JPH0313714B2 - - Google Patents

Info

Publication number
JPH0313714B2
JPH0313714B2 JP55089759A JP8975980A JPH0313714B2 JP H0313714 B2 JPH0313714 B2 JP H0313714B2 JP 55089759 A JP55089759 A JP 55089759A JP 8975980 A JP8975980 A JP 8975980A JP H0313714 B2 JPH0313714 B2 JP H0313714B2
Authority
JP
Japan
Prior art keywords
heat
ceramic
magnesia
metal pipe
sheathed heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55089759A
Other languages
Japanese (ja)
Other versions
JPS5715384A (en
Inventor
Hidesato Kawanishi
Hideyuki Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8975980A priority Critical patent/JPS5715384A/en
Publication of JPS5715384A publication Critical patent/JPS5715384A/en
Publication of JPH0313714B2 publication Critical patent/JPH0313714B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシーズヒータに関し、特に電気取り出
し端子部が強固で、かつ水分の防湿効果を著しく
改善した封止効果を有するシーズヒータの製造方
法を提供しようとするものである。 従来のシーズヒータには、第1図および第2図
に示すように無封口型のものと完全封口型との大
きく2種のタイプのものがあり、ニクロム線また
は鉄−クロム−アルミ線から成る電熱線2と金属
パイプ1との間に、マグネシア絶縁粉末3が充填
された構造を有している。しかし前記マグネシア
絶縁粉末3は吸湿性が大であるため、マグネシア
絶縁粉末にシリコーン樹脂を添加し、熱処理する
ことにより撥水性を持たせ、無封口型で使用して
いる第1図に示すタイプのものと、高温で使用す
るため前記シリコーン樹脂を使用することが不可
能であり、第2図に示すように端子部4を低融点
ガラス5およびシリコーン樹脂6で完全に封止し
ている完全封口型のタイプとがある。 上記無封口型のシーズヒータでは、使用温度領
域によつて充填剤を替える必要があり、管理上、
面倒な面がある。また、完全封口型のシーズヒー
タでは、両端子部4,4を完全封止することが必
要であるため、作業工数が増大し、大幅なコスト
アツプになると共に、ガラス部の機械的強度が非
常に弱いため、これらのシーズヒータを組み立て
て製品化する際に、端子部4に応力が加わりガラ
ス5が破損し、電気絶縁性が著しく低下するなど
の欠点を有している。 また、特開昭56−120090号公報に示されるよう
に、両端子部を低融点ガラスではなくセラミツク
ペーパーにより封止するものが提案されている。
また、セラミツクペーパーにシリコーン樹脂等を
含浸させて、セラミツクペーパーの微細な孔を閉
塞し、耐水性を向上させている。 しかし、上記のシーズヒータでは、封止を柔軟
性を有するセラミツクペーパーで行うので、封止
部の機械的強度を高めることはできないという問
題点を有していた。 第3図はこのような従来のシーズヒータの問題
点を解消することができる本発明の一実施例を示
し、金属パイプ11と電熱線12の間にマグネシ
ア絶縁粉末13を充填し、金属パイプ11の両端
部を耐熱性無機接着剤15またはガラスフリツト
添加マグネシア粉末15′で強固にすると共に、
この上部を耐熱性樹脂16で被覆または含浸させ
ることにより耐水性を高めたものである。 即ち、両端部を耐熱性の高い、無機物質で強固
に固めることにより、従来のガラス封口あるいは
セラミツクペーパー封口では得られない機械的強
度を持たせたものである。しかし、この無機物質
では表面および内部に微細な通気孔が存在するた
め、このままの状態ではマグネシア絶縁粉末13
は容易に吸湿し、絶縁劣化が生じる。そこで無機
物質の前記孔を封じるために、液状の耐熱性樹脂
を含浸させると共に被覆したものである。この結
果、耐水性が著しく増大し、マグネシア粉末の絶
縁劣化を解消することができる。 なお、耐熱性無機接着剤としては、内部に微細
な通気孔を有するアルミナまたはジルコニア、シ
リカを主成分とするものであればよい。またガラ
スフリツトとしては、酸化ケイ素、酸化カルシウ
ムおよび酸化ホウ素を主成分とし、金属パイプ1
1の焼鈍工程1050℃〜1100℃の温度領域で軟化、
溶融するものであればよく、マグネシア絶縁粉末
に対する添加量は1〜50重量%の範囲であればよ
い。なお、添加量が1重量%以下では焼結性が悪
く、50重量%以上では機械的強度が著しく低下す
る。 また耐熱性樹脂としてはシリコーン樹脂が非常
によいが、この樹脂により耐熱性を高めるため
に、種々の酸化物、窒化物を添加したものでもよ
い。 次に第3図に示すシーズヒータの製造方法につ
いて説明する。 先ず、従来のシーズヒータの製造方法と同様に
金属パイプ11中の電熱線12を挿入して、金属
パイプ11と電熱線12との間にマグネシア絶縁
粉末13を充填する。そして充填後、前記金属パ
イプ11を圧延減径し、圧延減径された金属パイ
プ11の両端子部14,14に耐熱性無機接着剤
15またはガラスフリツト添加マグネシア粉末1
5′を充填し、金属ガラス11を焼鈍する。但し、
耐熱性無機接着剤15は液状であるため、室温で
予め硬化させてから焼鈍工程に移る。この焼鈍工
程により、両端子部14,14の前記耐熱性無機
接着剤15またはガラスフリツト添加マグネシア
粉末15′は焼結または硬化してセラミツク化す
る。然る後に、適当な形状に曲げ加工を行ない、
曲げ加工後、マグネシア絶縁粉末13を除湿す
る。前記セラミツク化したものは多孔質であり、
このままでは多湿雰囲気中に放置すると吸湿する
ため、除湿後はこのセラミツクの上部に、耐熱性
樹脂16を含浸または被覆させ、多孔質の部分を
完全にふさいでしまう。なお、耐熱性樹脂16で
被覆または含浸させる時は、マグネシア絶縁粉末
13を除湿した後、金属パイプ11内の内部圧が
高い時に行なうと冷却時に内部圧が低くなり、十
分含浸されるので効果的である。 このような構造工程では、従来の製造工程に比
較してガラス封口工程を削減することができ、大
幅なコストダウンを図ることができると共に、品
質管理上、大なるものが期待できる。 下記表は従来の完成封口型シーズヒータと本発
明実施例によるシーズヒータの封口部の機械的強
度の比較実験データで、それぞれの端子に荷重F
=2Kg〜F=12Kgをかけて、多湿雰囲気中に14日
間放置した時の金属パイプ11と端子間の絶縁抵
抗値を示す。各荷重値におけるNo.1〜4はサンプ
ル番号を表す。
The present invention relates to a sheathed heater, and in particular provides a method for manufacturing a sheathed heater that has a strong electrical outlet terminal portion and a sealing effect that significantly improves the moisture-proofing effect. There are two main types of conventional sheathed heaters: non-sealed types and completely sealed types, as shown in Figures 1 and 2. They are made of nichrome wire or iron-chromium-aluminum wire. It has a structure in which magnesia insulating powder 3 is filled between a heating wire 2 and a metal pipe 1. However, since the magnesia insulating powder 3 is highly hygroscopic, silicone resin is added to the magnesia insulating powder and heat treated to make it water repellent. In addition, because it is used at high temperatures, it is impossible to use the silicone resin, and as shown in FIG. There are different types of molds. In the above-mentioned non-sealed sheathed heater, it is necessary to change the filler depending on the operating temperature range.
There are some troublesome aspects. In addition, in a completely sealed type sheathed heater, it is necessary to completely seal both terminal parts 4, 4, which increases the number of man-hours and costs, and the mechanical strength of the glass part is extremely low. Because of their weakness, when these sheathed heaters are assembled into a product, stress is applied to the terminal portions 4 and the glass 5 is damaged, resulting in a significant drop in electrical insulation. Furthermore, as shown in Japanese Patent Application Laid-Open No. 56-120090, a device in which both terminal portions are sealed with ceramic paper instead of low-melting glass has been proposed.
Furthermore, ceramic paper is impregnated with silicone resin or the like to close the fine pores of the ceramic paper and improve its water resistance. However, the above-mentioned sheathed heater has a problem in that the mechanical strength of the sealed portion cannot be increased because the sealing is performed using a flexible ceramic paper. FIG. 3 shows an embodiment of the present invention that can solve the problems of the conventional sheathed heater. Magnesia insulating powder 13 is filled between the metal pipe 11 and the heating wire 12, Both ends are strengthened with a heat-resistant inorganic adhesive 15 or glass frit-added magnesia powder 15', and
This upper part is coated or impregnated with a heat-resistant resin 16 to improve water resistance. That is, by firmly solidifying both ends with an inorganic material having high heat resistance, it has mechanical strength that cannot be obtained with conventional glass sealing or ceramic paper sealing. However, since this inorganic material has fine ventilation holes on its surface and inside, if it is left as it is, the magnesia insulating powder 13
easily absorbs moisture, causing insulation deterioration. Therefore, in order to seal the pores of the inorganic material, it is impregnated and coated with a liquid heat-resistant resin. As a result, water resistance is significantly increased and insulation deterioration of magnesia powder can be eliminated. Note that the heat-resistant inorganic adhesive may be one whose main component is alumina, zirconia, or silica, which has fine ventilation holes inside. In addition, as glass frit, silicon oxide, calcium oxide and boron oxide are the main ingredients, and metal pipe 1
1.Annealing process Softens in the temperature range of 1050℃~1100℃,
Any material may be used as long as it melts, and the amount added to the magnesia insulating powder may be in the range of 1 to 50% by weight. Note that if the amount added is less than 1% by weight, the sinterability will be poor, and if the amount added is more than 50% by weight, the mechanical strength will be significantly reduced. Furthermore, silicone resin is very good as a heat-resistant resin, but in order to improve the heat resistance of this resin, various oxides and nitrides may be added to the resin. Next, a method for manufacturing the sheathed heater shown in FIG. 3 will be described. First, the heating wire 12 is inserted into the metal pipe 11 and magnesia insulating powder 13 is filled between the metal pipe 11 and the heating wire 12 in the same manner as in the conventional sheathed heater manufacturing method. After filling, the metal pipe 11 is rolled to reduce its diameter, and heat-resistant inorganic adhesive 15 or glass frit-added magnesia powder 1 is applied to both terminal portions 14, 14 of the rolled metal pipe 11.
5' is filled, and the metallic glass 11 is annealed. however,
Since the heat-resistant inorganic adhesive 15 is in a liquid state, it is precured at room temperature before proceeding to the annealing step. Through this annealing process, the heat-resistant inorganic adhesive 15 or glass frit-added magnesia powder 15' of both terminal portions 14, 14 is sintered or hardened to form a ceramic. After that, bend it into an appropriate shape,
After the bending process, the magnesia insulating powder 13 is dehumidified. The ceramicized material is porous,
If left as is in a humid atmosphere, it will absorb moisture, so after dehumidification, the upper part of the ceramic is impregnated or coated with heat-resistant resin 16 to completely close the porous portion. Note that when coating or impregnating with the heat-resistant resin 16, it is effective to do so after dehumidifying the magnesia insulating powder 13 and when the internal pressure in the metal pipe 11 is high, since the internal pressure will be low during cooling and sufficient impregnation will occur. It is. In such a structural process, the glass sealing process can be reduced compared to the conventional manufacturing process, and not only can a significant cost reduction be achieved, but also a significant improvement in quality control can be expected. The table below shows comparative experimental data on the mechanical strength of the sealing part of the conventional completed sealing type sheathed heater and the sheathed heater according to the embodiment of the present invention.
The insulation resistance value between the metal pipe 11 and the terminal when left in a humid atmosphere for 14 days is shown by multiplying = 2 kg to F = 12 kg. Nos. 1 to 4 in each load value represent sample numbers.

【表】 この結果、従来の完全封口型シーズヒータで
は、F>2Kgでは著しい絶縁劣化を示すにもかか
わらず、本発明実施例によるシーズヒータではF
=10Kgまでの荷重では絶縁劣化を示さないもので
ある。 以上説明のように本発明のシーズヒータの製造
方法は、圧延減径した金属パイプの両端に耐熱性
無機接着剤またはガラスフリツト添加マグネシア
粉末を充填し焼鈍することでセラミツクできるの
で封口部の機械的強度を十分に高めることができ
る。また、セラミツク化した封口部分は微細な孔
を有しているので、封口部をセラミツク化した後
でもその微細な孔を介して除湿することができ、
金属パイプ内を除湿状態に保ちつつ封口部材を詰
める製造方法に比し、たとえば金属パイプを曲げ
加工した後でも除湿を行なえる等、製造を行いや
すくしている。さらに、除湿後においては、セラ
ミツク表面に耐熱樹脂を含浸または被覆するので
耐水性にも優れている。
[Table] As a result, although the conventional fully sealed sheathed heater shows significant insulation deterioration when F>2Kg, the sheathed heater according to the embodiment of the present invention shows F
= shows no insulation deterioration under loads up to 10Kg. As explained above, in the method for manufacturing a sheathed heater of the present invention, a heat-resistant inorganic adhesive or magnesia powder added with glass frit is filled at both ends of a metal pipe whose diameter has been reduced by rolling, and ceramic is formed by annealing, thereby improving the mechanical strength of the sealed part. can be sufficiently increased. In addition, since the ceramic sealed part has fine holes, even after the sealed part is made of ceramic, it is possible to dehumidify through the fine holes.
Compared to a manufacturing method in which the interior of a metal pipe is kept in a dehumidified state while being filled with a sealing member, this method makes manufacturing easier, as dehumidification can be performed even after the metal pipe is bent. Furthermore, after dehumidification, the ceramic surface is impregnated or coated with a heat-resistant resin, resulting in excellent water resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は従来のシーズヒータの構造
図、第3図は本発明のシーズヒータの一実施例を
示す構造図をである。 11……金属パイプ、12……電熱線、13…
…マグネシア絶縁粉末、14……端子部、15…
…耐熱性無機接着剤、15′……ガラスフリツト
添加マグネシア粉末、16……耐熱性樹脂。
1 and 2 are structural diagrams of a conventional sheathed heater, and FIG. 3 is a structural diagram showing an embodiment of the sheathed heater of the present invention. 11...metal pipe, 12...heating wire, 13...
...Magnesia insulating powder, 14...Terminal part, 15...
...Heat-resistant inorganic adhesive, 15'...Magnesia powder added with glass frit, 16...Heat-resistant resin.

Claims (1)

【特許請求の範囲】 1 電熱線が挿通されマグネシア絶縁粉末を充填
した金属パイプを圧延減径し、この圧延減径され
た金属パイプの両端に耐熱性無機接着剤またはガ
ラスフリツト添加マグネシア粉末を充填し、金属
パイプを焼鈍して前記耐熱性接着剤またはガラス
フリツト添加マグネシア粉末をセラミツク化し、
該セラミツクの微細な孔を通して前記マグネシア
絶縁粉末を除湿し、除湿後にセラミツク表層部に
耐熱性樹脂を含浸またはセラミツク表面を耐熱性
樹脂で被覆することを特徴とするシーズヒータの
製造方法。 2 セラミツクは、内部に微細な通気孔を有する
アルミナまたはジルコニア、シリカを主成分とす
る耐熱性無機接着剤またはマグネシア絶縁粉末に
酸化マアルシウム、酸化ケイ素、酸化ホウ素を主
成分とするガラスフリツトを1〜50重量%添加し
た混合体からなることを特徴とする特許請求の範
囲第1項記載のシーズヒータの製造方法。 3 耐熱性樹脂は、シリコーン樹脂を主成分と
し、種々の酸化物または窒化物を添加したものか
らなることを特徴とする特許請求の範囲第1項記
載のシーズヒータの製造方法。
[Claims] 1. A metal pipe through which a heating wire is inserted and filled with magnesia insulating powder is rolled to reduce its diameter, and both ends of the rolled metal pipe are filled with a heat-resistant inorganic adhesive or glass fritted magnesia powder. , annealing a metal pipe to turn the heat-resistant adhesive or glass frit-added magnesia powder into a ceramic;
A method for manufacturing a sheathed heater, which comprises dehumidifying the magnesia insulating powder through the fine pores of the ceramic, and after dehumidifying, impregnating the surface layer of the ceramic with a heat-resistant resin or coating the surface of the ceramic with the heat-resistant resin. 2. Ceramic is a heat-resistant inorganic adhesive mainly composed of alumina, zirconia, or silica, or magnesia insulating powder, which has minute ventilation holes inside, and glass frit mainly composed of malium oxide, silicon oxide, or boron oxide. The method for manufacturing a sheathed heater according to claim 1, characterized in that the mixture is made of a mixture containing % by weight of the mixture. 3. The method for manufacturing a sheathed heater according to claim 1, wherein the heat-resistant resin is made of a silicone resin as a main component to which various oxides or nitrides are added.
JP8975980A 1980-06-30 1980-06-30 Sheathed heater and method of producing same Granted JPS5715384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8975980A JPS5715384A (en) 1980-06-30 1980-06-30 Sheathed heater and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8975980A JPS5715384A (en) 1980-06-30 1980-06-30 Sheathed heater and method of producing same

Publications (2)

Publication Number Publication Date
JPS5715384A JPS5715384A (en) 1982-01-26
JPH0313714B2 true JPH0313714B2 (en) 1991-02-25

Family

ID=13979638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8975980A Granted JPS5715384A (en) 1980-06-30 1980-06-30 Sheathed heater and method of producing same

Country Status (1)

Country Link
JP (1) JPS5715384A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110291A (en) * 1985-11-08 1987-05-21 松下電器産業株式会社 Manufacture of sheath heater
KR100385997B1 (en) * 2001-09-06 2003-06-02 삼성전자주식회사 Fusing device of electrophotographic image forming apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS474689U (en) * 1971-02-04 1972-09-12
JPS5150037A (en) * 1974-10-29 1976-05-01 Myatake Toshishige SHIIZUHIITAA
JPS51110739A (en) * 1975-03-25 1976-09-30 Tokyo Shibaura Electric Co DENNET SUKOTAINOSEIZOHOHO
JPS5230932A (en) * 1975-09-03 1977-03-09 Hitachi Heating Appliance Co Ltd Manufacturing process for sheathed heater
JPS5248852A (en) * 1975-10-16 1977-04-19 Toshiba Corp Seized heater
JPS52112133A (en) * 1976-03-17 1977-09-20 Toshiba Corp Sheathing heater
JPS5475640A (en) * 1977-11-28 1979-06-16 Matsushita Electric Ind Co Ltd Sheath heater
JPS56120090A (en) * 1980-02-26 1981-09-21 Nippon Dennetsu Kk Method of manufacturing sheathed heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336677Y2 (en) * 1974-03-18 1978-09-06
JPS51135838U (en) * 1975-04-24 1976-11-02

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS474689U (en) * 1971-02-04 1972-09-12
JPS5150037A (en) * 1974-10-29 1976-05-01 Myatake Toshishige SHIIZUHIITAA
JPS51110739A (en) * 1975-03-25 1976-09-30 Tokyo Shibaura Electric Co DENNET SUKOTAINOSEIZOHOHO
JPS5230932A (en) * 1975-09-03 1977-03-09 Hitachi Heating Appliance Co Ltd Manufacturing process for sheathed heater
JPS5248852A (en) * 1975-10-16 1977-04-19 Toshiba Corp Seized heater
JPS52112133A (en) * 1976-03-17 1977-09-20 Toshiba Corp Sheathing heater
JPS5475640A (en) * 1977-11-28 1979-06-16 Matsushita Electric Ind Co Ltd Sheath heater
JPS56120090A (en) * 1980-02-26 1981-09-21 Nippon Dennetsu Kk Method of manufacturing sheathed heater

Also Published As

Publication number Publication date
JPS5715384A (en) 1982-01-26

Similar Documents

Publication Publication Date Title
JPH0313714B2 (en)
US873780A (en) Insulated coil.
US3168804A (en) Heater construction and method of making same
JPH0449838Y2 (en)
JPH01304701A (en) Electronic parts
JPH048904B2 (en)
JPH0136239B2 (en)
JPS6215998B2 (en)
JPS5951119B2 (en) Metal pipe for sheathed heater and its manufacturing method
US3413147A (en) Method of protectively treating an electrically and thermally conducting refractory body of sintered silicon carbide
JP6395625B2 (en) Winding resistor manufacturing method
JPS6029195Y2 (en) Sea heater
JPH0131277B2 (en)
JPS63291385A (en) Sheath heater
JPS6134233B2 (en)
JPS6344270B2 (en)
JPS6112355B2 (en)
JPS63121287A (en) Electric heating unit
JP2621585B2 (en) Surface heater and method of manufacturing the same
JPS6347025Y2 (en)
JPS62110291A (en) Manufacture of sheath heater
JPH0136240B2 (en)
JPS63133483A (en) Electric heating unit
JPS5823713B2 (en) Sea-be-heater manufacturing method
JPH11185939A (en) Heater device and manufacture thereof