed (ms), and high-speed (hs) ATC signals by selection circuits Fl, Fm, and Fh, and are selected and output from the lower speed priority circuit shown in Figure 2. . However, the selection circuits Fl, Fm, Fh
etc., the ATC signal usually uses a low frequency of about 10 to 100 (Hz) from the point of view of signal-to-noise ratio (S/N), so the selection filter for these low frequencies is an LC filter or an active CR filter. The disadvantage was that the circuit components were inevitably large in size because they were processed in an analog manner.

それゆえ、ATC信号の各選択回路を小形化す
る手段として、該回路のデイジタル化が提案され
ている。第3図はその1例図で、第1図に示した
搬送波f1,f2の検波回路F1,F2の出力側共通回路
にシユミツト回路等による波形整形回路SM、第
5図にデイジタル化の具体例を示すATC信号選
択回路の1例たる周期測定回路Cおよび第2図の
如きリレー接点によらないで、例えば特開昭55−
153201号公報に記載の「優先選択回路」の如き電
子回路で構成された下位速度優先回路P等で構成
されたATC受信器の回路例である。ただし下位
速度優先回路Pの出力記号ls、ms、hs、Osはそ
れぞれ低速、中速、高速、停止の各出力信号であ
る。
Therefore, as a means of downsizing each ATC signal selection circuit, digitization of the circuit has been proposed. Figure 3 shows an example of this.The common circuit on the output side of the detection circuits F1 and F2 for carrier waves f1 and f2 shown in Figure 1 is a waveform shaping circuit SM using a Schmitt circuit, etc., and Figure 5 shows a digital waveform shaping circuit SM. A period measuring circuit C is an example of an ATC signal selection circuit which shows a specific example of the ATC signal selection circuit.
This is an example of a circuit of an ATC receiver configured with a lower speed priority circuit P, etc. configured with an electronic circuit such as the "priority selection circuit" described in Publication No. 153201. However, the output symbols ls, ms, hs, and Os of the lower speed priority circuit P are low speed, medium speed, high speed, and stop output signals, respectively.

しかし第3図に示した如き単なる回路のデジタ
ル化では解決困難な問題がある。すなわち軌道回
路の絶縁破壊などによつて他区間から流入する列
車検知信号の受信を阻止するために2種の搬送波
f1,f2が隣接する閉そく区間に交互に用いられて
いる。従つてATC閉そく区間の境界では搬送波
の異なる二つの信号波が混合して受信されること
になり、2波の相互の振巾関係で波形の歪がおき
る。そのため第3図の如き回路でデイジタル的に
信号数の選択測定を行なうと誤信号出力または無
信号となる。
However, there are problems that are difficult to solve by simply digitizing the circuit as shown in FIG. In other words, two types of carrier waves are used to prevent reception of train detection signals flowing in from other sections due to dielectric breakdown of the track circuit.
f 1 and f 2 are used alternately in adjacent block sections. Therefore, at the boundary of the ATC block section, two signal waves with different carrier waves are mixed and received, and waveform distortion occurs due to the mutual amplitude relationship of the two waves. Therefore, if the number of signals is selectively measured digitally using a circuit as shown in FIG. 3, an erroneous signal will be output or no signal will be output.

上述の状態を第4図のタイムチヤートによつて
説明すると、同図のチヤートaを、任意のATC
閉そく区間における搬送波f1を振巾変調した
ATC信号fmを示すものとし、チヤートbを前記
区間に隣接する前方閉そく区間の搬送波f2を振巾
変調したATC信号flを示すものとすると、第3
図の検波回路F1によつて検波され復調した信号
fmは第4図のチヤートcに示す如き方形波信号
として出力し、検波回路F2によつて検波復調し
た信号flはチヤートdに示す如き方形波信号とし
て出力する。従つて前記任意の閉そく区間におけ
る列車が進行して第1図のアンテナ回路RAが前
記両区間の境界上に来ると、上述の如く二つの信
号波fmとflが混合して受信され、第3図の波形整
形回路SMに入力する信号波は第4図のチヤート
cとdの波形を混合したチヤートeに示す如き波
形となり、波形整形回路SMでレベル判定された
後、周期測定回路Cに入力する波形は第4図のチ
ヤートfに示す如く、信号fm,flの何れの周期に
も合致しない周期不定の波形となり、周期測定回
路CによるATC信号の選択は不能になる。
To explain the above state using the time chart in Figure 4, chart a in the figure can be set to any ATC.
The carrier wave f 1 in the block section is amplitude modulated.
Assuming that chart b represents the ATC signal fm and the chart b represents the ATC signal fl that is amplitude-modulated on the carrier wave f 2 of the forward block section adjacent to the aforementioned section, the third
Signal detected and demodulated by the detection circuit F1 shown in the figure
fm is output as a square wave signal as shown in chart c of FIG. 4, and signal fl detected and demodulated by the detection circuit F2 is output as a square wave signal as shown in chart d. Therefore, when the train in the arbitrary block section advances and the antenna circuit RA of FIG. 1 comes to the boundary between the two sections, the two signal waves fm and fl are mixed and received as described above, The signal wave input to the waveform shaping circuit SM in the figure has a waveform as shown in chart e, which is a mixture of the waveforms in charts c and d in Figure 4, and after the level is determined by the waveform shaping circuit SM, it is input to the period measuring circuit C As shown in chart f in FIG. 4, the resulting waveform is a waveform with an indefinite period that does not match the period of either signal fm or fl, making it impossible for period measuring circuit C to select the ATC signal.

ここでATC信号選択のデジタル回路として示
した第3図の周期測定回路Cのデイジタル化した
具体例の一つを第5図に示す。同図は第3図の検
波回路F1またはF2で検波復調された後波形整形
回路SMでレベル判定されて入力するATC信号
fl,fm,fh等を代表する入力信号sをクロツクパ
ルスcpでシフトして出力するシフトレジスタR
と、ATC信号fl,fm,fhの各ATC信号に対応す
るアンドゲートAl,Am,Ahとを設け、レジス
タRの1群のシフトビツト出力回路のそれぞれ
に、アンドゲートAl,Am,Ahの各1群の入力
回路を図示のように並列に接続し、各アンドゲー
トの複数の入力回路の中に図示記号で示されてい
るインバータ(極性反転回路)を、入力信号のそ
れぞれの選別周期に対応して適宜挿入したもので
ある。
FIG. 5 shows a specific example of the period measuring circuit C shown in FIG. 3, which is shown here as a digital circuit for ATC signal selection, which has been digitized. The figure shows the ATC signal that is detected and demodulated by the detection circuit F 1 or F 2 in Figure 3, and then its level is determined by the waveform shaping circuit SM.
Shift register R that shifts the input signal s representing fl, fm, fh, etc. using a clock pulse cp and outputs it.
and AND gates Al, Am, and Ah corresponding to the ATC signals fl, fm, and fh. The input circuits of the group are connected in parallel as shown in the figure, and the inverters (polarity inverting circuits) indicated by the symbols in the multiple input circuits of each AND gate are connected in parallel to each other for each selection period of the input signal. It has been inserted as appropriate.

第6図は第5図の回路の動作状態を表わしたタ
イムチヤートで、第6図のチヤートaはシフトレ
ジスタRに入力する低速ATC信号flの信号波形、
チヤートbはチヤートaの信号波がクロツクパル
スcpにより2値の論理値のデイジタル化された
状態を示すシフトレジスタRの出力論理値、チヤ
ートcはアンドゲートAlにおける総ての入力が
論理値“1”となる条件においてのみ発生するゲ
ートAlの出力パルスを示し、入力回路に挿入さ
れるインバータの配置によつて、入力信号flの周
期Tlごとに発生する。同様にチヤートdは中速
ATC信号fmの信号波形、チヤートeはチヤート
dの信号波に対応するシフトレジスタRの出力論
理値、チヤートfは信号fmの周期Tmごとに発生
するアンドゲートAmの出力パルス、チヤートg
は高速ATC信号fhの信号波形、チヤートhはチ
ヤートgの信号波に対応するシフトレジスタRの
出力論理値、チヤートiは信号fhの周期Thごと
に発生するアンドゲートAhの出力パルスである。
6 is a time chart showing the operating state of the circuit in FIG. 5. Chart a in FIG. 6 is the signal waveform of the low-speed ATC signal fl input to the shift register R;
Chart b shows the output logic value of shift register R indicating the state in which the signal wave of chart A is digitized into a binary logic value by clock pulse cp, and chart c shows that all inputs to AND gate Al are logic value "1". This shows the output pulse of the gate Al that is generated only under the conditions where , and is generated every cycle Tl of the input signal fl depending on the arrangement of the inverter inserted in the input circuit. Similarly, chart d is medium speed
The signal waveform of ATC signal fm, chart e is the output logical value of shift register R corresponding to the signal wave of chart d, chart f is the output pulse of AND gate Am generated every cycle Tm of signal fm, chart g
is the signal waveform of the high-speed ATC signal fh, chart h is the output logical value of shift register R corresponding to the signal wave of chart g, and chart i is the output pulse of AND gate Ah generated every period Th of signal fh.

第5図のアンドゲートAl,Am,Ahには信号
fl,fm,fhに対応するシフトレジスタRの出力が
何れも入力するが、第6図に示すように、各アン
ドゲートのアンド条件を満足する周期の信号に対
してのみ周期ごとの出力パルスを発生するから、
各アンドゲートの出力パルスの周期Tl,Tm,
ThによつてATC信号fl,fm,fhをそれぞれ選別
分離することができる。しかし、さきに述べたよ
うに、ATC閉そく区間の境界近傍において、二
つの信号波が混合して受信され、第4図のチヤー
トe,fに示したような形状、周期等の不定な信
号波が形成されて入力すると、アンドゲートAl,
Am,Ahの何れのアンド条件も満足することが
できず、周期測定回路Cは出力不能となる。
The AND gates Al, Am, and Ah in Figure 5 have signals.
The outputs of the shift registers R corresponding to fl, fm, and fh are all input, but as shown in Figure 6, the output pulse for each period is output only for the signal with a period that satisfies the AND condition of each AND gate. Because it occurs,
Periods of output pulses of each AND gate Tl, Tm,
The ATC signals fl, fm, and fh can be selected and separated by Th. However, as mentioned earlier, two signal waves are mixed and received near the boundary of the ATC block section, resulting in a signal wave with an irregular shape and period as shown in charts e and f in Figure 4. is formed and input, and gate Al,
Neither of the AND conditions Am or Ah can be satisfied, and the period measuring circuit C becomes unable to output.

本発明は上述のATC閉そく区間の境界近傍に
おける異なる信号の受信レベルを比較し、高レベ
ルの信号を選択してその周波数選別を行なうよう
にしたもので、信号選択回路のデイジタル化によ
り装置を小形化すると共に、前述の如き出力不能
を生ずる如き欠点を除去したものである。
The present invention compares the reception levels of different signals near the boundary of the ATC block section mentioned above, selects a high-level signal, and performs frequency selection.The device can be made smaller by digitizing the signal selection circuit. In addition, the above-mentioned drawbacks such as the inability to output are eliminated.

つぎに本発明の実施例を第7図および第8図に
よつて説明する。第7図はATC閉そく区間の境
界付近において、異なる搬送波および信号波が同
時に受信される場合、何れか一方のATC信号を
確実に選択してその周期測定を行なうようにした
場合の回路例である。すなわち、同図のF1A,
F2Aはそれぞれ搬送波f1,f2の通過帯域フイルタ
と増巾器とからなる搬送波選択回路であり、LC
は搬送波f1,f2の受信レベル比較回路、Xはレベ
ルの高い方の搬送波に出力を切替える切替回路、
Dは信号の検波復調回路、SMは波形整形回路、
Cは周波数選別の一手段としての例えば第5図に
示した如き周期測定回路、Pは第3図で述べたの
と同様な下位速優先回路である。
Next, an embodiment of the present invention will be described with reference to FIGS. 7 and 8. Figure 7 is an example of a circuit in which when different carrier waves and signal waves are received at the same time near the boundary of an ATC block section, one of the ATC signals is reliably selected and its period is measured. . In other words, F 1 A in the same figure,
F 2 A is a carrier wave selection circuit consisting of a passband filter and an amplifier for carrier waves f 1 and f 2 , respectively;
is a reception level comparison circuit for carrier waves f 1 and f 2 , X is a switching circuit that switches the output to the carrier wave with a higher level,
D is a signal detection demodulation circuit, SM is a waveform shaping circuit,
C is a period measuring circuit as shown in FIG. 5 as a means of frequency selection, and P is a lower speed priority circuit similar to that described in FIG. 3.

第8図は隣接するATC閉そく区間の境界付近
における第7図の回路の動作状態を示すタイムチ
ヤートである。列車から搬送波f1、信号fmの
ATC閉そく区間から搬送波f2、信号flの閉そく区
間に進入する場合、両区間の境界付近において搬
送波f1の選択増巾回路F1Aの出力波形は第8図の
チヤートaに示すように、その出力レベルが漸次
減衰するのに対し、搬送波f2の選択増巾回路F2A
の出力波形はチヤートbに示すように、その出力
レベルが漸次増大する。従つてレベル比較回路
LCの出力はチヤートcに示すように、受信レベ
ルのf1>f2を示す出力状態からf1<f2を示す出力
状態に変化し、切替回路Xの出力波はチヤートd
に示す如く、搬送波f1、信号fmの波形から波送
波f2、信号flの波に切替えられる。従つて、チヤ
ートeに示すそれまでの搬送波f1による信号fm
の出力が断たれ、代つてチヤートfに示す、搬送
波をf2とする信号flの出力が検波復調回路Dに入
力し、復調されて波形整形回路SMでレベル判定
された後、周期測定回路Cにおいて周期測定手段
による周波数選択が行なわれて下位速度優先回路
Pに入力し、その速度条件による出力がATC車
上装置の速度照査回路(図示省略)に入力して列
車のブレーキ制御を自動的に行なうのである。
FIG. 8 is a time chart showing the operating state of the circuit of FIG. 7 near the boundary between adjacent ATC block sections. Carrier wave f 1 from the train, signal fm
When entering the block section of the carrier wave f 2 and signal fl from the ATC block section, the output waveform of the selective amplification circuit F 1 A of the carrier wave f 1 near the boundary between the two sections is as shown in chart a of FIG. Selective amplification circuit F 2 A of carrier wave F 2 whereas its output level is gradually attenuated
As shown in chart b, the output level of the output waveform gradually increases. Therefore, the level comparison circuit
As shown in chart c, the output of the LC changes from the output state showing the receiving level f 1 > f 2 to the output state showing f 1 < f 2 , and the output wave of the switching circuit
As shown in the figure, the waveform of the carrier wave f 1 and the signal fm is switched to the waveform of the carrier wave f 2 and the signal fl. Therefore, the signal fm due to the previous carrier wave f1 shown in chart e
The output of the signal fl is cut off, and instead, the output of the signal fl whose carrier wave is f2 , shown in chart f, is input to the detection demodulation circuit D, where it is demodulated and the level is determined by the waveform shaping circuit SM. The frequency is selected by the period measuring means and inputted to the lower speed priority circuit P, and the output based on the speed condition is inputted to the speed checking circuit (not shown) of the ATC onboard device to automatically control the train's brakes. I will do it.

なお、周期測定回路Cの出力は、第5図の回路
を例としてパルス交流出力の場合を示したが、直
流出力の場合も同様である。さらにまた、第7図
のレベル比較回路LCの比較特性にヒステリシス
を設けることにより、列車が搬送波f1,f2の同レ
ベル位置に停止したときの不安定動作を防止する
ことができる。また上記の実施例では検波復調さ
れたATC信号のデイジタル的な選択回路に、信
号の周期測定回路を用いて周波数選択手段とした
が、他の手段、例えば一定時間内の信号波を計数
して選別するデイジタル的な周波数選別手段があ
り、必しも周期測定手段に限定されるものではな
い。また第7図の説明では、復調する回路を切替
回路Xの出力側に挿入することで説明したが搬送
波選択回路F1A,F2Aの後で復調をし、その出力
をレベル比較回路LCおよび切替回路Xに入力し
ても同様の効果がある。
Although the output of the period measuring circuit C is a pulsed AC output using the circuit shown in FIG. 5 as an example, the same applies to a DC output. Furthermore, by providing hysteresis in the comparison characteristics of the level comparison circuit LC shown in FIG. 7, it is possible to prevent unstable operation when the train stops at the same level position of the carrier waves f 1 and f 2 . In addition, in the above embodiment, a signal period measuring circuit is used as a frequency selection means in the digital selection circuit of the ATC signal detected and demodulated, but other means, for example, counting the signal waves within a certain period of time, is used as the frequency selection means. There are digital frequency selection means for selection, and are not necessarily limited to period measurement means. Furthermore , in the explanation of Fig . 7, the explanation was given by inserting a demodulating circuit on the output side of the switching circuit A similar effect can be obtained by inputting the signal to the switching circuit X.

以上の実施例によつて説明した如く、本発明は
ATC信号の選択回路をデイジタル的に構成して
小形化すると共に、ATC閉そく区間の境界付近
において混合して受信されるATC信号の何れか
一つを確実に選別する手段を提供したもので、
ATCの運営上極めて顕著な効果を奏するもので
ある。
As explained through the above embodiments, the present invention
The ATC signal selection circuit is digitally configured and miniaturized, and a means is provided for reliably selecting one of the ATC signals mixed and received near the boundary of the ATC block section.
This will have an extremely significant effect on ATC operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のATC車上受信器構成の1例を
示すブロツク図、第2図は第1図の受信リレーに
よる下位速度優先回路の1例図、第3図はATC
信号選択回路をデイジタル化した車上受信器の1
例を示すブロツク図、第4図は第3図の車上受信
器の動作説明用タイムチヤート、第5図はデイジ
タル化したATC信号周期測定回路の1例図、第
6図は同上回路の動作説明用タイムチヤート、第
7図は本発明の1実施例を示すATC車上受信器
構成の回路ブロツク図、第8図は同上回路の動作
説明用タイムチヤートである。 f1,f2:搬送波、fl,fm,fh:ATC信号、
F1A,F2A:搬送波選択回路、LC:レベル比較
回路、X:切替回路、D:検波復調回路、C:周
期測定回路、P:下位速度優先回路。
Figure 1 is a block diagram showing an example of a conventional ATC onboard receiver configuration, Figure 2 is an example of a lower speed priority circuit using the reception relay in Figure 1, and Figure 3 is an ATC onboard receiver configuration.
On-vehicle receiver with digitalized signal selection circuit 1
A block diagram showing an example, Fig. 4 is a time chart for explaining the operation of the on-vehicle receiver in Fig. 3, Fig. 5 is an example diagram of a digitized ATC signal period measuring circuit, and Fig. 6 is an operation of the same circuit. FIG. 7 is a circuit block diagram of an ATC on-vehicle receiver configuration showing one embodiment of the present invention, and FIG. 8 is a time chart for explaining the operation of the same circuit. f 1 , f 2 : carrier wave, fl, fm, fh : ATC signal,
F 1 A, F 2 A: carrier selection circuit, LC: level comparison circuit, X: switching circuit, D: detection demodulation circuit, C: period measurement circuit, P: lower speed priority circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 隣接する閉そく区間で互に周波数を異にする
搬送波により送信される列車制御信号を車上に受
信し、受信した前記信号を搬送波別に分離する自
動列車制御車上受信器において、搬送波別に分離
された列車制御信号のレベル比較回路と、この比
較回路の出力により高レベルの受信搬送波を選択
出力する切替回路とを設け、この切替回路の出力
信号を検波復調してデイジタル化した周波数選択
回路で周波数選別を行なうことを特徴とする自動
列車制御車上受信器。
1. In an automatic train control onboard receiver that receives train control signals transmitted by carrier waves with different frequencies in adjacent block sections onboard the train, and separates the received signals by carrier wave, A level comparison circuit for a train control signal, and a switching circuit that selects and outputs a received carrier wave with a high level based on the output of this comparison circuit are provided.The output signal of this switching circuit is detected and demodulated and digitized by a frequency selection circuit. An automatic train control on-board receiver characterized by performing selection.
JP2655681A 1981-02-25 1981-02-25 Vehicular receiver in automatic train controlling system Granted JPS57142106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2655681A JPS57142106A (en) 1981-02-25 1981-02-25 Vehicular receiver in automatic train controlling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2655681A JPS57142106A (en) 1981-02-25 1981-02-25 Vehicular receiver in automatic train controlling system

Publications (2)

Publication Number Publication Date
JPS57142106A JPS57142106A (en) 1982-09-02
JPH0313801B2 true JPH0313801B2 (en) 1991-02-25

Family

ID=12196798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2655681A Granted JPS57142106A (en) 1981-02-25 1981-02-25 Vehicular receiver in automatic train controlling system

Country Status (1)

Country Link
JP (1) JPS57142106A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713888B2 (en) * 1986-08-25 1998-02-16 株式会社東芝 Frequency detector for train
DE102011083122A1 (en) * 2011-09-21 2013-03-21 Siemens Aktiengesellschaft Method for operating a vehicle-side receiving device of a train control system and vehicle-side receiving device

Also Published As

Publication number Publication date
JPS57142106A (en) 1982-09-02

Similar Documents

Publication Publication Date Title
US5001374A (en) Digital filter for removing short duration noise
US5001728A (en) Method and apparatus for demodulating a biphase signal
JPH0129469B2 (en)
JPS58182356A (en) Measuring system of bit error rate
US4495529A (en) Qualifier circuit
WO1994012888A1 (en) Method and apparatus for discriminating computer network signals
JPH0313801B2 (en)
US3979685A (en) Frequency shift key demodulator
CA1171139A (en) Dual mode tone detector circuit
TW550911B (en) FSK/GFSK signal receiver with the function of digitally compensating frequency offset and the receiving method of the same
US4405837A (en) Tone detector circuit
EP0245038B1 (en) Discriminating circuit for discriminating color television system
US5272448A (en) Method and apparatus to perform digital demodulation by measuring periods between zero crossings
JP2000134269A (en) On-vehicle lan system and data transmitter-receiver
JP2001219849A (en) Ground transmitter, receiver, and transmitter-receiver for track circuit
SU652014A1 (en) Receiver for locomotive signalling system
JPS61225980A (en) Pulse noise eliminating circuit
SU1508241A1 (en) Device for differentiating between frequency signals
JPS5764170A (en) Zero cross detecting circuit
SU1647603A1 (en) Radio signal recognition device
JPS61195045A (en) Circuit for demodulating supervisory control signal
SU1107159A1 (en) Device for processing information
SU736019A1 (en) Phase meter
JPS5912844Y2 (en) FS signal demodulator
JPH0235947B2 (en) PIIKUKENSHUTSUSOCHI