JP2782000B2 - Star-shaped hyperbranched polymer - Google Patents

Star-shaped hyperbranched polymer

Info

Publication number
JP2782000B2
JP2782000B2 JP27631689A JP27631689A JP2782000B2 JP 2782000 B2 JP2782000 B2 JP 2782000B2 JP 27631689 A JP27631689 A JP 27631689A JP 27631689 A JP27631689 A JP 27631689A JP 2782000 B2 JP2782000 B2 JP 2782000B2
Authority
JP
Japan
Prior art keywords
polymer
star
group
polymerization
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27631689A
Other languages
Japanese (ja)
Other versions
JPH03137114A (en
Inventor
敏延 東村
光男 沢本
鐘局 金岡
Original Assignee
敏延 東村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敏延 東村 filed Critical 敏延 東村
Priority to JP27631689A priority Critical patent/JP2782000B2/en
Publication of JPH03137114A publication Critical patent/JPH03137114A/en
Application granted granted Critical
Publication of JP2782000B2 publication Critical patent/JP2782000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、星形多分岐高分子に係り、更に詳しくは、
アルケニルエーテルの重合体を枝とし、ジアルケニルエ
ーテルの架橋重合体を核とし、多相高分子の強化剤、低
分子およびイオンの吸着剤、金属イオンキャリアー、反
応触媒などに利用可能な星形多分岐高分子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a star-shaped hyperbranched polymer,
The alkenyl ether polymer is used as a branch, and the crosslinked polymer of a dialkenyl ether is used as a nucleus. It relates to a branched polymer.

〔従来の技術〕[Conventional technology]

星形多分岐高分子は、一般に、直鎖状リビングポリマ
ーに二官能または多官能性単量体を反応させることによ
り合成することができる。
The star-shaped multibranched polymer can be generally synthesized by reacting a bifunctional or polyfunctional monomer with a linear living polymer.

一方、アルケニルエーテルは、単独重合ではカチオン
重合でのみ高重合体を生成するが、一般に、移動、停止
反応が起こりやすいため、そのリビング重合は困難であ
った。
On the other hand, alkenyl ethers produce high polymers only by cationic polymerization in homopolymerization. However, in general, migration and termination reactions easily occur, so that living polymerization was difficult.

従って、アルケニルエーテルの重合体を枝とする星形
多分岐高分子は従来得られていなかった。
Therefore, a star-shaped hyperbranched polymer having a branch of an alkenyl ether polymer has not been obtained.

ところが、本発明者らは、最近、ヨウ化水素とヨウ素
あるいはハロゲン化亜鉛等から成る開始剤を用いるとア
ルケニルエーテルがリビング重合することを見出した
(高分子学会予稿集、32巻、187,188,190,1439,1443(1
983);Macromolecules、17巻、265(1984)等)。
However, the present inventors have recently found that alkenyl ether undergoes living polymerization when an initiator composed of hydrogen iodide and iodine or zinc halide is used (Preprints of the Society of Polymer Science, Vol. 32, 187, 188, 190, 1439). , 1443 (1
983); Macromolecules, 17, 265 (1984), etc.).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

アルケニルエーテルのリビングカチオン重合が困難で
あったため、アルケニルエーテルの重合体を枝とする星
形多分岐高分子は、工業的見地から多くの有用な利用分
野が予想されるにも拘らず、従来まったく合成されてい
なかった。
Due to the difficulty of living cationic polymerization of alkenyl ethers, star-shaped hyperbranched polymers having alkenyl ether polymers as branches have been conventionally used in spite of the fact that many useful applications are expected from an industrial point of view. Had not been synthesized.

本発明は、上記のような従来の課題を解決し、本発明
者らが最近見出したリビングカチオン重合を用いて、ア
ルケニルエーテルの重合体を枝とする星形多分岐高分子
の提供を目的とする。
The present invention solves the conventional problems as described above, and aims to provide a star-shaped hyperbranched polymer having an alkenyl ether polymer as a branch using living cationic polymerization recently found by the present inventors. I do.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上記のような目的を達成すべく鋭意研
究を進めた結果、本発明に到達した。
The present inventors have made intensive studies to achieve the above object, and as a result, have reached the present invention.

すなわち、本発明は、一般式〔I〕 CHR1=OH(OR2) …〔I〕 (式中、R1は水素原子又はメチル基を示し、R2は1価の
有機基を示す) で表わされるアルケニルエーテルの重合体〔II〕 (式中、R1およびR2は一般式〔I〕と同義であり、mは
1以上の整数を示す) を枝とし、一般式〔III〕 CHR3=CH−O−R4−O−CH=CHR5 …〔III〕 (式中、R3およびR5は水素原子又はメチル基を示し、R4
は2価の有機基を示す) で表わされるジアルケニルエーテルの架橋重合体〔IV〕 (式中、R3,R4およびR5は一般式〔III〕と同義であり、
nは1以上の整数を示す) を核とし、この核に、上記アルケニルエーテル重合体
〔II〕の枝が2本以上結合した構造を有することを特徴
とする星形多分岐高分子を要旨とするものである。
That is, the present invention provides a compound represented by the general formula [I] CHR 1 OHOH (OR 2 )... [I] (wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 represents a monovalent organic group). Polymer of the represented alkenyl ether [II] (Wherein R 1 and R 2 have the same meanings as in the general formula [I], and m represents an integer of 1 or more), and the general formula [III] CHR 3 CHCH—O—R 4 —O— CH = CHR 5 ... [III] (wherein, R 3 and R 5 represents a hydrogen atom or a methyl group, R 4
Represents a divalent organic group.) A crosslinked polymer of a dialkenyl ether represented by the formula [IV] (Wherein R 3 , R 4 and R 5 have the same meaning as in the general formula [III],
n represents an integer of 1 or more), and a star-shaped hyperbranched polymer having a structure in which two or more branches of the alkenyl ether polymer [II] are bonded to the nucleus. Is what you do.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明で使用するアルケニルエーテルは、前示一般式
〔I〕で表わされ、式中R1は水素原子又はメチル基を示
す。また、式中R2は1価の有機基を示し、例えば、アル
キル基、アシロキシアルキル基、シクロアルキル基、ア
リール基、アラルキル基、アルコキシアルキル基、アリ
ールオキシアルキル基等を示し、それらはヒドロキシル
基、ハロゲン原子、アルコキシ基、アルコキシカルボニ
ル基、アリールオキシカルボニル基又はフタルイミド基
で置換されていてもよく、炭素連鎖はヘテロ基を有して
いてもよい。好ましいR2としては、アルキル基、アシロ
キシアルキル基およびヒドロキシアルキル基であり、特
には、その炭素数が1〜6の低級アルキル基よりなるこ
れら3種の置換基が好ましい。
The alkenyl ether used in the present invention is represented by the aforementioned general formula [I], wherein R 1 represents a hydrogen atom or a methyl group. In the formula, R 2 represents a monovalent organic group, for example, an alkyl group, an acyloxyalkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxyalkyl group, an aryloxyalkyl group, and the like. It may be substituted with a group, a halogen atom, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group or a phthalimide group, and the carbon chain may have a hetero group. Preferred R 2 are an alkyl group, an acyloxyalkyl group and a hydroxyalkyl group, and particularly, these three types of substituents consisting of a lower alkyl group having 1 to 6 carbon atoms are preferred.

上記のようなアルケニルエーテルの具体的な例として
は下記第1表の1〜第1表の5に示す化合物などが挙げ
られる。
Specific examples of the alkenyl ether as described above include the compounds shown in Table 1 to Table 5 below.

なお、R2がヒドロキシアルキル基であるアルケニルエ
ーテルは、後述するように、アシロキシアルキル基のア
ルカリ加水分解によって容易に得られるので、便宜上、
下記表中には省略してある。
The alkenyl ether in which R 2 is a hydroxyalkyl group can be easily obtained by alkali hydrolysis of an acyloxyalkyl group, as described below.
It is omitted in the table below.

本発明のアルケニルエーテルの重合体は、前示一般式
〔II〕で表わされ、リビングカチオン重合によって合成
される。
The alkenyl ether polymer of the present invention is represented by the above general formula [II] and is synthesized by living cationic polymerization.

重合の詳細は、本発明者らの特開昭60−228509号、同
62−109373号および特願昭63−239400号に記載された通
りであるが、重合開始剤としては、リビングカチオン重
合を開始するものであればいずれの開始剤を使用しても
よく、具体的には、以下のようなプロトン酸(HIおよび
リン酸エステル誘導体)とルイス酸(I2およびハロゲン
化亜鉛など)を組合せた開始剤等が挙げられる。
Details of the polymerization are described in JP-A-60-228509 of the present inventors,
As described in JP-A-62-109373 and Japanese Patent Application No. 63-239400, any polymerization initiator may be used as long as it initiates living cationic polymerization. the proton acids such as (HI and phosphoric acid ester derivative) and initiator combination a Lewis acid (such as I 2 and zinc halides), and the like below.

HI/I2,HI/ZnI2,HI/ZnCl2,HI/SnCl2,HOP(O)(OC6H5
2/ZnI2,HOPH(OC6H52/ZnCl 上記のプロトン酸/ルイス酸は、モル比で500〜0.01
の範囲で使用し、好ましくは100〜0.1の範囲、更に好ま
しくは50〜1の範囲で使用する。これらのルイス酸は、
そのまま使用してもよく、不活性溶媒で希釈して使用し
てもよい。
HI / I 2 , HI / ZnI 2 , HI / ZnCl 2 , HI / SnCl 2 , HOP (O) (OC 6 H 5 )
2 / ZnI 2 , HOPH (OC 6 H 5 ) 2 / ZnCl The above-mentioned protonic acid / Lewis acid has a molar ratio of 500 to 0.01.
, Preferably in the range of 100 to 0.1, more preferably in the range of 50 to 1. These Lewis acids are
It may be used as it is, or may be used after being diluted with an inert solvent.

重合体〔II〕の合成のための重合反応は、無溶媒で行
ってもよいが、通常、n−ヘキサン、シクロヘキサン等
の脂肪族炭化水素;ベンゼン、トルエン等の芳香族炭化
水素;四塩化炭素、塩化メチレン等のハロゲン化炭化水
素;ジエチルエーテル、テトラヒドロフラン等のエーテ
ルを反応溶媒として使用する。これらの溶媒は、1種で
も2種以上を混合して用いてもよい。
The polymerization reaction for the synthesis of the polymer [II] may be carried out without a solvent, but is usually an aliphatic hydrocarbon such as n-hexane or cyclohexane; an aromatic hydrocarbon such as benzene or toluene; And halogenated hydrocarbons such as methylene chloride; ethers such as diethyl ether and tetrahydrofuran are used as reaction solvents. These solvents may be used alone or in combination of two or more.

溶媒とモノマーの仕込み比は、通常1:1〜100:1(重量
比)が好ましく、特に5:1〜30:1が好ましい。モノマー
と開始剤の仕込み比(重量比)は、通常2:1〜1000:1の
範囲であるが、特に5:1〜100:1が好ましい。重合温度は
60℃以下であればよいが、40℃以下で重合することが好
ましく、もちろん0℃以下の低温でも何ら差し支えな
い。
The charging ratio of the solvent and the monomer is usually preferably 1: 1 to 100: 1 (weight ratio), and particularly preferably 5: 1 to 30: 1. The charge ratio (weight ratio) of the monomer and the initiator is usually in the range of 2: 1 to 1000: 1, and particularly preferably 5: 1 to 100: 1. The polymerization temperature is
The temperature may be 60 ° C. or lower, but polymerization is preferably performed at 40 ° C. or lower. Of course, a low temperature of 0 ° C. or lower can be used.

重合は、上記のような開始剤を用いて、アルケニルエ
ーテル〔I〕を単独重合してもよく、また2種以上のア
ルケニルエーテルを共重合してもよい。更には、1種ま
たは2種以上のアルケニルエーテルを重合させた後、別
の1種または2種以上のアルケニルエーテルを添加して
更に重合させ、ブロック共重合体にしてもよい。
In the polymerization, the alkenyl ether [I] may be homopolymerized, or two or more alkenyl ethers may be copolymerized, using the initiator as described above. Furthermore, after one or two or more alkenyl ethers are polymerized, another one or two or more alkenyl ethers may be added and further polymerized to form a block copolymer.

こうして得られた重合体〔II〕の側鎖置換基は、本発
明の星形多分岐高分子を合成した後、高分子反応によっ
て別の置換基へと変換してもよい。このような側鎖置換
基の変換側として、アルカリ加水分解によるアシロキシ
基から水酸基への変換がある。
The side chain substituent of the polymer [II] thus obtained may be converted to another substituent by a polymer reaction after synthesizing the star-shaped multibranched polymer of the present invention. As a conversion side of such a side chain substituent, there is conversion of an acyloxy group to a hydroxyl group by alkali hydrolysis.

本発明の星形多分岐高分子の核の原料となるジアルケ
ニルエーテルは、前示一般式〔III〕で表わされ、式中R
3およびR5は水素原子又はメチル基を示す。また、式中R
4は2価の有機基を示し、好ましい有機基は、例えば、
メチレン基、フェニレン基等であり、これらはヘテロ基
で置換されていてもよい。このようなジアルケニルエー
テルの具体的な例としては、以下の化合物が好ましく挙
げられるがこれに限定されるものではない。
The dialkenyl ether serving as a raw material of the core of the star-shaped multibranched polymer of the present invention is represented by the aforementioned general formula (III),
3 and R 5 represent a hydrogen atom or a methyl group. In the formula, R
4 represents a divalent organic group, and a preferable organic group is, for example,
A methylene group, a phenylene group and the like, which may be substituted with a hetero group. Specific examples of such dialkenyl ethers include, but are not limited to, the following compounds.

CH2=CH−OCH2 lO−CH=CH2 (l:1以上の整数) CH2=CH−OCH2CH2−R6−CH2CH2O−CH=CH2 本発明の星形多分岐高分子は、先ず、モノマー〔I〕
のカチオン重合により、枝となるリビングポリマー〔I
I〕を合成し、次いで、その溶液に、反応を停止するこ
となく直ちに、核の原料となるジアルケニルエーテル
〔III〕を添加することにより合成される。〔III〕/
〔II〕の仕込みモル比は1:1〜100:1の範囲であればよ
く、特に3:1〜10:1が好ましい。反応溶媒や温度は、上
述の重合体〔II〕の合成と同一でよいが、これに限定さ
れるものではない。
CH 2 = CH-OCH 2 l O-CH = CH 2 (l: an integer of 1 or more) CH 2 = CH-OCH 2 CH 2 -R 6 -CH 2 CH 2 O-CH = CH 2 The star-shaped hyperbranched polymer of the present invention comprises a monomer (I)
The living polymer [I
I] is synthesized, and then to the solution is immediately added without stopping the reaction, a dialkenyl ether [III], which is a raw material of a nucleus. [III] /
The charged molar ratio of [II] may be in the range of 1: 1 to 100: 1, and particularly preferably 3: 1 to 10: 1. The reaction solvent and temperature may be the same as those for the synthesis of the polymer [II], but are not limited thereto.

一般に、リビングポリマー〔II〕にジアルケニルエー
テル〔III〕を添加すると、〔III〕の2個のビニル基の
うちの1個が〔II〕の活性末端に付加すると考えられ
る。この付加反応が数回くり返えされて、〔II〕に〔II
I〕が数個結合した一種のABブロックポリマーが生成す
る。このブロックポリマーには、〔III〕に由来する未
反応のビニル基が側鎖置換基として存在し、これらのビ
ニル基とABブロックポリマーの活性末端が分子間で次々
と反応することにより架橋反応が起り、星形多分岐高分
子を核が形成されると考えられる。事実、〔II〕に〔II
I〕を添加すると、〔III〕の2個のビニル基は両者とも
完全に消費され、生成物は反応に用いた有機溶媒に完全
に可溶であるにも拘らず、その重量平均分子量は、〔I
I〕の分子量と比較して、数倍から100倍程度増加する。
これらの事実は、上記の架橋反応を通して、〔III〕の
架橋重合体〔IV〕に重合体〔II〕が幾本も化学結合し、
星形多分岐高分子が生成したことを示している。
In general, when a dialkenyl ether [III] is added to the living polymer [II], it is considered that one of the two vinyl groups of [III] is added to the active terminal of [II]. This addition reaction was repeated several times, and [II] was replaced by [II
A] forms a kind of AB block polymer in which several [I] are bonded. In this block polymer, unreacted vinyl groups derived from (III) are present as side-chain substituents, and these vinyl groups and the active terminals of the AB block polymer react one after another between molecules to cause a crosslinking reaction. It is thought that the nucleation of the star-shaped hyperbranched polymer occurs. In fact, (II)
When I) is added, both of the two vinyl groups of [III] are completely consumed, and although the product is completely soluble in the organic solvent used in the reaction, its weight average molecular weight is [I
As compared with the molecular weight of [I], the molecular weight is increased about several times to about 100 times.
These facts indicate that through the above crosslinking reaction, several polymers [II] are chemically bonded to the crosslinked polymer [IV] of [III],
This indicates that a star-shaped hyperbranched polymer was formed.

第1図は、上記のようにして得られた本発明の星形多
分岐高分子の構造模式図であり、図中、(1)は架橋共
重合〔IV〕の核であり、(2)は核〔IV〕に結合した結
合体〔II〕の枝であって2本以上存在する。
FIG. 1 is a schematic structural view of the star-shaped multibranched polymer of the present invention obtained as described above, wherein (1) is a nucleus of cross-linked copolymer [IV], and (2) Is a branch of the conjugate [II] bonded to the nucleus [IV] and is present in two or more branches.

〔実施例〕〔Example〕

次に、本発明を実施例により更に具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.

なお、以下の実施例において各測定は次の方法によっ
て行った。
In addition, in the following Examples, each measurement was performed by the following method.

(1) 枝となるポリマーの数平均分子量nは、GPC
(日本分光製“TRIROTAR"クロマトグラフ,カラム:昭
和電工製ポリスチレンゲルA802,A803,A804(計3本直
列);各カラムはいずれも内径8mm,長さ500mm)により
求めた。
(1) The number average molecular weight n of the branching polymer is determined by GPC
("TRIROTAR" chromatograph, manufactured by JASCO Corporation, column: polystyrene gel A802, A803, A804, manufactured by Showa Denko (3 series in total); each column was determined by an inner diameter of 8 mm and a length of 500 mm).

(2) 星形ポリマーの重量平均分子量(w)は、小
角レーザー光散乱(Chromatix社製KMX−6型,光源:He
−Neレーザー(λ=633nm)、溶媒:THF)により求め
た。
(2) The weight-average molecular weight (w) of the star polymer was measured by small-angle laser light scattering (KMX-6 manufactured by Chromatix, light source: He).
-Ne laser (λ = 633 nm), solvent: THF.

(3) 星形ポリマーのH−NMRスペクトルは、日本電
子製GSX−270分光型の核磁気共鳴装置により、室温CDCl
2中で測定した。
(3) The H-NMR spectrum of the star-shaped polymer was measured at room temperature by using a JSX G270 spectroscopic nuclear magnetic resonance apparatus.
Measured in 2 .

実施例1 窒素雰囲気下で充分精製したトルエン10.5mlにイソブ
チルビニルエーテル0.75ml(0.475mol/)を添加して
溶解し、ガスクロマトグラフィーの内部標準とする四塩
化炭素を0.75ml添加し、−40℃に冷却した。
Example 1 0.75 ml (0.475 mol /) of isobutyl vinyl ether was dissolved in 10.5 ml of sufficiently purified toluene under a nitrogen atmosphere, and 0.75 ml of carbon tetrachloride as an internal standard for gas chromatography was added. And cooled.

次いで、ヨウ化水素のトルエン溶液(150mM)1.0mlと
ヨウ化亜鉛のジエチルエーテル溶液(1.5mM)2.0mlと
を、この順で添加して重合を開始し、40分間重合を継続
した。
Next, 1.0 ml of a toluene solution of hydrogen iodide (150 mM) and 2.0 ml of a diethyl ether solution of zinc iodide (1.5 mM) were added in this order to start polymerization, and polymerization was continued for 40 minutes.

イソブチルビニルエーテルの転換率がほぼ100%のと
ころで、重合温度を−78℃に下げ、次式のジビニルエー
テルのトルエン溶液(250mM)3.0ml(リビング鎖に対し
て5等量)を添加した。
When the conversion of isobutyl vinyl ether was almost 100%, the polymerization temperature was lowered to -78 ° C, and 3.0 ml of a toluene solution of divinyl ether (250 mM) represented by the following formula (5 equivalents to the living chain) was added.

その後すぐに、温度を−40℃に上げ、マグネチックス
ターラーで充分撹拌を続けた。1時間でジビニルエーテ
ルは完全に消費された。
Immediately thereafter, the temperature was raised to −40 ° C., and stirring was sufficiently continued with a magnetic stirrer. The divinyl ether was completely consumed in one hour.

その後、更に16時間反応させ、重合系が黄褐色に着色
したところで、少量のアンモニア水を含むメタノールで
重合を停止した。
Thereafter, the reaction was further continued for 16 hours. When the polymerization system was colored yellow-brown, the polymerization was stopped with methanol containing a small amount of aqueous ammonia.

次いで、重合停止によって得られた混合物をチオ硫酸
ナトリウム水溶液(約10wt/vol%)で、続いて水で洗浄
した後、混合物から溶媒等を蒸発させて生成物を回収し
た。
Next, the mixture obtained by terminating the polymerization was washed with an aqueous solution of sodium thiosulfate (about 10 wt / vol%) and then with water, and then the solvent was evaporated from the mixture to collect a product.

その結果、ヘキサン、トルエン、塩化メチレン、クロ
ロホルムなどの有機溶媒に可溶で、枝の重合度が38で、
w=7.8×104、一分子あたりの枝の数14本の星型ポリ
ビニルエーテルが0.85g得られた。その収率はCa.100%
であった。NMRの分析の結果、生成ポリマー中にはビニ
ル基は全く検出されなかった。
As a result, it is soluble in organic solvents such as hexane, toluene, methylene chloride and chloroform, and the degree of branch polymerization is 38.
0.85 g of a star-shaped polyvinyl ether having w = 7.8 × 10 4 and 14 branches per molecule was obtained. The yield is Ca.100%
Met. As a result of NMR analysis, no vinyl group was detected in the resulting polymer.

実施例2 窒素雰囲気下で充分精製したトルエン6.5ml中にイソ
ブチルビニルエーテルを0.75ml(0.713mol/)を添加
して溶解し、ガスクロマトグラフィーの内部標準とする
四塩化炭素を0.75ml添加し、−40℃に冷却した。
Example 2 0.75 ml (0.713 mol /) of isobutyl vinyl ether was added to and dissolved in 6.5 ml of sufficiently purified toluene under a nitrogen atmosphere, and 0.75 ml of carbon tetrachloride as an internal standard for gas chromatography was added. Cooled to 40 ° C.

次いで、ヨウ化水素のトルエン溶液(150mM)1.0mlと
ヨウ化亜鉛のジエチルエーテル溶液(2.0mM)1.0mlと
を、この順で添加して重合を開始した。ここでは、リビ
ング生長末端の濃度〔P〕が実施例1の1.5倍になる
ようにした。
Next, 1.0 ml of a toluene solution of hydrogen iodide (150 mM) and 1.0 ml of a diethyl ether solution of zinc iodide (2.0 mM) were added in this order to initiate polymerization. Here, the concentration [P * ] of the living growing terminal was set to be 1.5 times that of Example 1.

以下、実施例1で用いたジビニルエーテルの添加量を
リビング鎖に対して7当量に、ジビニルエーテル添加後
の反応時間を25時間に変えた以外は、実施例1と同様に
して行った。
Hereinafter, the procedure was performed in the same manner as in Example 1 except that the amount of divinyl ether used in Example 1 was changed to 7 equivalents to the living chain and the reaction time after the addition of divinyl ether was changed to 25 hours.

その結果、枝の重合度38、w=3.8×105、枝岐の数
59本の星型ポリマーが得られた(0.85g、収率:Ca.100
%)。
As a result, the degree of polymerization of the branches was 38, w = 3.8 × 10 5 , and the number of branches
59 star polymers were obtained (0.85 g, yield: Ca.100
%).

得られたポリマーの溶解性は実施例1と同様であっ
た。
The solubility of the obtained polymer was the same as in Example 1.

実施例3 実施例1における枝(すなわち、ポリイソブチルビニ
ルエーテル)の重合度を76に、ジビニルエーテル添加後
の反応時間を30時間に変えた以外は、実施例1と同様に
して行った。
Example 3 The procedure of Example 1 was repeated, except that the polymerization degree of the branch (ie, polyisobutyl vinyl ether) in Example 1 was changed to 76, and the reaction time after the addition of divinyl ether was changed to 30 hours.

その結果、w=5.6×104、枝の数6本の星型ポリマ
ーが得られた(0.95g、収率:Ca.100%)。
As a result, a star polymer having w = 5.6 × 10 4 and six branches was obtained (0.95 g, yield: 100% Ca).

ポリマーの溶解性は実施例1と同様であった。 The solubility of the polymer was the same as in Example 1.

実施例4 実施例1における枝ポリエチルビニルエーテルに、ジ
ビニルエーテル添加後の反応時間を35時間に変えた以外
は、実施例1と同様にして行った。
Example 4 The procedure was performed in the same manner as in Example 1 except that the reaction time after the addition of divinyl ether to the branched polyethyl vinyl ether in Example 1 was changed to 35 hours.

その結果、w=5.41×104、枝の数11本の星型ポリ
マーが得られた(0.70g、収率:Ca.100%)。
As a result, a star-shaped polymer having w = 5.41 × 10 4 and 11 branches was obtained (0.70 g, yield: 100% Ca).

実施例5 実施例1における核を形成するジビニルエーテルを次
式の化合物に、重合溶媒を塩化メチレンに変えた以外
は、実施例1と同様にして行った。
Example 5 Example 5 was carried out in the same manner as in Example 1 except that divinyl ether forming a nucleus in Example 1 was changed to a compound of the following formula, and a polymerization solvent was changed to methylene chloride.

ジビニルエーテルは、室温では完全に溶解している
が、−40℃の重合系に添加すると、低濃度にも拘らず析
出した。
Divinyl ether was completely dissolved at room temperature, but when added to the polymerization system at -40 ° C, it precipitated out despite its low concentration.

ジビニルエーテルは、添加後約12時間で完全に消費さ
れ、重合系は均一となった。その後、更に12時間反応さ
せ、薄く黄色に着色したところで、実施例1と同様にし
て重合を停止させ、低下同様に行った。
The divinyl ether was completely consumed in about 12 hours after the addition, and the polymerization system became homogeneous. Thereafter, the reaction was further performed for 12 hours. When the reaction was colored light yellow, the polymerization was stopped in the same manner as in Example 1, and the polymerization was performed in the same manner as in the case of the decrease.

その結果、w=2.61×104、枝の数5本の星型ポリ
マーが得られた。
As a result, a star-shaped polymer having w = 2.61 × 10 4 and five branches was obtained.

ポリマーの溶解性は実施例1と同様であった。 The solubility of the polymer was the same as in Example 1.

実施例6 ジビニルエーテルをより柔軟なスペーサーを持つ次式
の化合物に変えた以外は、実施例1と同様にして行っ
た。
Example 6 Example 6 was carried out in the same manner as in Example 1 except that divinyl ether was changed to a compound having the following formula having a more flexible spacer.

ジビニルエーテルは、添加後2時間半で完全に消費さ
れたが、更に25時間反応を続けた。
The divinyl ether was completely consumed two and a half hours after the addition, but the reaction continued for another 25 hours.

その結果、一般の有機溶媒に可溶な星型ポリマーは生
成するが(50wt%)、低分子量生成物が多量に副生した
(50wt%)。この低分子量生成物は、イソブチルビニル
エーテルとジビニルエーテルのAB型ブロックポリマーと
考えられる。
As a result, a star polymer soluble in general organic solvents was produced (50 wt%), but a large amount of low molecular weight products were by-produced (50 wt%). This low molecular weight product is believed to be an AB-type block polymer of isobutyl vinyl ether and divinyl ether.

実施例7 窒素雰囲気下で充分に精製した塩化メチレン7.2ml
に、側鎖にエステル基を持つ2−ビニロキシエチルアセ
テート0.39ml(0.375mol/)を添加して溶解し、ガス
クロマトグラフィーの内部標準とするブロモベンゼンを
0.41ml添加し、−15℃に冷却した。
Example 7 7.2 ml of sufficiently purified methylene chloride under a nitrogen atmosphere
Was added and dissolved in 0.39 ml (0.375 mol /) of 2-vinyloxyethyl acetate having an ester group in the side chain, and bromobenzene as an internal standard for gas chromatography was dissolved.
0.41 ml was added and cooled to -15 ° C.

次いで、ヨウ化水素のヘキサン溶液(100mM)1.0mlと
ヨウ化亜鉛のジエチルエーテル溶液(20mM)1.0mlと
を、この順で添加して重合を開始し、4時間重合を継続
した。
Next, 1.0 ml of a hexane solution (100 mM) of hydrogen iodide and 1.0 ml of a diethyl ether solution of zinc iodide (20 mM) were added in this order to start polymerization, and polymerization was continued for 4 hours.

以下、ジビニルエーテル添加後の反応時間を3時間に
変えた以外は、実施例1と同様にして行った。
Hereinafter, it carried out similarly to Example 1 except having changed the reaction time after addition of divinyl ether into 3 hours.

その結果、トルエン、塩化メチレンなどの有機溶媒に
可溶な、枝の重合度30、w=8.9×104、枝の数15本の
星型ポリマーが得られた(0.58g、収率:Ca.100%)。
As a result, a star-shaped polymer soluble in an organic solvent such as toluene or methylene chloride having a degree of branching of 30, w = 8.9 × 10 4 and 15 branches was obtained (0.58 g, yield: Ca). .100%).

上記ポリマー(0.3g)をアセトン/水混合溶媒(1:1v
ol/vol)20mlに溶解し、エステル基に対して5当量の水
酸化ナトリウム(2NNaOHaq)3.84mlを加えて、室温で3
日間撹拌した。
The above polymer (0.3g) was mixed with acetone / water mixed solvent (1: 1v
ol / vol) of 20 ml, and 5 equivalents of sodium hydroxide (2NNaOHaq) 3.84 ml per ester group was added thereto.
Stirred for days.

その結果、側鎖のエステル基は定量的に水酸基に変換
され、水、メタノールに可溶で、トルエン、塩化メチレ
ンなどの有機溶媒に不要な、親水生星型ポリマーが得ら
れた。
As a result, a side chain ester group was quantitatively converted into a hydroxyl group, and a hydrophilic raw star polymer was obtained, which was soluble in water and methanol and unnecessary in organic solvents such as toluene and methylene chloride.

なお、ポリマーの精製は透析により行った。 The polymer was purified by dialysis.

実施例8 実施例1における枝を2−ビニロキシエチルアセテー
トとイソブチルビニルエーテルのブロックポリマー(重
合度比:10/30)に変えた以外は、実施例1と同様にして
行った。
Example 8 It carried out similarly to Example 1 except having changed the branch in Example 1 to the block polymer (polymerization degree ratio: 10/30) of 2-vinyloxyethyl acetate and isobutyl vinyl ether.

その結果、w=5.02×104、枝の数8本の星型ブロ
ックポリマーが得られた(0.60g、収率:Ca.100%)。
As a result, a star-shaped block polymer having w = 5.02 × 10 4 and eight branches was obtained (0.60 g, yield: 100% Ca).

上記ポリマー(0.6g)をジオキサン(20ml)に溶解
し、実施例7と同様にして4日間反応させた。
The above polymer (0.6 g) was dissolved in dioxane (20 ml) and reacted in the same manner as in Example 7 for 4 days.

その結果、親水性セグメントと疎水性セグメントから
成る岐を持つ、両親媒性星型ブロックポリマーが得られ
た。得られたポリマーは、トルエン、塩化メチレン、ク
ロロホルム、メタノール、エタノールに可溶であった。
As a result, an amphiphilic star-shaped block polymer having a branch composed of a hydrophilic segment and a hydrophobic segment was obtained. The obtained polymer was soluble in toluene, methylene chloride, chloroform, methanol and ethanol.

実施例9 実施例1における開始剤を2−ビニロキシエチルアセ
テートのヨウ化水素付加体に変えた以外は、実施例1と
同様にして行った。
Example 9 Example 9 was carried out in the same manner as in Example 1 except that the initiator in Example 1 was changed to a hydrogen iodide adduct of 2-vinyloxyethyl acetate.

その結果、w=7.35×104、枝の数13本で、表面だ
けが官能基(エステル基)で覆われた星型ポリマーが得
られた。
As a result, a star polymer was obtained with w = 7.35 × 10 4 , 13 branches, and only the surface was covered with a functional group (ester group).

また、実施例8と同様にして加水分解を行うことによ
り、表面に水酸基を有する星型ポリマーも合成できた。
In addition, by performing hydrolysis in the same manner as in Example 8, a star polymer having a hydroxyl group on the surface was also synthesized.

〔発明の効果〕〔The invention's effect〕

以上の結果から明らかなように、本発明は、従来得ら
れていなかったアルケニルエーテルの星型多分岐高分子
を提供するという工業的価値ある顕著な効果を奏するも
のである。これらの高分子は、従来にない構造と空間的
形態を有しており、多相高分子の強化剤、低分子および
イオンの吸着剤やキャリヤー、反応触媒などとして十分
使用できるものと期待される。
As is apparent from the above results, the present invention has a remarkable industrial value effect of providing a star-shaped multibranched polymer of alkenyl ether which has not been obtained conventionally. These polymers have an unprecedented structure and spatial form, and are expected to be sufficiently used as a reinforcing agent for multiphase polymers, adsorbents and carriers for low-molecular and ionic polymers, reaction catalysts, etc. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の星型多分岐高分子の構造模式図であ
り、図中(1)は架橋共重合体〔IV〕の核を表わし、
(2)は核〔IV〕に結合した重合体〔II〕の枝を表わ
す。
FIG. 1 is a schematic structural view of a star-shaped multibranched polymer of the present invention, wherein (1) represents a nucleus of a crosslinked copolymer [IV];
(2) represents a branch of the polymer [II] bonded to the core [IV].

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C08F 293/00 - 297/08 C08F 299/00 - 299/08 C08F 290/00 - 290/14 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C08F 293/00-297/08 C08F 299/00-299/08 C08F 290/00-290/14 CA (STN ) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式〔I〕 CHR1=CH(OR2) …〔I〕 (式中、R1は水素原子又はメチル基を示し、R2は1価の
有機基を示す) で表わされるアルケニルエーテルの重合体〔II〕 (式中、R1およびR2は一般式〔I〕と同義であり、mは
1以上の整数を示す) を枝とし、一般式〔III〕 CHR3=CH−O−R4−O−CH=CHR5 …〔III〕 (式中、R3およびR5は水素原子又はメチル基を示し、R4
は2価の有機基を示す) で表わされるジアルケニルエーテルの架橋重合体〔IV〕 (式中、R3,R4およびR5は一般式〔III〕と同義であり、
nは1以上の整数を示す) を核とし、この核に、上記アルケニルエーテル重合体
〔II〕の枝が2本以上結合した構造を有することを特徴
とする星形多分岐高分子。
1. A compound represented by the general formula [I] CHR 1 CHCH (OR 2 ) [I] (wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 represents a monovalent organic group). Alkenyl ether polymer [II] (Wherein R 1 and R 2 have the same meanings as in the general formula [I], and m represents an integer of 1 or more), and the general formula [III] CHR 3 CHCH—O—R 4 —O— CH = CHR 5 ... [III] (wherein, R 3 and R 5 represents a hydrogen atom or a methyl group, R 4
Represents a divalent organic group.) A crosslinked polymer of a dialkenyl ether represented by the formula [IV] (Wherein R 3 , R 4 and R 5 have the same meaning as in the general formula [III],
n is an integer of 1 or more), wherein the nucleus has a structure in which two or more branches of the alkenyl ether polymer [II] are bonded to each other.
JP27631689A 1989-10-23 1989-10-23 Star-shaped hyperbranched polymer Expired - Fee Related JP2782000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27631689A JP2782000B2 (en) 1989-10-23 1989-10-23 Star-shaped hyperbranched polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27631689A JP2782000B2 (en) 1989-10-23 1989-10-23 Star-shaped hyperbranched polymer

Publications (2)

Publication Number Publication Date
JPH03137114A JPH03137114A (en) 1991-06-11
JP2782000B2 true JP2782000B2 (en) 1998-07-30

Family

ID=17567755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27631689A Expired - Fee Related JP2782000B2 (en) 1989-10-23 1989-10-23 Star-shaped hyperbranched polymer

Country Status (1)

Country Link
JP (1) JP2782000B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109928A1 (en) 2009-03-24 2010-09-30 丸善石油化学株式会社 Vinyl ether-based star polymer and process for production thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506299B2 (en) * 2009-08-31 2014-05-28 ダイキン工業株式会社 Star polymer
JP5485626B2 (en) * 2009-09-15 2014-05-07 ダイキン工業株式会社 Star polymer
JP5487472B2 (en) * 2010-05-06 2014-05-07 日本カーバイド工業株式会社 Vinyl ether derivative star polymer and process for producing the same
JP6252932B2 (en) * 2013-08-26 2017-12-27 国立大学法人福井大学 Vinyl ether group-containing copolymer, star polymer and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109928A1 (en) 2009-03-24 2010-09-30 丸善石油化学株式会社 Vinyl ether-based star polymer and process for production thereof

Also Published As

Publication number Publication date
JPH03137114A (en) 1991-06-11

Similar Documents

Publication Publication Date Title
Jacob et al. New stars: eight polyisobutylene arms emanating from a calixarene core
JP2002542343A (en) Living cationic polymers prepared from silyl-functional aromatic initiators
Neubert et al. Polymerization of styrenes and acrylates carrying dendrons of the first and second generation
Cloutet et al. Star block copolymers and hexafullerene stars via derivatization of star-shaped polystyrenes
Lambrych et al. Linear− Dendritic Poly (ester)-b lock-poly (ether)-b lock-poly (ester) ABA Copolymers Constructed by a Divergent Growth Method
JP2782000B2 (en) Star-shaped hyperbranched polymer
EP1757631B1 (en) Amphiphilic triblock copolymers comprising poly(2-vinyl pyridine) block and poly(alkyl isocyanate) block, and the preparation method thereof
Sato et al. Precise synthesis of α, ω-chain-end functionalized poly (dimethylsiloxane) with azide groups based on metal-free ring-opening polymerization and a quantitative azidation reaction
JP2002531601A (en) Silyl-functional living cationic polymer
JP2850432B2 (en) Copolymer and method for producing the same
US4508877A (en) Process for producing a high purity cyclized polymer of isoprene
Bennevault et al. Influence of various proton traps on the bifunctional cationic polymerization of chloroethyl vinyl ether mediated by α‐iodo ether/zinc dichloride
JP2917619B2 (en) Polysilane copolymer and method for producing the same
Kepola et al. Networks Based on “Core‐First” Star Polymers End‐Linked Using a Degradable Ketal Cross‐Linker: Synthesis, Characterization, and Cleavage
KR101538061B1 (en) Macromonomers comprising norbornene derivatives and its preparation process
Bitsi et al. Synthesis and characterization of low molar mass end-functionalized homo-and copolymers with ureidopyrimidone, UPy groups
JP3107111B2 (en) Method for producing polystyrene having phenolic hydroxyl group at one end of molecule
JPH05279469A (en) Both end heterofunctional polyether and production of the polyether and polymerization initiator
US4906713A (en) "Acrylic" ladder polymers
JP4190928B2 (en) Poly (N-ethyleneimine) derivative and method for producing the same
JP2621310B2 (en) Method for producing polysilane polymer
JP2999307B2 (en) Propylene / styrene block copolymer and method for producing the same
JPS59155409A (en) Production of polymer
JP2941003B2 (en) Method for producing styrenic polymer
JP2004244535A (en) Method for producing vinyl ether polymer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees