JPH03137551A - Detecting method of moisture - Google Patents

Detecting method of moisture

Info

Publication number
JPH03137551A
JPH03137551A JP27506489A JP27506489A JPH03137551A JP H03137551 A JPH03137551 A JP H03137551A JP 27506489 A JP27506489 A JP 27506489A JP 27506489 A JP27506489 A JP 27506489A JP H03137551 A JPH03137551 A JP H03137551A
Authority
JP
Japan
Prior art keywords
moisture
output
calibration curve
measured
medium support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27506489A
Other languages
Japanese (ja)
Other versions
JPH07119722B2 (en
Inventor
Yoshiharu Nakawa
良春 名川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP1275064A priority Critical patent/JPH07119722B2/en
Publication of JPH03137551A publication Critical patent/JPH03137551A/en
Publication of JPH07119722B2 publication Critical patent/JPH07119722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To conduct accurate and quick measurement by a method wherein a plurality of standard samples are measured, working curves thereof are stored, the working curve approximated by an output of 0% moisture of a culture ground support to be detected is selected and this working curve is modified by an output of 100% moisture. CONSTITUTION:Standard samples of a plurality of culture ground supports are measured beforehand by a specific heat type moisture detector and working curves showing the relationship between an output and a maximum specific yield percent are determined and stored. These curves are expressed by a cubic polynominal. First, a sample of culture ground support to be measured is dried at a temperature of 110 deg.C for 24 hours or under direct rays of the sun and then put in a prescribed case, and measurement thereof at 0% moisture is conducted. Based on the data thus obtained, the working curve of the standard sample approximated by an output of 0% moisture is selected. Next, a state of 100% moisture, i.e. a maximum specific yield 100%, is prepared and measurement is executed again. The value of a constant in the cubic polynominal of the selected standard sample is modified, and modification is conducted so that an actual measured value of a moisture meter at the maximum specific yield 100% may become 100%.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は土壌、砂やロックウールなどの培地支持体の水
分量を比熱式水分検知器を用いて検知する水分検知方法
の改良に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a moisture detection method for detecting the moisture content of a culture medium support such as soil, sand, or rock wool using a specific heat type moisture detector. Regarding improvements.

(従来の技術) 例えば土壌、砂またはロックウールなどの単独もしくは
混合からなる培地支持体を用いた培養装置では、培地支
持体の水分量が培養植物の育成に大きな影響を与えるこ
とから、水分量の制御は極めて重要である。
(Prior art) For example, in a culture device using a medium support made of soil, sand, rock wool, etc. alone or in combination, the water content of the medium support has a great influence on the growth of cultured plants. control is extremely important.

水分量を制御するには、これを正確に検知する必要があ
り、これを検知する水分検知器として特開昭63−47
644号公報に記載された比熱式水分検知器が知られて
いる。
In order to control the amount of moisture, it is necessary to accurately detect it.
A specific heat type moisture detector described in Japanese Patent No. 644 is known.

この比熱式水分検知器では、水分センサ部分は、一端が
閉塞された細長い容器内に金属部とプラスチック部を設
け、そしてヒーターとこのヒーターと一定の間隔をおい
て配置した温度計測部としての温度センサとをそれぞれ
金属部に固定し、また、同一構成の対照用としての別の
温度センサをヒーターからの熱の影響を遮断できる位置
に設けて構成されている。ここで温度センサは白金薄膜
抵抗または熱雷対などから構成されている。また、容器
の他端には、ヒータおよび温度センサのリード線の引出
し部が設けられている。
In this specific heat type moisture detector, the moisture sensor part has a metal part and a plastic part in a long and narrow container with one end closed, and a heater and a temperature measuring part placed at a certain distance from the heater. The sensor is fixed to a metal part, and another temperature sensor of the same configuration for comparison is provided at a position where it can block the influence of heat from the heater. Here, the temperature sensor is composed of a platinum thin film resistor, a thermal lightning pair, or the like. Further, the other end of the container is provided with a lead-out portion for lead wires of a heater and a temperature sensor.

上記比熱式水分検知器を用いて水分量を計るには、水分
センサ部分を培地支持体中に差し込み、ヒーターを作動
させると、ヒーターの熱は温度別測部としての温度セン
サに伝えられる。このとき熱の一部は培地支持体に吸熱
されて逃げる。この吸熱量(逃げ量)は、培地支持体の
水分量が多いほど大きい。培地支持体での吸熱量が多い
と、温度計測部に伝えられる熱は大きく減少し、逆に培
地支持体での吸熱量が少ないと、温度計1TP1部に伝
えられる熱は、余り減少しない。従って、ヒーターでの
発熱量を一定にしておけば、例えば培地支持体中の水分
量と、温度上昇量との関係を示す検量線を予め測定して
求めておけば、温度センサての温度上昇量(温度変化量
)を計ることにより培地支持体での水分量を知ることが
できる。
To measure the amount of water using the above-mentioned specific heat type moisture detector, when the moisture sensor part is inserted into the culture medium support and the heater is activated, the heat of the heater is transmitted to the temperature sensor as a temperature measuring part. At this time, part of the heat is absorbed by the medium support and escapes. This endothermic amount (escape amount) increases as the moisture content of the culture medium support increases. If the amount of heat absorbed by the culture medium support is large, the heat transferred to the temperature measurement part will be greatly reduced, and conversely, if the amount of heat absorbed by the culture medium support is small, the heat transferred to the thermometer 1TP1 will not decrease much. Therefore, if the amount of heat generated by the heater is kept constant, for example, if a calibration curve showing the relationship between the amount of water in the culture medium support and the amount of temperature rise is determined in advance, the temperature rise at the temperature sensor can be determined. By measuring the amount (amount of temperature change), the amount of water in the medium support can be determined.

(発明が解決しようとする課題) 上述したように、比熱式水分検知器を用いた従来の水分
量の検知方法は、予め作成した検量線を3次式などの回
帰式を用いて水分計内で出力値を演算して、水分量を表
示するとか、あるいはセンサの出力値(電圧値)をその
まま、もしくは増幅させるだけで、予め作成した検量線
に基づいて読み替えて水分量を求めていた。
(Problems to be Solved by the Invention) As mentioned above, the conventional method of detecting moisture content using a specific heat type moisture detector uses a previously prepared calibration curve and a regression equation such as a cubic equation to The moisture content was calculated by calculating the output value and displaying the moisture content, or by simply amplifying the output value (voltage value) of the sensor as is or by amplifying it based on a calibration curve prepared in advance.

したがって、いずれも検量線を予め作成しなければ水分
量を求めることはできず、この検量線の作成には1力月
前後の日数を費やさなければならなかった。
Therefore, in either case, the water content cannot be determined unless a calibration curve is prepared in advance, and it is necessary to spend about a month or so on preparing this calibration curve.

さらに比熱式水分検知器は、培地支持体の種類や粒度の
違いにより、検量線が異なるため、個々に検量線を作成
する必要があった。
Furthermore, since the calibration curves of specific heat type moisture detectors differ depending on the type and particle size of the culture medium support, it was necessary to create calibration curves for each individual.

本発明は、上述の不都合を除去するために、なされたも
ので、被検知培地支持体ごとに検量線を作成することな
く、容易に水分量を検知できる水分量検知方法を提供す
ることを目的とする。
The present invention was made in order to eliminate the above-mentioned disadvantages, and an object of the present invention is to provide a moisture content detection method that can easily detect moisture content without creating a calibration curve for each culture medium support to be detected. shall be.

[発明の構成] (課題を解決するための手段) 上記目的を達成するため本発明では、土壌、砂またはロ
ックウールなどの単独もしくは混合の培地支持体の水分
量を比熱式水分検知器の出力により検知する水分検知方
法であって、予め複数の培地支持体の標準サンプルを測
定して出力と最大容水量%との関係を示す複数の検量線
を求め、被検知培地支持体の水分量0%のときの出力を
基準として近似の検量線を選び次ぎに最大容水量100
%における被検知培地支持体の出力に基づき検量線を修
正することを特徴としている。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention detects the moisture content of a single or mixed medium support such as soil, sand, or rock wool as an output of a specific heat type moisture detector. In this moisture detection method, standard samples of a plurality of culture medium supports are measured in advance to obtain a plurality of calibration curves showing the relationship between output and maximum capacity %, and the moisture content of the culture medium support to be detected is 0. %, select an approximate calibration curve based on the output when the water volume is 100%
It is characterized in that the calibration curve is corrected based on the output of the medium support to be detected in %.

第1図のフローチャートにより説明すると、まず、測定
したい培地支持体のサンプルを110℃、24時間また
は直射日光による乾燥を行い、所定のケースに入れ、水
分量0%の測定を行う。このデータをもとに近似した検
量線(詳細は後述する)を選択する。次ぎに水分量10
0%すなわち最大容水量100%の状態を作り、再び測
定し、誤差分を修正する。これによりサンプルに非常に
近い検量線を作成したことになり、実測定において最大
容水量に対する水分量の%、すなわち最大容水量%での
水分量表示が可能となる。
To explain using the flowchart in FIG. 1, first, a sample of the culture medium support to be measured is dried at 110° C. for 24 hours or by direct sunlight, placed in a predetermined case, and the moisture content of 0% is measured. An approximate calibration curve (details will be described later) is selected based on this data. Next, the water content is 10
Create a state of 0%, that is, 100% of the maximum water capacity, measure again, and correct the error. This means that a calibration curve that is very close to the sample has been created, and in actual measurements, it is possible to display the water content as a percentage of the maximum water capacity, that is, as a percentage of the maximum water capacity.

(作用) 水分量0%はほぼ一致し、最大容水量100%でも誤差
分を修正した検量線を使用したので、精度が極めて高い
。また、各種の培地支持体の標準サンプルにつき検量線
を予め作成しておくことにより、最大容水量%が速やか
に得られる。
(Function) The accuracy is extremely high because a calibration curve with a moisture content of 0% is almost the same, and even with a maximum water capacity of 100%, the error has been corrected. Furthermore, by preparing calibration curves in advance for standard samples of various culture medium supports, the maximum water capacity % can be quickly obtained.

(実施例) 以下本発明の詳細を図面を参照しながら実施例により説
明する。
(Example) The details of the present invention will be explained below by way of an example with reference to the drawings.

第2図は本実施例に使用した比熱式水分検知器1を示し
、測定用ケース2は、一端に底板2aを舖えた筒体から
なっており、底板2aには2〜3龍直径の穴2bが多数
設けられている。また、中に濾紙が入れてあって、収容
した土や砂などの培地支持体5aが落ちないような構造
になっている。
Figure 2 shows the specific heat type moisture detector 1 used in this example.The measuring case 2 consists of a cylindrical body with a bottom plate 2a at one end, and the bottom plate 2a has holes of 2 to 3 dragon diameters. 2b are provided in large numbers. In addition, a filter paper is placed inside, and the structure is such that the culture medium support 5a such as soil or sand contained therein does not fall.

比熱式水分センサ3(以下水分センサと称す)は、従来
例において述べたものと同様なものを用いることができ
るが、本実施例のものは、鉛筆型の形状をしており、そ
の頭部の2穴式のセラミックパイプ内に熱電対が設けら
れ、パイプの外側にヒーターが設けられたもので、耐水
性樹脂にてインサ−ト成型したものである。。水分計4
はCPUを有して水分センサ3からのデータやその他人
力されたデータに基づき各部を制御するとともに、演算
処理して例えばサンプルの最大容水量%を表示する装置
である。第3図のブロック図により作用とともに説明す
ると、まず、外部入力回路11からn1定のスタート信
号がCPU12内に入力され、スタート遅延タイマ13
が約5秒間働き、その間にヒーター電圧印加前の水分セ
ンサ3のベース電圧が増幅回路14よりA/D変換回路
15に人力され、CPU12内で初期ホールド回路16
に記憶される。スタート遅延タイマ13が切れ、ヒート
アップタイマ17が働くとともに、ヒーター電源回路1
8から水分センサ3へ250〜400mA程度の電流を
流す。ヒートアップタイマ17は約60秒後に切れるが
、その直前にサンプリングタイマ19により再度水分セ
ンサ3の電圧がA/D変換回路15からCPU12内の
サンプリングホールド回路20へ記憶される。次ぎに演
算回路21にて初期ホールド値とサンプリング値が引き
算され、センサ出力電圧(X)が求められる。また、演
算回路内には10種類の検量線(土6種類、砂3種類、
ロックウール1種類)が内蔵されており、制御回路22
に接続されたキーボード23により選択された検量線内
の3次式に、測定された出力(x)の値が代入され、含
水率が計算される。
The specific heat type moisture sensor 3 (hereinafter referred to as moisture sensor) can be similar to the one described in the conventional example, but the one in this example has a pencil-shaped shape, and its head A thermocouple is installed inside a two-hole ceramic pipe, and a heater is installed on the outside of the pipe, and is insert-molded with water-resistant resin. . Moisture meter 4
is a device that has a CPU and controls each part based on the data from the moisture sensor 3 and other manually inputted data, and also performs arithmetic processing to display, for example, the maximum water volume percentage of the sample. To explain the operation using the block diagram of FIG. 3, first, a constant n1 start signal is input from the external input circuit 11 into the CPU 12, and the start delay timer 13
operates for about 5 seconds, during which time the base voltage of the moisture sensor 3 before the heater voltage is applied is input from the amplifier circuit 14 to the A/D conversion circuit 15, and the initial hold circuit 16 is input in the CPU 12.
is memorized. The start delay timer 13 expires, the heat-up timer 17 operates, and the heater power supply circuit 1
A current of about 250 to 400 mA is passed from the sensor 8 to the moisture sensor 3. The heat-up timer 17 expires after about 60 seconds, but just before that, the voltage of the moisture sensor 3 is stored again by the sampling timer 19 from the A/D conversion circuit 15 to the sampling hold circuit 20 in the CPU 12. Next, the arithmetic circuit 21 subtracts the initial hold value and the sampling value to obtain the sensor output voltage (X). In addition, 10 types of calibration curves (6 types of soil, 3 types of sand,
One type of rock wool) is built-in, and the control circuit 22
The measured output (x) value is substituted into the cubic equation in the calibration curve selected by the keyboard 23 connected to the keyboard 23, and the moisture content is calculated.

この場合の含水率は、最大容水量%である。この計算さ
れた値はLCDユニット24にて表示される。また、L
CDユニット24にて表示される値は、最大容水量%お
よびセンサ出力電圧(x)のいずれかをキーボード23
を操作して選択することができる。
The water content in this case is the maximum capacity water content %. This calculated value is displayed on the LCD unit 24. Also, L
The value displayed on the CD unit 24 can be determined by inputting either the maximum water capacity % or the sensor output voltage (x) on the keyboard 23.
can be selected by operating.

前述の検量線は、複数種の培地支持体のサンプルでのi
lJ定結果をもとに導き出したもので、粒度、材質の異
なった各種の培地支持体の測定に対応できるようになっ
ている。
The above-mentioned calibration curve is based on the i
It was derived based on the lJ determination results, and can be used to measure various culture medium supports with different particle sizes and materials.

また、検量線は、3次式まで対応でき、y−axA3+
bxA2+cx+dの各係数aSb、c。
In addition, the calibration curve can support up to cubic equations, y-axA3+
Each coefficient aSb, c of bxA2+cx+d.

dはキーボード23にて変更可能であるが、実際にはd
の値を変更することで、既知の含水率への調整もできる
ことになる。
d can be changed using the keyboard 23, but in reality d
By changing the value of , it is possible to adjust to a known moisture content.

次ぎに、前述の比熱式水分検知器1を用いて市販の川砂
について測定した場合を述べる。
Next, a case will be described in which commercially available river sand is measured using the specific heat type moisture detector 1 described above.

測定用ケース2に川砂5aをいっばい取り、110℃、
24時間にて十分乾燥させる。24時間後に取りだし川
砂の温度が常温まで下がってから水分センサ3を差込み
、水分計4にてセンサ出力電圧(x)表示をキーボード
23で選択した後、測定を行う。
Take the river sand 5a in measurement case 2 and heat it to 110℃.
Dry thoroughly for 24 hours. After 24 hours have elapsed, the temperature of the river sand has fallen to room temperature, and then the moisture sensor 3 is inserted, and after selecting the sensor output voltage (x) display on the moisture meter 4 with the keyboard 23, measurement is performed.

第1表に測定結果を示す。出方の測定は3回行い平均出
力は0.968vである。すなわち水分量(最大容水量
%)0%における出力はo、968vとする。
Table 1 shows the measurement results. The output was measured three times and the average output was 0.968v. In other words, the output when the water content (maximum water capacity %) is 0% is o, 968v.

第1表 そこでこの値に基づいて検量線を選択するが、これは第
2表のセレクト規格表により行う。これには培地支持体
の種類区分(土、砂、ロックウール)と、検量線No 
(0〜9)と、各検量線を選択する基準となる水分量0
%における水分センサ3の出力電圧の範囲とが記載され
ている。
Table 1 Then, a calibration curve is selected based on this value, and this is done using the selection standard table in Table 2. This includes the type of medium support (soil, sand, rock wool) and the calibration curve number.
(0 to 9) and the water content 0, which is the standard for selecting each calibration curve.
% range of the output voltage of the moisture sensor 3 is described.

第2表 なお、各検量線の仕様をそのNoに対応して略述すると
、 No。
Table 2: The specifications of each calibration curve are briefly explained according to their No.

0  粒径3mm以上の粒状の土 1  粒径1〜3mm以内の粒状の土 2  粒径0.5〜1mm以内の細粒土3  粒径0.
5mm以下の細粒土 4  粘土質と細粒土の混合土 5  粘土質 6  粒径1mm以上の海または川砂 7  粒径1mm以下の海または川砂 8  粒径が不揃いの海または川砂 9  人工培地(ロックウール) となっている。
0 Granular soil with a particle size of 3 mm or more 1 Granular soil with a particle size of 1 to 3 mm 2 Fine granular soil with a particle size of 0.5 to 1 mm 3 Particle size 0.
Fine-grained soil of 5 mm or less 4 Mixed soil of clay and fine-grained soil 5 Clay 6 Sea or river sand with a grain size of 1 mm or more 7 Sea or river sand with a grain size of 1 mm or less 8 Sea or river sand with irregular grain sizes 9 Artificial medium ( rock wool).

さて、第2表のセレクト規格表から検量線N07を近似
検量線として選択することになり、キーボード23にて
検量線No7を人力する。
Now, the calibration curve No. 7 is selected as the approximate calibration curve from the selection specification table in Table 2, and the calibration curve No. 7 is entered manually using the keyboard 23.

上記乾燥時の出力電圧(x)によりそのサンプル(例え
ば川砂)の検量線を導くことができる。
A calibration curve for the sample (for example, river sand) can be derived from the output voltage (x) during drying.

また、第4図の片対数グラフで各検量線30の傾きを示
すと、いずれも約70%までは直線で表すことができ、
傾きも非常に近似しており、乾燥時の出力が少しずつず
れているのである。
In addition, when the slope of each calibration curve 30 is shown in the semilogarithmic graph of FIG. 4, up to about 70% can be expressed as a straight line.
The slopes are also very similar, and the output during drying is slightly different.

次ぎにこの川砂の最大容水量100%における出力を測
定して近似検量線No7を修正し、修正検量線を得て、
これにより水分jil(最大容水量%)が水分計により
適時算出検知されるが、上述の修正方法と、水分計4の
表示値%につき詳細に説明する。
Next, measure the output at 100% of the maximum water capacity of this river sand and correct the approximate calibration curve No. 7 to obtain a corrected calibration curve,
As a result, the moisture jil (maximum water capacity %) is calculated and detected by the moisture meter in a timely manner, but the above-mentioned correction method and the displayed value % of the moisture meter 4 will be explained in detail.

まず、十分に川砂5aを乾燥させた後、測定用ケース2
に入れ、下面より約24時間給水し、取りだし、24時
間放置後の水分子fi(最大容水量100%)として測
定し、徐々に乾燥させながら重量により最大容水量%を
算出した。水分計4の表示する最大容水量%と比較する
ためである。
First, after sufficiently drying the river sand 5a, the measuring case 2
The sample was placed in a container, water was supplied from the bottom for about 24 hours, it was taken out, and the water molecule fi (maximum water capacity 100%) was measured after being left for 24 hours, and the maximum capacity % was calculated by weight while gradually drying. This is to compare with the maximum water capacity percentage displayed by the moisture meter 4.

また、水分計4の精度を向上させるため、最大容水量1
00%の実際の水分計4の測定値が97゜2%であるの
を、100%になるように、検量線No7の3次式(Y
−−104,999xA3+442.299xA2−6
57.998x+312.706)のd−312,70
6に2.8を加えてd=−315,506として修正検
量線により水分計4が最大容水量%を算出するようにし
てから自然乾燥させた。
In addition, in order to improve the accuracy of the moisture meter 4, the maximum water capacity 1
The actual measured value of Moisture Meter 4 is 97°2%, and the cubic equation of calibration curve No. 7 (Y
--104,999xA3+442.299xA2-6
d-312,70 of 57.998x+312.706)
By adding 2.8 to 6 to set d=-315,506, the moisture meter 4 calculated the maximum water content % using a corrected calibration curve, and then air-dried the sample.

第5図は縦軸に水分計4の最大容水量%表示をとり、横
軸に重量から求めた最大容水量%表示をとったグラフで
ある。黒丸の実線31は修正検量線を示し、白丸の破線
32は検量線No7を示す。
FIG. 5 is a graph in which the vertical axis represents the maximum water capacity (%) of the moisture meter 4, and the horizontal axis represents the maximum water capacity (%) determined from the weight. A solid line 31 with a black circle indicates the corrected calibration curve, and a broken line 32 with a white circle indicates the calibration curve No.7.

このグラフから明らかなように、実際に乾燥法により求
めた値と、修正検量線を用いた水分計4の表示値との誤
差は、±3%の範囲であり、実使用に際し問題のないも
のである。また、修正しなかった検量線No7を用いた
場合の水分計4の表示誤差は、±6%の範囲内であり、
簡易的に用いる場合には十分な精度である。
As is clear from this graph, the error between the value actually determined by the drying method and the value displayed by the moisture meter 4 using the corrected calibration curve is within ±3%, and there is no problem in actual use. It is. In addition, the display error of the moisture meter 4 when using the uncorrected calibration curve No. 7 is within the range of ±6%,
The accuracy is sufficient for simple use.

上述した水分検知方法の全体を、第6図に示すフローチ
ャートおよび第3図のブロック図により、まとめて説明
する。
The entire moisture detection method described above will be explained with reference to the flowchart shown in FIG. 6 and the block diagram shown in FIG. 3.

電源ONにより、水分計のA/D変換回路15に人力さ
れる電圧値が読込まれ(ステップ1)、電圧値と130
mVとが比較され(ステップ2)、電圧値の方が小さい
と表示手段の選択がなされる(ステップ3)。電圧表示
が選択されると電圧表示方式に切り替えられ(ステップ
4)、含水率表示(最大容水量%表示)が選択されると
、含水率表示に切り替えられる(ステップ5)、さらに
、修正検量線が入力される(ステップ6)。次に測定開
始の指令がでる(ステップ7)。そこでヒーターへの電
圧印加が5秒間遅延され(ステップ8)その間に温度検
出センサのベース電圧がA/D変換されて記憶される(
ステップ9)。遅延時間が過ぎてヒーターがONしくス
テップ10)、60秒間電流が流れ(ステップ11)、
電流が切れる直前に温度検出センサの電圧がA/D変換
されて記憶される(ステップ12)。ヒーターがOFF
すると(ステップ13)上記記憶された電圧が引き算さ
れて出力電圧(x)が算出される(ステップ14)。算
出された値は、表示方法が選択され(ステップ15)、
電圧表示の場合はそのまま表示され(ステップ16)、
含水率表示の場合は検量線に基づいて演算され、含水率
(最人容水Ω%)で表示される(ステップ17)。この
表示を受けて含水率が操作調節される(ステップ18)
When the power is turned on, the voltage value manually input to the A/D conversion circuit 15 of the moisture meter is read (step 1), and the voltage value and 130
mV (step 2), and if the voltage value is smaller, a display means is selected (step 3). When the voltage display is selected, the display is switched to the voltage display (step 4), and when the water content display (maximum water capacity % display) is selected, the display is switched to the water content (step 5). is input (step 6). Next, a command to start measurement is issued (step 7). Therefore, the voltage application to the heater is delayed for 5 seconds (step 8), during which time the base voltage of the temperature detection sensor is A/D converted and stored (
Step 9). After the delay time passes, the heater turns on (Step 10), and current flows for 60 seconds (Step 11).
Immediately before the current is cut off, the voltage of the temperature detection sensor is A/D converted and stored (step 12). Heater is off
Then (step 13), the stored voltage is subtracted to calculate the output voltage (x) (step 14). The display method for the calculated value is selected (step 15), and
If the voltage is displayed, it will be displayed as is (step 16),
In the case of displaying the water content, calculation is performed based on the calibration curve, and the water content is displayed as the water content (maximum human capacity water Ω%) (step 17). In response to this display, the moisture content is adjusted (step 18).
.

以上の工程は適時繰り返される。The above steps are repeated at appropriate times.

なお、本実施例においては、熱電対を備えた水分センサ
を用いたがこれに限定されず、熱の移動により検知する
ものならよい。また、検量線も本実施例のものに限定さ
れず多くても少なくても良い。
In this embodiment, a moisture sensor equipped with a thermocouple is used, but the present invention is not limited to this, and any sensor that detects by the movement of heat may be used. Further, the calibration curve is not limited to that of this example, and may be larger or smaller.

[発明の効果] 以上詳述したように、本発明は最人容水mO%で近似の
検量線を選択し、100%の位置での出力により検量線
を修正するようにしたので、検知精度は極めて高い、ま
た、修正も100%の位置の測定だけでよいので、新規
の培地支持体に対しても迅速に測定できるなど、すぐれ
た効果を奏するものである。
[Effects of the Invention] As detailed above, the present invention selects a calibration curve approximate to the maximum human capacity water mO%, and corrects the calibration curve by outputting at the 100% position, thereby improving detection accuracy. This method has excellent effects, such as being able to perform rapid measurements even on new culture medium supports, since the measurement is extremely high and corrections only need to be made at 100% position.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の検知手順を説明するフローチャート、
第2図(イ)および(ロ)は同じ〈実施例に使用する比
熱式水分検知器の斜視図および要部下面図、第3図は同
じく上記比熱式水分検知器の水分計のブロック図、第4
図は同じ〈実施例に用いた検量線の説明線図、第5図は
同じ〈実施例における水分計表示値の説明線図、第6図
は同じ〈実施例のフローチャートである。 1・・・・・・・・・・・・・・・比熱式水分検知器5
a・・・・・・・・・・・・培地支持体30・・・・・
・・・・・・・検量線
FIG. 1 is a flowchart explaining the detection procedure of the present invention;
Figures 2 (a) and (b) are the same <perspective view and main bottom view of the specific heat type moisture detector used in the example, Figure 3 is a block diagram of the moisture meter of the specific heat type moisture detector, Fourth
The figures are the same (explanatory diagram of the calibration curve used in the example), FIG. 5 is the same (explanatory diagram of the moisture meter display value in the example), and FIG. 6 is the same (the flow chart of the example). 1・・・・・・・・・・・・Specific heat type moisture detector 5
a......Medium support 30...
...... Calibration curve

Claims (1)

【特許請求の範囲】[Claims]  土壌、砂またはロックウールなどの単独もしくは混合
の培地支持体の水分量を比熱式水分検知器の出力により
検知する水分検知方法であって、予め複数の培地支持体
の標準サンプルを測定して出力と最大容水量%との関係
を示す複数の検量線を求め、被検知培地支持体の水分量
0%のときの出力を基準として近似の検量線を選び次ぎ
に最大容水量100%における被検知培地支持体の出力
に基づき検量線を修正することを特徴とする水分検知方
法。
A moisture detection method that detects the moisture content of a single or mixed medium support such as soil, sand, or rock wool using the output of a specific heat type moisture detector, in which standard samples of multiple medium supports are measured in advance and output. Calculate multiple calibration curves showing the relationship between % and maximum water capacity, select an approximate calibration curve based on the output when the moisture content of the detection medium support is 0%, and then calculate the output at the maximum water capacity of 100%. A moisture detection method characterized by correcting a calibration curve based on the output of a culture medium support.
JP1275064A 1989-10-24 1989-10-24 Moisture detection method Expired - Fee Related JPH07119722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275064A JPH07119722B2 (en) 1989-10-24 1989-10-24 Moisture detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275064A JPH07119722B2 (en) 1989-10-24 1989-10-24 Moisture detection method

Publications (2)

Publication Number Publication Date
JPH03137551A true JPH03137551A (en) 1991-06-12
JPH07119722B2 JPH07119722B2 (en) 1995-12-20

Family

ID=17550339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275064A Expired - Fee Related JPH07119722B2 (en) 1989-10-24 1989-10-24 Moisture detection method

Country Status (1)

Country Link
JP (1) JPH07119722B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052229A (en) * 2012-09-06 2014-03-20 Casio Comput Co Ltd Moisture state measuring apparatus, moisture state measuring method and program
JP2014074601A (en) * 2012-10-03 2014-04-24 Casio Comput Co Ltd Moisture content correction device, moisture content correction method, and program
JP2017062267A (en) * 2017-01-13 2017-03-30 カシオ計算機株式会社 Moisture state measuring apparatus, moisture state measuring method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145960A (en) * 1984-08-10 1986-03-06 Nippon Steel Corp Online calibration method of calibration curve for analyzing carbon in steel
JPS62133343A (en) * 1985-12-06 1987-06-16 Kandenkou:Kk Method for measuring moisture content of ground

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145960A (en) * 1984-08-10 1986-03-06 Nippon Steel Corp Online calibration method of calibration curve for analyzing carbon in steel
JPS62133343A (en) * 1985-12-06 1987-06-16 Kandenkou:Kk Method for measuring moisture content of ground

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052229A (en) * 2012-09-06 2014-03-20 Casio Comput Co Ltd Moisture state measuring apparatus, moisture state measuring method and program
US10107738B2 (en) 2012-09-06 2018-10-23 Casio Computer Co., Ltd. Moisture status measuring device that measures moisture status in soil, moisture status measuring method, and non-transitory computer-readable medium storing a program
JP2014074601A (en) * 2012-10-03 2014-04-24 Casio Comput Co Ltd Moisture content correction device, moisture content correction method, and program
JP2017062267A (en) * 2017-01-13 2017-03-30 カシオ計算機株式会社 Moisture state measuring apparatus, moisture state measuring method, and program

Also Published As

Publication number Publication date
JPH07119722B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
JPH0234711B2 (en)
JP2928306B2 (en) Gas thermal conductivity measurement method and apparatus
JPS56114748A (en) Grain moisture measuring device
JP2010511894A (en) Detection of temperature sensor configuration in a process variable transmitter
NO853296L (en) MEASUREMENT OF WATER STEAM TRANSMISSION.
US5321992A (en) Measurement of gas flows with enhanced accuracy
US4798252A (en) Drying balance with temperature control
US4149402A (en) Analytical method for determining desorption isotherm and pore size distribution of an absorbent material
JPH03137551A (en) Detecting method of moisture
Faust Thermal analysis of quartz and its use in calibration in thermal analysis studies
JPS55142244A (en) Inspecting device for moisture meter for grain
Dole et al. Calorimetry of high polymers. I. Automatic temperature recording and control of adiabatic jackets
JPS5876755A (en) Method and device for automatic calibration of adjusting-indicating device for measuring partial pressure of oxygen
US4204120A (en) Process and apparatus for the measurement of the factor of infra-red absorption or emission of materials
JPS6111366B2 (en)
US3368389A (en) Method of determining percent solids in a saturated solution
JPH0648251B2 (en) Method and apparatus for evaluating cooling performance of heat treatment agent
US4408482A (en) Method and apparatus for the determination of moisture content of fibrous and granular materials
JP2850481B2 (en) Residual chlorine meter
JP3115850B2 (en) Sensor circuit with resistor sensor as element
US3498113A (en) Method and apparatus for determining solute concentrations
JPH0996617A (en) Calorimeter
JP3246861B2 (en) Thermal characteristic measuring device and soil moisture content measuring device using the same
JPH05133927A (en) Ph measuring apparatus and method for calibrating the same
Sadler et al. A Simple Method to Calibrate an Infrared Thermometer 1

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees