JPH03137114A - Star-shaped multi-branched polymer - Google Patents

Star-shaped multi-branched polymer

Info

Publication number
JPH03137114A
JPH03137114A JP27631689A JP27631689A JPH03137114A JP H03137114 A JPH03137114 A JP H03137114A JP 27631689 A JP27631689 A JP 27631689A JP 27631689 A JP27631689 A JP 27631689A JP H03137114 A JPH03137114 A JP H03137114A
Authority
JP
Japan
Prior art keywords
polymer
formula
ether
star
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27631689A
Other languages
Japanese (ja)
Other versions
JP2782000B2 (en
Inventor
Toshinobu Higashimura
東村 敏延
Mitsuo Sawamoto
沢本 光男
Kanechika Kaneoka
鐘局 金岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27631689A priority Critical patent/JP2782000B2/en
Publication of JPH03137114A publication Critical patent/JPH03137114A/en
Application granted granted Critical
Publication of JP2782000B2 publication Critical patent/JP2782000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject novel polymer useful as a reinforcing agent for multiple-phase polymer, an adsorbent for low-molecular compound and ion, etc., by bonding plural branches composed of a polymer of an alkenyl ether to a core composed of a crosslinked polymer of a dialkenyl ether. CONSTITUTION:The objective polymer has a structure produced by using a polymer of formula II (m is integer) produced by polymerizing an alkenyl ether of formula I (R<1> is H or methyl ; R<2> is univalent organic group) as a branch and bonding >=2 branches to a core composed of a polymer of formula IV (n is integer) consisting of a crosslinked polymer of a dialkenyl ether of formula III (R<3> and R<5> are R<1>; R<4> is bivalent organic group). The polymer is preferably synthesized by polymerizing the monomer of formula I by cationic polymerization to synthesize the polymer of formula II to form a branch and adding the monomer of formula III to be used as a raw material for the core to the above reaction solution without terminating the former reaction.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、星形多分岐高分子に係り、更に詳しくは、ア
ルケニルエーテルの重合体を技とし、ジアルケニルエー
テルの架橋重合体を核とし、多相高分子の強化剤、低分
子およびイオンの吸着剤、金属イオンキャリアー、反応
触媒などに利用可能な星形多分岐高分子に関するもので
ある。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to star-shaped hyperbranched polymers, and more specifically, the present invention uses a polymer of alkenyl ether as a technique and a crosslinked polymer of dialkenyl ether as the core. The present invention relates to star-shaped multibranched polymers that can be used as reinforcing agents for multiphase polymers, adsorbents for small molecules and ions, metal ion carriers, reaction catalysts, etc.

〔従来の技術〕[Conventional technology]

星形多分岐高分子は、一般に、直鎖状リビングポリマー
に三官能または多官能性単量体を反応させることにより
合成することができる。
Star-shaped multibranched polymers can generally be synthesized by reacting a linear living polymer with a trifunctional or polyfunctional monomer.

一方、アルケニルエーテルは、単独重合ではカチオン重
合でのみ高重合体を生成するが、一般に、移動、停止反
応が起こりやすいため、そのリビング重合は困難であっ
た。
On the other hand, when alkenyl ether is homopolymerized, a high polymer is produced only by cationic polymerization, but in general, migration and termination reactions are likely to occur, so living polymerization thereof has been difficult.

従って、アルケニルエーテルの重合体を技とする星形多
分岐高分子は従来得られていなかった。
Therefore, star-shaped hyperbranched polymers using alkenyl ether polymers have not been previously obtained.

ところが、本発明者らは、最近、ヨウ化水素とヨウ素あ
るいはハロゲン化亜鉛等から成る開始剤を用いるとアル
ケニルエーテルがリビング重合することを見出した(高
分子学会予稿集、32巻、187.188,190,1
439.1443(1983);Macromolec
ules。
However, the present inventors have recently discovered that alkenyl ethers undergo living polymerization when an initiator consisting of hydrogen iodide and iodine or zinc halide is used (Proceedings of the Society of Polymer Science and Technology, Vol. 32, 187.188 ,190,1
439.1443 (1983); Macromolec
ules.

17巻、265 (1984)等)。Volume 17, 265 (1984), etc.).

(発明が解決しようとする課題) アルケニルエーテルのリビングカチオン重合が困難であ
ったため、アルケニルエーテルの重合体を技とする星形
多分岐高分子は、工業的見地から多くの有用な利用分野
が予想されるにも拘らず、従来まったく合成されていな
かった。
(Problem to be solved by the invention) Since living cationic polymerization of alkenyl ethers has been difficult, star-shaped hyperbranched polymers made from alkenyl ether polymers are expected to have many useful applications from an industrial standpoint. However, until now it has not been synthesized at all.

本発明は、上記のような従来の課題を解決し、本発明者
らが最近見出したリビングカチオン重合を用いて、アル
ケニルエーテルの重合体を技とする星形多分岐高分子の
提供を目的とする。
The present invention aims to solve the above-mentioned conventional problems and to provide a star-shaped hyperbranched polymer using an alkenyl ether polymer using the living cationic polymerization recently discovered by the present inventors. do.

〔課題を解決するための手段] 本発明者らは、上記のような目的を達成すべく鋭意研究
を進めた結果、本発明に到達した。
[Means for Solving the Problems] The present inventors have conducted extensive research to achieve the above objects, and as a result, have arrived at the present invention.

すなわち、本発明は、−数式CI) CHR’=CH(OR”)    ・・・CI)(式中
、R1は水素原子又はメチル基を示し、R2は1価の有
機基を示す) で表わされるアルケニルエーテルの重合体(n)(式中
、R’およびR2は一般式[IIと同義であり、mは1
以上の整数を示す) を技とし、−数式(II[] CI(R□CFI−0−R’−0−CH,CHR’  
  ・・・(Illi)(式中、R3およびR5は水素
原子又はメチル基を示し、R4は2価の有機基を示す) で表わされるジアルケニルエーテルの架橋重合体(IV
) (式中、R”、R’およびR5は一般式(III)と同
義であり1.nは1以上の整数を示す)を核とし、この
核に、上記アルケニルエーテル重合体(II)の枝が2
本以上結合した構造を有することを特徴とする星形多分
岐高分子を要旨とするものである。
That is, the present invention is represented by the formula CI) CHR'=CH(OR'')...CI) (wherein R1 represents a hydrogen atom or a methyl group, and R2 represents a monovalent organic group) Polymer (n) of alkenyl ether (wherein R' and R2 are the same as the general formula [II, m is 1
(indicates an integer greater than or equal to
...(Illi) (wherein R3 and R5 represent a hydrogen atom or a methyl group, and R4 represents a divalent organic group)
) (wherein R'', R' and R5 have the same meanings as in general formula (III) and 1.n represents an integer of 1 or more), and to this nucleus, the above alkenyl ether polymer (II) is added. 2 branches
The subject matter is a star-shaped multibranched polymer characterized by having a structure with more than one bond.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用するアルケニルエーテルは、前示一般式C
I)で表わされ、式中R’ は水素原子又はメチル基を
示す。また、式中R2は1価の有機基を示し、例えば、
アルキル基、アシロキシアルキル基、シクロアルキル基
、アリール基、アラルキル基、アルコキシアルキル基、
アリールオキシアルキル基等を示し、それらはヒドロキ
シル基、ハロゲン原子、アルコキシ基、アルコキシカル
ボニル基、アリールオキシカルボニル基又はフタルイミ
ド基で置換されていてもよく、炭素連鎖はへテロ基を有
していてもよい。好ましいRtとしては、アラルキル基
、アシロキシアルキル基およびヒドロキシアルキル基で
あり、特には、その炭素数が1〜6の低級アルキル基よ
りなるこれら3種の置換基が好ましい。
The alkenyl ether used in the present invention has the general formula C
I), in which R' represents a hydrogen atom or a methyl group. Further, in the formula, R2 represents a monovalent organic group, for example,
Alkyl group, acyloxyalkyl group, cycloalkyl group, aryl group, aralkyl group, alkoxyalkyl group,
Indicates an aryloxyalkyl group, etc., which may be substituted with a hydroxyl group, a halogen atom, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, or a phthalimide group, and the carbon chain may have a hetero group. good. Preferred examples of Rt include an aralkyl group, an acyloxyalkyl group, and a hydroxyalkyl group, and particularly preferred are these three types of substituents consisting of a lower alkyl group having 1 to 6 carbon atoms.

上記のようなアルケニルエーテルの具体的な例としては
下記第1表の1〜第1表の5に示す化合物などが挙げら
れる。
Specific examples of the above-mentioned alkenyl ethers include compounds shown in 1 to 5 in Table 1 below.

なお、R2がヒドロキシアルキル基であるアルケニルエ
ーテルは、後述するように、アシロキシアルキル基のア
ルカリ加水分解によって容易に得られるので、便宜上、
下記表中には省略しである。
Note that alkenyl ethers in which R2 is a hydroxyalkyl group can be easily obtained by alkaline hydrolysis of an acyloxyalkyl group, as described below, so for convenience,
It is omitted from the table below.

本発明のアルケニルエーテルの重合体は、前示一般式(
II)で表わされ、リビングカチオン重合によって合成
される。
The alkenyl ether polymer of the present invention has the general formula (
II) and is synthesized by living cationic polymerization.

重合の詳細は、本発明者らの特開昭60−228509
号、同62−109373号および特願昭63−239
400号に記載された通りであるが、重合開始剤として
は、リビングカチオン重合を開始するものであればいず
れの開始剤を使用してもよ(、具体的には、以下のよう
なプロトン酸(Hlおよびリン酸エステル誘導体)とル
イス酸(rzおよびハロゲン化亜鉛など)を組合せた開
始剤等が挙げられる。
The details of the polymerization are described in JP-A No. 60-228509 by the present inventors.
No. 62-109373 and patent application No. 63-239
As described in No. 400, any initiator that initiates living cationic polymerization may be used as the polymerization initiator (specifically, the following protonic acid Examples include initiators that combine (Hl and phosphoric acid ester derivatives) and Lewis acids (such as rz and zinc halides).

HI/I!、HI/Zn 1.、HI/ZnCL 。HI/I! , HI/Zn 1. , HI/ZnCL.

HT/5nCj!z 、HOP (0)(○CbHs 
)2/Zn I2.HOPH(OC,Hs )、/Zn
C1上記のプロトン酸/ルイス酸は、モル比で500〜
0.01の範囲で使用し、好ましくは100〜0.1の
範囲、更に好ましくは50〜1の範囲で使用する。これ
らのルイス酸は、そのまま使用してもよく、不活性溶媒
で希釈して使用してもよい。
HT/5nCj! z, HOP (0) (○CbHs
)2/Zn I2. HOPH(OC,Hs), /Zn
C1 The above protonic acid/Lewis acid has a molar ratio of 500 to
It is used in a range of 0.01, preferably in a range of 100-0.1, more preferably in a range of 50-1. These Lewis acids may be used as they are or may be diluted with an inert solvent.

重合体(n)の合成のための重合反応は、無溶媒で行っ
てもよいが、通常、n−ヘキサン、シクロヘキサン等の
脂肪族炭化水素;ベンゼン、トルエン等の芳香族炭化水
素;四塩化炭素、塩化メチレン等のハロゲン化炭化水素
;ジエチルエーテル、テトラヒドロフラン等のエーテル
を反応溶媒として使用する。これらの溶媒は、1種でも
2種以上を混合して用いてもよい。
The polymerization reaction for synthesizing the polymer (n) may be carried out without a solvent, but usually aliphatic hydrocarbons such as n-hexane and cyclohexane; aromatic hydrocarbons such as benzene and toluene; carbon tetrachloride , halogenated hydrocarbons such as methylene chloride; ethers such as diethyl ether and tetrahydrofuran are used as reaction solvents. These solvents may be used alone or in combination of two or more.

溶媒とモノマーの仕込み比は、通常1:1〜100:1
(重量比)が好ましく、特に5:1〜30:lが好まし
い。モノマーと開始剤の仕込み比(重量比)は、通常2
:1〜1ooo : iの範囲であるが、特に5:1〜
100:1が好ましい。
The charging ratio of solvent and monomer is usually 1:1 to 100:1.
(weight ratio) is preferred, particularly preferably 5:1 to 30:l. The charging ratio (weight ratio) of monomer and initiator is usually 2.
:1~1ooo: i range, especially 5:1~
100:1 is preferred.

重合温度は60°C以下であればよいが、40°C以下
で重合することが好ましく、もちろんO″CC以下温で
も何ら差し支えない。
The polymerization temperature may be 60°C or lower, but preferably 40°C or lower, and of course a temperature of 0''CC or lower may be used without any problem.

重合は、上記のような開始剤を用いて、アルケニルエー
テルCI)を単独重合してもよく、また2種以上のアル
ケニルエーテルを共重合してもよい、更には、1種また
は2種以上のアルケニルエーテByを重合させた後、別
の1種または2種以上のアルケニルエーテルを添加して
更に重合させ、ブロック共重合体にしてもよい。
Polymerization may be carried out by homopolymerizing alkenyl ether CI) using the above-mentioned initiators, or by copolymerizing two or more alkenyl ethers, or by copolymerizing one or more alkenyl ethers. After polymerizing the alkenyl ether By, one or more other alkenyl ethers may be added and further polymerized to form a block copolymer.

こうして得られた重合体(n)の側鎖置換基は、本発明
の星形多分岐高分子を合成した後、高分子反応によって
別の置換基へと変換してもよい。このような側鎖置換基
の変換側として、アルカリ加水分解によるアシロキシ基
から水酸基への変換がある。
The side chain substituent of the polymer (n) thus obtained may be converted into another substituent by a polymer reaction after synthesizing the star-shaped multibranched polymer of the present invention. An example of conversion of such a side chain substituent is conversion of an acyloxy group to a hydroxyl group by alkaline hydrolysis.

本発明の星形多分岐高分子の核の原料となるジアルケニ
ルエーテルは、前示一般式CI)で表わされ、式中Rf
fおよびR5は水素原子又はメチル基を示す。また、式
中R4は2価の有機基を示し、好ましい有機基は、例え
ば、メチレン基、フェニレン基等であり、これらはへテ
ロ基で置換されていてもよい。このようなジアルケニル
エーテルの具体的な例としては、以下の化合物が好まし
く挙げられるがこれに限定されるものではない。
The dialkenyl ether that is the raw material for the core of the star-shaped multibranched polymer of the present invention is represented by the general formula CI), in which Rf
f and R5 represent a hydrogen atom or a methyl group. Further, in the formula, R4 represents a divalent organic group, and preferred organic groups are, for example, a methylene group, a phenylene group, etc., and these may be substituted with a hetero group. As specific examples of such dialkenyl ethers, the following compounds are preferably mentioned, but the invention is not limited thereto.

C)h=CHOffcHa丁−OCH=(jlz(2:
1以上の整数) CHz=CH0C1hCIh  R’  C)lzcH
zo  CH=CHx本発明の星形多分岐高分子は、先
ず、モノマー(I〕のカチオン重合により、技となるリ
ビングポリマー(If)を合成し、次いで、その溶液に
、反応を停止することなく直ちに、核の原料となるジア
ルケニルエーテル(I[)を添加することにより合成さ
れる。  (III)/(n)の仕込みモル比は1:1
〜100:1の範囲であればよ(、特に3:1〜10:
lが好ましい0反応溶媒や温度は、上述の重合体(II
)の合成と同一でよいが、これに限定されるものではな
い。
C) h=CHOffcHa ding-OCH=(jlz(2:
(integer greater than or equal to 1) CHz=CH0C1hCIh R' C)lzcH
zo CH=CHx The star-shaped multibranched polymer of the present invention is produced by first synthesizing the living polymer (If) by cationic polymerization of the monomer (I), and then adding it to the solution without stopping the reaction. It is synthesized by immediately adding dialkenyl ether (I[), which is the raw material for the nucleus. The charging molar ratio of (III)/(n) is 1:1.
As long as it is in the range of ~100:1 (especially 3:1~10:
l is preferably 0. The reaction solvent and temperature are the same as the above-mentioned polymer (II
), but is not limited to this.

一般に、リビングポリマー(II)にジアルケニルエー
テル(I[)を添加すると、(IIIIの2個のビニル
基のうちの1個が(It)の活性末端に付加すると考え
られる。この付加反応が数回くり返えされ℃、(II)
に(I[]が数個結合した一種のABブロックポリマー
が生成する。このブロックポリマーには、(I[)に由
来する未反応のビニル基が側鎖置換基として存在し、こ
れらのビニル基とABブロックポリマーの活性末端が分
子間で次々と反応することにより架橋反応が起り、星形
多分岐高分子の核が形成されると考えられる。事実、(
n)に(I[)を添加すると、(I[I)の2個のビニ
ル基は両者とも完全に消費され、生成物は反応に用いた
有機溶媒に完全に可溶であるにも拘らず、その重量平均
分子量は、〔■〕の分子量と比較して、数倍から100
倍程度増加する。これらの事実は、上記の架橋反応を通
して、(III)の架橋重合体(IV)に重合体(II
)が幾本も化学結合し、星形多分岐高分子が生成したこ
とを示している。
Generally, when dialkenyl ether (I[) is added to living polymer (II), one of the two vinyl groups of (III) is thought to be added to the active end of (It). Repeatedly ℃, (II)
A kind of AB block polymer is produced in which several (I[] are bonded to each other. In this block polymer, unreacted vinyl groups derived from (I[) exist as side chain substituents, and these vinyl groups It is thought that a cross-linking reaction occurs when the active terminals of the AB block polymer and AB block polymer react one after another intermolecularly, and the core of the star-shaped multibranched polymer is formed.In fact, (
When (I[) is added to n), both vinyl groups of (I[I) are completely consumed and the product is completely soluble in the organic solvent used in the reaction. , its weight average molecular weight is several times to 100 times that of [■].
It increases by about twice as much. These facts indicate that through the above-mentioned crosslinking reaction, crosslinked polymer (IV) of (III) is converted into polymer (II).
) are chemically bonded to form a star-shaped multibranched polymer.

第1図は、上記のようにして得られた本発明の星形多分
岐高分子の構造模式図であり、図中、(1)は架橋共重
合(IV)の核であり、(2)は核(IV)に結合した
重合体(n)の技であって2本以上存在する。
FIG. 1 is a schematic structural diagram of the star-shaped multibranched polymer of the present invention obtained as described above, in which (1) is the nucleus of crosslinked copolymerization (IV), and (2) is a technique of polymer (n) bonded to nucleus (IV), and there are two or more.

〔実施例〕〔Example〕

次に、本発明を実施例により更に具体的に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

なお、以下の実施例において各測定は次の方法によって
行った。
In addition, each measurement in the following examples was performed by the following method.

(1)  岐となるポリマーの数平均分子量Mnは、G
PC(日本分光型“TRI ROTAR”クロマトグラ
フ、カラム:昭和電工製ポリスチレンゲルA302.A
303.A304 (計3本直列);各カラムはいずれ
も内径8m、長さ500■)により求めた。
(1) The number average molecular weight Mn of the branching polymer is G
PC (JASCO Corporation “TRI ROTAR” chromatograph, column: Showa Denko polystyrene gel A302.A
303. A304 (total of 3 columns in series); each column had an inner diameter of 8 m and a length of 500 cm).

(2)星型ポリマーの重量平均分子量(Mw)は、小角
レーザー光散乱(Chromatix社製KMX−6型
、光源:He−Neレーザー(λ−633nlI)、溶
媒:THF)により求めた。
(2) The weight average molecular weight (Mw) of the star-shaped polymer was determined by small-angle laser light scattering (KMX-6 model manufactured by Chromatix, light source: He-Ne laser (λ-633nlI), solvent: THF).

(3)星型ポリマーの)(−NMRスペクトルは、日本
電子部G5X−270分光型の核磁気共鳴装置により、
室温CDCl1s中で測定した。
(3) The -NMR spectrum of the star-shaped polymer was obtained using a nuclear magnetic resonance spectrometer G5X-270 spectroscopy type of JEOL Ltd.
Measurements were made in room temperature CDCIls.

実施例1 窒素雰囲気下で充分精製したトルエン10.5鵬lに、
イソブチルビニルエーテル 475moj!/jりを添加して溶解し、ガスクロマト
グラフィーの内部標準とする四塩化炭素を0. 75−
2添加し、−40℃に冷却した。
Example 1 To 10.5 liters of toluene sufficiently purified under a nitrogen atmosphere,
Isobutyl vinyl ether 475moj! Carbon tetrachloride, which is used as an internal standard for gas chromatography, is dissolved by adding 0.0% carbon tetrachloride. 75-
2 was added and cooled to -40°C.

次いで、ヨウ化水素のトルエン溶液(150mM) 1
.0 allとヨウ化亜鉛のジエチルエーテル溶液(1
.5mM)2.0 allとを、この順で添加して重合
を開始し、40分間重合を継続した。
Next, a toluene solution of hydrogen iodide (150mM) 1
.. 0 all and a diethyl ether solution of zinc iodide (1
.. 5mM) 2.0 all were added in this order to start polymerization, and the polymerization was continued for 40 minutes.

イソブチルビニルエーテルの転換率がほぼ100%のと
ころで、重合温度を一78℃に下げ、次式のジビニルエ
ーテルのトルエンm液(250mM)3.0 羨1(リ
ビング頓に対して5当量)を添加した。
When the conversion rate of isobutyl vinyl ether was approximately 100%, the polymerization temperature was lowered to -78°C, and a toluene m solution (250 mM) of divinyl ether of the following formula (250 mM) 3.0 x 1 (5 equivalents to living carbon) was added. .

その後すぐに、温度を一40℃に上げ、マグネチックス
ターラーで充分撹拌を続けた。1時間でジビニルエーテ
ルは完全に消費された。
Immediately thereafter, the temperature was raised to -40°C and sufficient stirring was continued using a magnetic stirrer. Divinyl ether was completely consumed in 1 hour.

その後、更に16時間反応させ、重合系が黄褐色に着色
したところで、少量のアンモニア水を含むメタノールで
重合を停止した。
Thereafter, the reaction was further continued for 16 hours, and when the polymerization system was colored yellowish brown, the polymerization was stopped with methanol containing a small amount of aqueous ammonia.

次いで、重合停止によって得られた混合物をチオ硫酸ナ
トリウム水溶液(約10tvt/νo1%)で、続いて
水で洗浄した後、混合物から溶媒等を蒸発させて生成物
を回収した。
Next, the mixture obtained by terminating the polymerization was washed with an aqueous sodium thiosulfate solution (approximately 10 tvt/νo1%) and then with water, and the solvent and the like were evaporated from the mixture to recover the product.

その結果、ヘキサン、トルエン、塩化メチレン、クロロ
ホルムなどの有機溶媒に可溶で、岐の重合度が38で、
Mw=7.8X10’  −分子あたりの岐の数14本
の星型ポリビニルエーテルが0.85g得られた。その
収率はCa、100%であった。NMRの分析の結果、
生成ポリマー中にはビニル基は全く検出されなかった。
As a result, it is soluble in organic solvents such as hexane, toluene, methylene chloride, and chloroform, and has a polymerization degree of 38.
Mw=7.8×10' - 0.85 g of star-shaped polyvinyl ether with 14 branches per molecule was obtained. The yield of Ca was 100%. As a result of NMR analysis,
No vinyl groups were detected in the resulting polymer.

実施例2 窒素雰囲気下で充分精製したトルエン6.5a+1゜中
にイソブチルビニルエーテルを0.75 tal(0゜
713mof/f)を添加して溶解し、ガスクロマトグ
ラフィーの内部標準とする四塩化炭素を0.75 ml
添加し、−40°Cに冷却した。
Example 2 0.75 tal (0°713 mof/f) of isobutyl vinyl ether was added and dissolved in sufficiently purified toluene 6.5a+1° under a nitrogen atmosphere, and carbon tetrachloride, which was used as an internal standard for gas chromatography, was dissolved. 0.75ml
and cooled to -40°C.

次いで、ヨウ化水素のトルエン溶液(150mM) 1
.0 ranとヨウ化亜鉛のジエチルエーテル溶液(2
,0mM) 1.0 mlとを、この順で添加して重合
を開始した。ここでは、リビング生長末端の濃度〔P2
〕が実施例1の1.5倍になるようにした。
Next, a toluene solution of hydrogen iodide (150mM) 1
.. 0 ran and a diethyl ether solution of zinc iodide (2
, 0mM) were added in this order to initiate polymerization. Here, the concentration of living growing terminals [P2
] was set to be 1.5 times that of Example 1.

以下、実施例1で用いたジビニルエーテルの添加量をリ
ビング鎖に対して7当量に、ジビニルエーテル添加後の
反応時間を25時間に変えた以外は、実施例1と同様に
して行った。
The following procedure was carried out in the same manner as in Example 1, except that the amount of divinyl ether used in Example 1 was changed to 7 equivalents relative to the living chain, and the reaction time after addition of divinyl ether was changed to 25 hours.

その結果、岐の重合度38、Mw=3.8X10S岐の
数59本の星型ポリマーが得られた(0.85g、収率
:Ca、100%)。
As a result, a star-shaped polymer with a branch polymerization degree of 38 and 59 Mw=3.8×10S branches was obtained (0.85 g, yield: Ca, 100%).

得られたポリマーの溶解性は実施例1と同様であった。The solubility of the obtained polymer was similar to that of Example 1.

実施例3 実施例1における岐(すなわち、ポリイソブチルビニル
エーテル)の重合度を76に、ジビニルエーテル添加後
の反応時間を30時間に変えた以外は、実施例1と同様
にして行った。
Example 3 The same procedure as in Example 1 was carried out except that the degree of polymerization of divinyl ether (ie, polyisobutyl vinyl ether) in Example 1 was changed to 76, and the reaction time after addition of divinyl ether was changed to 30 hours.

その結果、Mw=5.6X10’、岐の数6本の星型ポ
リマーが得られた(0.95g、収率: Ca。
As a result, a star-shaped polymer with Mw=5.6×10′ and six branches was obtained (0.95 g, yield: Ca.

100%)。100%).

ポリマーの溶解性は実施例1と同様であった。The solubility of the polymer was similar to Example 1.

実施例4 実施例Iにおける岐をポリエチルビニルエーテルに、ジ
ビニルエーテル添加後の反応時間を35時間に変えた以
外は、実施例1と同様にして行った。
Example 4 The same procedure as in Example 1 was carried out except that the branch in Example I was changed to polyethyl vinyl ether and the reaction time after addition of divinyl ether was changed to 35 hours.

その結果、Mw−5,41X 10’ 、岐の数11本
の星型ポリマーが得られた(0.70g、収率:Ca、
LOO%)。
As a result, a star-shaped polymer with an Mw of 5.41×10′ and 11 branches was obtained (0.70 g, yield: Ca,
LOO%).

実施例5 実施例五における核を形成するジビニルエーテルを次式
の化合物に、重合溶媒を塩化メチレンに変えた以外は、
実施例1と同様にして行った。
Example 5 The divinyl ether forming the nucleus in Example 5 was changed to a compound of the following formula, and the polymerization solvent was changed to methylene chloride.
It was carried out in the same manner as in Example 1.

にも拘らず析出した。Nevertheless, it precipitated.

ジビニルエーテルは、添加後約12時間で完全に消費さ
れ、重合系は均一となった。その後、更に12′時間反
応させ、薄く黄色に着色したところで、実施例1と同様
にして重合を停止させ、以下同様に行った。
The divinyl ether was completely consumed in about 12 hours after addition, and the polymerization system became homogeneous. Thereafter, the reaction was continued for an additional 12' hours, and when the mixture was colored pale yellow, the polymerization was stopped in the same manner as in Example 1, and the same procedure was carried out thereafter.

ソノ結果、MW”=2.61 X 10’ 、岐の数5
本の星型ポリマーが得られた。
Sono result, MW"=2.61 x 10', number of branches 5
A star-shaped polymer was obtained.

ポリマーの溶解性は実施例1と同様であった。The solubility of the polymer was similar to Example 1.

実施例6 ジビニルエーテルをより柔軟なスペーサーを持つ次式の
化合物に変えた以外は、実施例1と同様にして行った。
Example 6 Example 1 was repeated except that the divinyl ether was replaced with a compound of the following formula having a more flexible spacer.

ジビニルエーテルは、室温では完全に溶解しているが、
−40°Cの重合系に添加すると、低濃度ジビニルエー
テルは、添加後2時間率で完全に消費されたが、更に2
5時間反応を続けた。
Divinyl ether is completely dissolved at room temperature, but
When added to the polymerization system at -40°C, low concentration divinyl ether was completely consumed at a rate of 2 hours after addition, but
The reaction continued for 5 hours.

その結果、一般の有機溶媒に可溶な星型ポリマーは生成
するが(50wt%)、低分子量生成物が多量に副生し
た(50wt%)。この低分子量生成物は、イソブチル
ビニルエーテルとジビニルエーテルのAB型ブロックポ
リマーと考えられる。
As a result, a star-shaped polymer soluble in common organic solvents was produced (50 wt%), but a large amount of low molecular weight products were produced as by-products (50 wt%). This low molecular weight product is believed to be an AB type block polymer of isobutyl vinyl ether and divinyl ether.

実施例7 窒素雰囲気下で充分に精製した塩化メチレン7゜2 t
anに、側鎖にエステル基を持つ2−ビニロキシエチル
アセテ−)0.39+ai!(0゜3’15taol/
l)を添加して溶解し、ガスクロマトグラフィーの内部
標準とするブロモベンゼンを0.41mff1i加し、
−15°Cに冷却した。
Example 7 7°2 t of methylene chloride thoroughly purified under nitrogen atmosphere
an, 2-vinyloxyethyl acetate having an ester group in the side chain) 0.39+ai! (0゜3'15 taol/
1) was added and dissolved, and 0.41 mff1i of bromobenzene was added as an internal standard for gas chromatography.
Cooled to -15°C.

次いで、ヨウ化水素のヘキサン溶液(100mM) 1
.Otanとヨウ化亜鉛のジエチルエーテル溶液(20
mM)1.0 mlとを、この順で添加して重合を開始
し、4時間重合を継続した。
Next, a hexane solution of hydrogen iodide (100mM) 1
.. A diethyl ether solution of Otan and zinc iodide (20
(mM) 1.0 ml were added in this order to start polymerization, and the polymerization was continued for 4 hours.

以下、ジビニルエーテル添加後の反応時間を3時間に変
えた以外は、実施例1と同様にして行った。
The following procedure was carried out in the same manner as in Example 1, except that the reaction time after addition of divinyl ether was changed to 3 hours.

その結果、トルエン、塩化メチレンなどの有機溶媒に可
溶な、岐の重合度30、Mw=8.9X104、岐の数
15本の星型ポリマーが得られた(0.5−8g、収率
:Ca、100%)。
As a result, a star-shaped polymer with a degree of polymerization of branches of 30, Mw = 8.9 x 104, and number of branches of 15, which is soluble in organic solvents such as toluene and methylene chloride, was obtained (0.5-8 g, yield :Ca, 100%).

上記ポリマー(0,3g)をアセトン/水混合溶媒(1
: 1voj!/vof) 20 an!に溶解し、エ
ステル基に対して5当量の水酸化ナトリウム(2NNa
OHaq)3.84 rslを加えて、室温で3日間撹
拌した。
The above polymer (0.3 g) was mixed with an acetone/water mixed solvent (1
: 1voj! /vof) 20 an! 5 equivalents of sodium hydroxide (2NNa
OHaq) 3.84 rsl was added and stirred at room temperature for 3 days.

その結果、側鎖のエステル基は定量的に水酸基に変換さ
れ、水、メタノールに可溶で、トルエン、塩化メチレン
などの有機溶媒に不溶な、親水主星型ポリマーが得られ
た。
As a result, the ester groups in the side chains were quantitatively converted to hydroxyl groups, yielding a hydrophilic star-shaped polymer that was soluble in water and methanol and insoluble in organic solvents such as toluene and methylene chloride.

なお、ポリマーの精製は透析により行った。Note that the polymer was purified by dialysis.

実施例8 実施例1における岐を2−と二ロキシエチルアセテート
とイソブチルビニルエーテルのブロックポリマー(重合
度比:10/30)に変えた以外は、実施例1と同様に
して行った。
Example 8 The same procedure as in Example 1 was carried out except that the branch in Example 1 was changed to a block polymer of 2-, dioxyethyl acetate, and isobutyl vinyl ether (polymerization degree ratio: 10/30).

その結果、Mw=5.02X10’、岐の数8本の星型
ブロックポリマーが得られた(0.60g、収率;Ca
、100%)。
As a result, a star-shaped block polymer with Mw=5.02X10' and 8 branches was obtained (0.60 g, yield; Ca
, 100%).

上記ポリマー(0,6g)をジオキサン(20■2)に
溶解し、実施例7と同様にして4日間反応させた。
The above polymer (0.6 g) was dissolved in dioxane (20 x 2) and reacted for 4 days in the same manner as in Example 7.

その結果、親水性セグメントと疎水性セグメントから成
る岐を持つ、両親媒性星型ブロックポリマーが得られた
。得られたポリマーは、トルエン、塩化メチレン、クロ
ロホルム、メタノール、エタノールに可溶であった。
As a result, an amphiphilic star-shaped block polymer with branches consisting of hydrophilic and hydrophobic segments was obtained. The obtained polymer was soluble in toluene, methylene chloride, chloroform, methanol, and ethanol.

実施例9 実施例1における開始剤を2−ビニロキシエチルアセテ
ートのヨウ化水素付加体に変えた以外は、実施例1と同
様にして行った。
Example 9 The same procedure as in Example 1 was carried out except that the initiator in Example 1 was changed to a hydrogen iodide adduct of 2-vinyloxyethyl acetate.

その結果、Mw−7,35xlO’、岐の数13本で、
表面だけが官能基(エステル基)で覆われた星型ポリマ
ーが得られた。
As a result, Mw-7, 35xlO', number of branches is 13,
A star-shaped polymer was obtained in which only the surface was covered with functional groups (ester groups).

また、実施例8と同様にして加水分解を行うことにより
、表面に水酸基を有する星型ポリマーも合成できた。
Furthermore, by performing hydrolysis in the same manner as in Example 8, a star-shaped polymer having hydroxyl groups on the surface was also synthesized.

〔発明の効果〕〔Effect of the invention〕

以上の結果から明らかなように、本発明は、従来得られ
ていなかったアルケニルエーテルの星型多分岐高分子を
提供するという工業的価値ある顕著な効果を奏するもの
である。これらの高分子は、従来にない構造と空間的形
態を有しており、多相高分子の強化剤、低分子およびイ
オンの吸着剤やキャリヤー、反応触媒などとして十分使
用できるものと期待される。
As is clear from the above results, the present invention has the remarkable effect of providing a star-shaped hyperbranched polymer of alkenyl ether, which has not been obtained hitherto, and is of industrial value. These polymers have unprecedented structures and spatial morphologies, and are expected to be useful as reinforcing agents for multiphase polymers, adsorbents and carriers for small molecules and ions, and reaction catalysts. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の星型多分岐高分子の構造模式図であ
り、図中(1)は架橋共重合体(IV)の核を表わし、
(2)は核(IV)に結合した重合体(II)の岐を表
わす。
FIG. 1 is a schematic structural diagram of the star-shaped multibranched polymer of the present invention, in which (1) represents the core of the crosslinked copolymer (IV),
(2) represents a branch of polymer (II) bonded to core (IV).

Claims (1)

【特許請求の範囲】[Claims] (1)一般式〔 I 〕 CHR^1=CH(OR^2)…〔 I 〕 (式中、R^1は水素原子又はメチル基を示し、R^2
は1価の有機基を示す) で表わされるアルケニルエーテルの重合体〔II〕▲数式
、化学式、表等があります▼…〔II〕 (式中、R^1およびR^2は一般式〔 I 〕と同義で
あり、mは1以上の整数を示す) を枝とし、一般式〔III〕 CHR^3=CH−O−R^4−O−CH=CHR^5
…〔III〕(式中、R^3およびR^5は水素原子又は
メチル基を示し、R^4は2価の有機基を示す) で表わされるジアルケニルエーテルの架橋重合体〔IV〕 ▲数式、化学式、表等があります▼…〔IV〕 (式中、R^3、R^4およびR^5は一般式〔III〕
と同義であり、nは1以上の整数を示す) を核とし、この核に、上記アルケニルエーテル重合体〔
II〕の枝が2本以上結合した構造を有することを特徴と
する星形多分岐高分子。
(1) General formula [I] CHR^1=CH(OR^2)...[I] (In the formula, R^1 represents a hydrogen atom or a methyl group, and R^2
indicates a monovalent organic group) [II] ▲ Numerical formulas, chemical formulas, tables, etc. are available▼... [II] (In the formula, R^1 and R^2 are the general formula [I ], where m represents an integer of 1 or more) is the branch, and the general formula [III] CHR^3=CH-O-R^4-O-CH=CHR^5
...[III] (In the formula, R^3 and R^5 represent a hydrogen atom or a methyl group, and R^4 represents a divalent organic group) [IV] Crosslinked polymer of dialkenyl ether [IV] ▲ There are mathematical formulas, chemical formulas, tables, etc.▼...[IV] (In the formula, R^3, R^4 and R^5 are general formulas [III]
(n is an integer of 1 or more) as a core, and the above alkenyl ether polymer [
A star-shaped multibranched polymer characterized by having a structure in which two or more branches of [II] are bonded together.
JP27631689A 1989-10-23 1989-10-23 Star-shaped hyperbranched polymer Expired - Fee Related JP2782000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27631689A JP2782000B2 (en) 1989-10-23 1989-10-23 Star-shaped hyperbranched polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27631689A JP2782000B2 (en) 1989-10-23 1989-10-23 Star-shaped hyperbranched polymer

Publications (2)

Publication Number Publication Date
JPH03137114A true JPH03137114A (en) 1991-06-11
JP2782000B2 JP2782000B2 (en) 1998-07-30

Family

ID=17567755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27631689A Expired - Fee Related JP2782000B2 (en) 1989-10-23 1989-10-23 Star-shaped hyperbranched polymer

Country Status (1)

Country Link
JP (1) JP2782000B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109928A1 (en) * 2009-03-24 2010-09-30 丸善石油化学株式会社 Vinyl ether-based star polymer and process for production thereof
JP2011052079A (en) * 2009-08-31 2011-03-17 Daikin Industries Ltd Star polymer
JP2011063660A (en) * 2009-09-15 2011-03-31 Daikin Industries Ltd Star-shaped polymer
JP2011236273A (en) * 2010-05-06 2011-11-24 Nippon Carbide Ind Co Inc Vinyl ether derivative star polymer and method for producing the same
JP2015042704A (en) * 2013-08-26 2015-03-05 国立大学法人福井大学 Vinyl ether group-containing copolymer and star polymer and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109928A1 (en) * 2009-03-24 2010-09-30 丸善石油化学株式会社 Vinyl ether-based star polymer and process for production thereof
JP2011052079A (en) * 2009-08-31 2011-03-17 Daikin Industries Ltd Star polymer
JP2011063660A (en) * 2009-09-15 2011-03-31 Daikin Industries Ltd Star-shaped polymer
JP2011236273A (en) * 2010-05-06 2011-11-24 Nippon Carbide Ind Co Inc Vinyl ether derivative star polymer and method for producing the same
JP2015042704A (en) * 2013-08-26 2015-03-05 国立大学法人福井大学 Vinyl ether group-containing copolymer and star polymer and production method thereof

Also Published As

Publication number Publication date
JP2782000B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
US5225492A (en) Living carbocationic polymerization of poly(isobutylene-β-methyl vinyl ether)
US4605716A (en) Lewis base-catalyzed polymerization
KR20020029117A (en) Star block copolymer
JPH03137114A (en) Star-shaped multi-branched polymer
EP0464408B1 (en) Process for preparing star compounds
US4508877A (en) Process for producing a high purity cyclized polymer of isoprene
Bennevault et al. Influence of various proton traps on the bifunctional cationic polymerization of chloroethyl vinyl ether mediated by α‐iodo ether/zinc dichloride
JPH01108203A (en) Manufacture of polyalkenyl ether
JPH05279469A (en) Both end heterofunctional polyether and production of the polyether and polymerization initiator
JPS62260808A (en) O-substituted phenylacetylene polymer
EP0194110B1 (en) Polymer life enhancement in oxyanion-catalyzed polymerization
Wesslén et al. Anionic polymerization of vinyl chloride
JP2999307B2 (en) Propylene / styrene block copolymer and method for producing the same
KR101538061B1 (en) Macromonomers comprising norbornene derivatives and its preparation process
CA1255445A (en) Process for the quasi-ionic polymerization of acrylic acid derivatives
JPH0686483B2 (en) End-modified propylene polymer and method for producing the same
JP2837537B2 (en) Terminally reactive group-containing propylene (co) polymer and process for producing the same
EP0581963A1 (en) Terminally modified polyolefin
JPH0830094B2 (en) Method for producing styrene polymer
JP2850152B2 (en) Method for producing ethylene copolymer
JPH0288607A (en) Production of polyalkenyl ether
JP2941003B2 (en) Method for producing styrenic polymer
KR100644362B1 (en) Coil-rod-coil triblock copolymers of 2-vinyl pyridine and alkyl isocyanate, and synthesis of them
JP2571690B2 (en) Method for producing polyalkenyl ether
Maier et al. 1, 2, 5‐Azadiborolane as a Building Block for Inorganic–Organic Hybrid Polymers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees