JPH0313710Y2 - - Google Patents

Info

Publication number
JPH0313710Y2
JPH0313710Y2 JP1983010794U JP1079483U JPH0313710Y2 JP H0313710 Y2 JPH0313710 Y2 JP H0313710Y2 JP 1983010794 U JP1983010794 U JP 1983010794U JP 1079483 U JP1079483 U JP 1079483U JP H0313710 Y2 JPH0313710 Y2 JP H0313710Y2
Authority
JP
Japan
Prior art keywords
operational amplifier
switching transistor
differential input
input terminal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983010794U
Other languages
Japanese (ja)
Other versions
JPS59116842U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1079483U priority Critical patent/JPS59116842U/en
Publication of JPS59116842U publication Critical patent/JPS59116842U/en
Application granted granted Critical
Publication of JPH0313710Y2 publication Critical patent/JPH0313710Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は釣合試験機において、不釣合検出信号
を同期整流して不釣合の分力成分を抽出する同期
整流回路に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a synchronous rectification circuit for synchronously rectifying an unbalance detection signal to extract an unbalanced force component in a balance testing machine.

〈従来の技術〉 一般に、同期整流方式による釣合試験機におい
ては、第4図に示す如き同期整流回路を2組備
え、被試験体を回動させて得られる遠心力や振動
の検出信号を、これら2組の同期整流回路に導入
し、それぞれの回路を被試験体の回転周期に同期
し、かつ、互いに90゜の位相差を持たせて作動さ
せて、上述の検出信号から被試験体の回転周期と
同期した不釣合信号の90゜分力成分に相当する2
つの直流信号を得る。
<Prior art> In general, a balance tester using a synchronous rectification system is equipped with two sets of synchronous rectification circuits as shown in Fig. 4, and detects centrifugal force and vibration detection signals obtained by rotating the test object. , are introduced into these two sets of synchronous rectifier circuits, and each circuit is operated in synchronization with the rotation period of the test object and with a phase difference of 90 degrees, and the test object is detected from the above detection signal. 2 corresponding to the 90° component of the unbalance signal synchronized with the rotation period of
Obtain two DC signals.

ところで、第4図の如き同期整流回路におい
て、スイツチ1は入力信号周期と同期してその半
周期ごとに開閉され、従来、一般的にはFETス
イツチ等のスイツチングトランジスタが用いられ
る。
By the way, in the synchronous rectifier circuit as shown in FIG. 4, the switch 1 is opened and closed every half cycle in synchronization with the input signal cycle, and conventionally, a switching transistor such as a FET switch is generally used.

また、この同期整流回路の入力信号、つまり被
試験体の回転により生ずる遠心力や振動の検出信
号である不釣合信号は、正負符号が周期的に変化
する正弦波に近い信号となる。
Further, the input signal of this synchronous rectifier circuit, that is, the unbalance signal which is a detection signal of centrifugal force or vibration caused by the rotation of the test object, becomes a signal close to a sine wave whose positive/negative sign changes periodically.

〈考案が解決しようとする課題〉 ここで、スイツチングトランジスタは、通常、
ON抵抗が約200〜400Ω、OFF抵抗は約2〜5M
Ω程度であり、理想的なスイツチ(ON抵抗0
Ω、OFF抵抗∞Ω)と近似してはいるものの若
干の相違がある。しかも、ON抵抗は入力信号の
正負符号によつて相違する。
<Problem to be solved by the invention> Here, the switching transistor is usually
ON resistance is approximately 200~400Ω, OFF resistance is approximately 2~5M
Ω, making it an ideal switch (ON resistance 0
Ω, OFF resistance ∞Ω), but there are some differences. Furthermore, the ON resistance differs depending on the sign of the input signal.

以上のことから、第4図に示すような同期整流
回路においては、正の信号については例えばその
電流を100%通過させて演算増幅器に入力される
としたとき、負の信号については(100−Δ)%
しか演算増幅器に入力されないことになる。
From the above, in a synchronous rectifier circuit as shown in Figure 4, if a positive signal is inputted to an operational amplifier by passing 100% of the current, for example, if a negative signal is input to an operational amplifier (100 - Δ)%
only the signal is input to the operational amplifier.

従つて、このような同期整流回路による整流結
果は、不釣合信号に対するチヨツピングの位相
差、つまり被試験体の基準位置に対する不釣合の
存在位置により、第5図に破線で示すように、実
線で示す理想的な整流結果に比して負の領域側で
小さい値となる。このことは、この整流結果を用
いて不釣合ベクトルを求めたとき、同じ不釣合量
であつても、被試験体の不釣合角によつて不釣合
量の指示値が異なる結果となつてしまう。
Therefore, the rectification result by such a synchronous rectifier circuit is determined by the phase difference of the chopping with respect to the unbalanced signal, that is, the position of the unbalance with respect to the reference position of the test object, as shown by the broken line in FIG. The value is smaller in the negative region compared to the actual rectification result. This means that when the unbalance vector is determined using this rectification result, even if the unbalance amount is the same, the indicated value of the unbalance amount will differ depending on the unbalance angle of the test object.

以上の不具合を解消するためには、スイツチン
グトランジスタとしてON抵抗が極性に依存しな
い特殊なものを使用する必要があるが、これは極
めて高価である。
In order to solve the above problems, it is necessary to use a special switching transistor whose ON resistance does not depend on polarity, but this is extremely expensive.

本考案の目的は、スイツチングトランジスタに
上述のような特殊なものを使用せずとも、例えば
安価で入手の容易な単極性ICスイツチ等を用い
ても、第5図に示すような位相による歪みが生じ
ることのない、不釣合試験機の同期整流回路を提
供することにある。
The purpose of the present invention is to eliminate phase distortion as shown in Figure 5, even if an inexpensive and easily available unipolar IC switch is used, for example, without using the above-mentioned special switching transistor. An object of the present invention is to provide a synchronous rectifier circuit for an unbalance tester in which no problem occurs.

〈課題を解決するための手段〉 上記の目的を達成するための構成を、実施例に
対応する第3図を参照しつつ説明すると、本考案
は、互いに並列の帰還抵抗および帰還容量(抵抗
25およびコンデンサ26)を備えるとともに、
その帰還抵抗および帰還容量とそれぞれ等しく、
かつ、互いに並列の対地抵抗および対地容量(抵
抗27およびコンデンサ28)を備えてなる演算
増幅器23と、その演算増幅器23の一方の差動
入力端子に接続され、被試験体の回転周期と同期
してその半周期ごとに開閉される第1のスイツチ
ングトランジスタ22と、演算増幅器23の他方
の差動入力端子に接続され、第1のスイツチング
トランジスタ22に対し180゜の位相差を持つて開
閉される第2のスイツチングトランジスタ24を
有し、不釣合信号を、それぞれ第1および第2の
スイツチングトランジスタ22および24を介し
て演算増幅器23の双方の差動入力端子に導入す
るよう構成したことによつて、特徴づけられる。
<Means for Solving the Problems> The configuration for achieving the above object will be explained with reference to FIG. 3 corresponding to the embodiment. and a capacitor 26),
equal to its feedback resistance and feedback capacitance, respectively,
It is connected to an operational amplifier 23 comprising a ground resistance and a ground capacitance (resistor 27 and capacitor 28) in parallel with each other, and one differential input terminal of the operational amplifier 23, and is synchronized with the rotation period of the test object. The first switching transistor 22 is connected to the other differential input terminal of the operational amplifier 23, and the first switching transistor 22 is opened and closed every half cycle. The second switching transistor 24 is configured to introduce the unbalanced signal to both differential input terminals of the operational amplifier 23 via the first and second switching transistors 22 and 24, respectively. characterized by.

〈作用〉 第1および第2のスイツチングトランジスタ2
2および24が被試験体の回転の半周期ごとに開
閉され、かつ、これらが互いに180゜の位相差を持
つて開閉されるから、演算増幅器23には、結
局、不釣合信号の全波が入力されてこれを整流す
ることになり、第1および第2のスイツチングト
ランジスタ22および24のON抵抗の極性依存
性があつても、これによる整流誤差が平均化さ
れ、位相による歪みは改善される。
<Operation> First and second switching transistors 2
2 and 24 are opened and closed every half cycle of the rotation of the test object, and they are opened and closed with a phase difference of 180 degrees, so that the full wave of the unbalanced signal is input to the operational amplifier 23. Even if there is a polarity dependence of the ON resistance of the first and second switching transistors 22 and 24, the rectification error caused by this is averaged out and the distortion due to the phase is improved. .

〈実施例〉 本考案の実施例と、以下、図面に基づいて説明
する。
<Example> An example of the present invention will be described below based on the drawings.

第1図は本考案実施例の回路構成図である。 FIG. 1 is a circuit diagram of an embodiment of the present invention.

不釣合信号である入力信号は、抵抗21を介し
て第1および第2のスイツチングトランジスタ2
2および24の各入力側端子に導かれている。第
1のスイツチングトランジスタ22の出力側端子
は、演算増幅器23の差動入力端子のうちの−側
に、また、第2のスイツチングトランジスタ24
の出力側端子は同じく演算増幅器23の+側の差
動入力端子にそれぞれ接続されている。
The input signal, which is an unbalanced signal, is passed through a resistor 21 to the first and second switching transistors 2.
2 and 24, respectively. The output side terminal of the first switching transistor 22 is connected to the negative side of the differential input terminals of the operational amplifier 23, and the output side terminal of the first switching transistor 22 is connected to the negative side of the differential input terminals of the operational amplifier 23.
The output side terminals of are similarly connected to the + side differential input terminals of the operational amplifier 23, respectively.

第1および第2のスイツチングトランジスタ2
2および24は、それぞれ第2図aおよびbにそ
のタイムチヤートを示すタイミングのもとに開閉
される。すなわち、第1のスイツチングトランジ
スタ22は、被試験体の回転周期に同期して例え
ば回転位相に対して0゜の位相差で、かつ、回転周
期の半周期ごとに開閉され、第2のスイツチング
トランジスタ24とこれと逆相のもとに開閉され
る。
first and second switching transistors 2
2 and 24 are opened and closed at the timings whose time charts are shown in FIGS. 2a and 2b, respectively. That is, the first switching transistor 22 is opened and closed in synchronization with the rotation period of the test object, for example, with a phase difference of 0 degrees with respect to the rotation phase, and every half period of the rotation period, and the second switching transistor 22 is The switching transistor 24 is opened and closed in a phase opposite to that of the switching transistor 24.

演算増幅器23は、−側の差動入力端子と出力
端子間に抵抗25とコンデンサ26が並列接続さ
れた帰還ループを持ち、また、+側の差動入力端
子は、抵抗25と同じ抵抗値の抵抗27と、コン
デンサ26と同じ容量のコンデンサ28とを並列
接続してアースに導かれている。
The operational amplifier 23 has a feedback loop in which a resistor 25 and a capacitor 26 are connected in parallel between the − side differential input terminal and the output terminal, and the + side differential input terminal has a feedback loop with the same resistance value as the resistor 25. A resistor 27 and a capacitor 28 having the same capacity as the capacitor 26 are connected in parallel and connected to the ground.

以上の本考案実施例によれば、不釣合信号は被
試験体の回転周期と同期して、その半周期ごとに
交互に演算増幅器23の−側と+側の入力端子に
導かれ、それぞれ同じ率で増幅されることにな
る。従つて、不釣合信号は全波整流され、第1お
よび第2のスイツチングトランジスタ22および
24にON抵抗の極性依存性があつても、これに
よる整流誤差は平均化されて、整流結果に位相に
よる歪みが生じない。つまり、負の信号について
は前述したように(100−Δ%)しか通過させな
かつたとしても、全波整流されるのでチヨツピン
グの位相に基づく歪みは重畳されて平均化され、
第5図に実線で示す理想的な整流結果に比してそ
の大きさは負域におけるΔ%分だけ全体として小
さくなるものの、ほぼ円となる。
According to the above-described embodiment of the present invention, the unbalance signal is synchronized with the rotation period of the test object and is alternately guided to the negative and positive input terminals of the operational amplifier 23 every half period, and the unbalance signal is fed at the same rate. will be amplified. Therefore, the unbalanced signal is full-wave rectified, and even if the ON resistances of the first and second switching transistors 22 and 24 have polarity dependence, the rectification errors caused by this are averaged out, and the rectification results do not depend on the phase. No distortion occurs. In other words, even if only (100-Δ%) of the negative signal is passed as described above, it is full-wave rectified, so the distortion based on the phase of the chopping is superimposed and averaged.
Compared to the ideal rectification result shown by the solid line in FIG. 5, the size is smaller overall by Δ% in the negative region, but it becomes approximately circular.

なお、第1および第2のスイツチングトランジ
スタ22および24に、単極性のICスイツチを
用いても、第1もしくは第2のスイツチトランジ
スタ22もしくは24のOFFの間は第2もしく
は第1のスイツチトランジスタ24もしくは22
が必ずONになつて、不釣合信号は常に仮想零点
である演算増幅器23のいずれかの入力端子に導
かれるから、スイツチトランジスタ22または2
4のOFFのタイミング時に逆バイアスが印加さ
れず、スムーズなON・OFFが可能である。
Note that even if unipolar IC switches are used as the first and second switching transistors 22 and 24, the second or first switching transistor remains OFF while the first or second switching transistor 22 or 24 is OFF. 24 or 22
is always turned on, and the unbalance signal is always guided to one of the input terminals of the operational amplifier 23, which is the virtual zero point, so the switch transistor 22 or 2
No reverse bias is applied at the OFF timing in step 4, allowing smooth ON/OFF.

第3図は本考案の他の実施例の回路構成図であ
る。この実施例では、抵抗21とスイツチ群との
間に増巾器33および抵抗34を設けて入力信号
Uの−1倍の信号を作り、信号および入力信
号Uを、それぞれ第1および第2のスイツチング
トランジスタ22および24、第3および第4の
スイツチングトランジスタ29および30でチヨ
ツプし、第1および第3のスイツチ22および2
9は演算増巾器23の−側の差動入力端子に、第
2および第4のスイツチングトランジスタ24お
よび30は同じく+側の差動入力端子に接続され
る。
FIG. 3 is a circuit diagram of another embodiment of the present invention. In this embodiment, an amplifier 33 and a resistor 34 are provided between the resistor 21 and the switch group to produce a signal that is -1 times the input signal U, and the signal and the input signal U are respectively switching transistors 22 and 24, third and fourth switching transistors 29 and 30;
Reference numeral 9 is connected to a negative differential input terminal of the operational amplifier 23, and second and fourth switching transistors 24 and 30 are similarly connected to a positive differential input terminal.

このように構成すれば、先の実施例と同様に位
相による歪みが解消されると同時に、演算増幅器
23の差動入力端子には常時不釣合信号とその反
転信号が入力されるから、整流効率は先の実施例
の2倍となる。なお、この実施例において、抵抗
21と34、抵抗31と32、抵抗25と27は
それぞれ抵抗値を等しく、コンデンサ26と28
の容量を等しくしなければならない。
With this configuration, the distortion due to the phase is eliminated as in the previous embodiment, and at the same time, the unbalanced signal and its inverted signal are always input to the differential input terminal of the operational amplifier 23, so the rectification efficiency is improved. This is twice that of the previous example. In this embodiment, the resistors 21 and 34, the resistors 31 and 32, and the resistors 25 and 27 have the same resistance value, and the capacitors 26 and 28 have the same resistance value.
must have the same capacity.

〈考案の効果〉 以上説明したように、本考案によれば、被試験
体の回転周期に同期してその半周期で開閉する、
互いに180゜の位相差をもつ2個スイツチングトラ
ンジスタにより不釣合信号をチヨツピングして、
演算増幅器の差動入力端子に交互に入力してそれ
ぞれを同じ率で増幅するよう構成したから、ON
抵抗に入力信号の極性依存性のあるスイツチング
トランジスタを用いても、これによる整流誤差は
平均化され、全体として不釣合信号の位相による
歪みのない整流結果が得られる。その結果、従来
のようにON抵抗に極性依存性のない極めて高価
な特殊なトランジスタを用いることなく正確な不
釣合測定が可能となり、装置コストの低減を達成
できる。
<Effects of the invention> As explained above, according to the invention, the device opens and closes in synchronization with the rotation period of the test object in half its period.
By chopping the unbalanced signal using two switching transistors with a phase difference of 180 degrees,
Since I configured it so that the inputs are input alternately to the differential input terminals of the operational amplifier and amplified at the same rate, the ON
Even if a switching transistor that is dependent on the polarity of the input signal is used as a resistor, the rectification errors caused by this are averaged out, and a rectification result that is free from distortion due to the phase of the unbalanced signal can be obtained as a whole. As a result, it becomes possible to accurately measure unbalance without using a special, extremely expensive transistor whose ON resistance is polarity-independent, as in the past, and it is possible to reduce the cost of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の回路構成図、第2図は
その第1および第2のスイツチングトランジスタ
22および24の開閉動作を示すタイミングチヤ
ート、第3図は本考案の他の実施例の回路構成
図、第4図は従来の同期整流回路の構成図、第5
図は不釣合信号の位相に対する整流結果の歪みの
説明図である。 22……第1のスイツチングトランジスタ、2
3……演算増幅器、24……第2のスイツチング
トランジスタ、25,27……抵抗、26,28
……コンデンサ。
FIG. 1 is a circuit configuration diagram of an embodiment of the present invention, FIG. 2 is a timing chart showing the opening and closing operations of the first and second switching transistors 22 and 24, and FIG. 3 is a diagram of another embodiment of the present invention. Circuit configuration diagram, Figure 4 is a configuration diagram of a conventional synchronous rectifier circuit, Figure 5
The figure is an explanatory diagram of distortion of the rectification result with respect to the phase of the unbalanced signal. 22...first switching transistor, 2
3... Operational amplifier, 24... Second switching transistor, 25, 27... Resistor, 26, 28
...Capacitor.

Claims (1)

【実用新案登録請求の範囲】 被試験体を回転させることによつて生ずる不釣
合信号を、被試験体の回転周期と同期してチヨツ
ピングすることによつて整流する回路であつて、 互いに並列の帰還抵抗および帰還容量を備える
とともに、その帰還抵抗および帰還容量が接続さ
れた差動入力端子とは別の差動入力端子に、この
帰還抵抗および帰還容量とそれぞれ等価で、か
つ、互いに並列の対地抵抗および対地容量が接続
されてなる演算増幅器と、 その演算増幅器の一方の差動入力端子に接続さ
れ、被試験体の回転周期と同期してその半周期ご
とに開閉される第1のスイツチングトランジスタ
と、 上記演算増幅器の他方の差動入力端子に接続さ
れ、上記第1のスイツチングトランジスタと180゜
の位相差を以て開閉される第2のスイツチングト
ランジスタを有し、 上記不釣合信号を、それぞれ上記第1および第
2のスイツチングトランジスタを介して上記演算
増幅器の双方の差動入力端子に導入するよう構成
したことを特徴とする、釣合試験機における同期
整流回路。
[Claims for Utility Model Registration] A circuit that rectifies an unbalanced signal generated by rotating a test object by chopping it in synchronization with the rotation period of the test object, the circuit having mutually parallel feedback. A ground resistance that is equivalent to the feedback resistance and feedback capacitance and parallel to each other is connected to a differential input terminal that is different from the differential input terminal to which the feedback resistance and feedback capacitance are connected. and an operational amplifier connected to a ground capacitance, and a first switching transistor connected to one differential input terminal of the operational amplifier and opened and closed every half period in synchronization with the rotation period of the test object. and a second switching transistor connected to the other differential input terminal of the operational amplifier and opened and closed with a phase difference of 180° from the first switching transistor, and transmitting the unbalanced signal to the first switching transistor and the second switching transistor connected to the other differential input terminal of the operational amplifier. A synchronous rectifier circuit for a balance tester, characterized in that the circuit is configured to be introduced into both differential input terminals of the operational amplifier via first and second switching transistors.
JP1079483U 1983-01-27 1983-01-27 Synchronous rectifier circuit in balance test machine Granted JPS59116842U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1079483U JPS59116842U (en) 1983-01-27 1983-01-27 Synchronous rectifier circuit in balance test machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1079483U JPS59116842U (en) 1983-01-27 1983-01-27 Synchronous rectifier circuit in balance test machine

Publications (2)

Publication Number Publication Date
JPS59116842U JPS59116842U (en) 1984-08-07
JPH0313710Y2 true JPH0313710Y2 (en) 1991-03-28

Family

ID=30142228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1079483U Granted JPS59116842U (en) 1983-01-27 1983-01-27 Synchronous rectifier circuit in balance test machine

Country Status (1)

Country Link
JP (1) JPS59116842U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054046U (en) * 1973-09-13 1975-05-23

Also Published As

Publication number Publication date
JPS59116842U (en) 1984-08-07

Similar Documents

Publication Publication Date Title
US4246497A (en) Phase measuring circuit
US4187459A (en) Digital measurement of impedance ratios
US6316948B1 (en) Charge balance network with floating ground capacitive sensing
JPH05113457A (en) Capacitive position transducer
JPH06105267B2 (en) Zero cross detector
JPH0313710Y2 (en)
US4617521A (en) Sample and hold demodulator with feedback for reduced riffle
US4723449A (en) Electromagnetic flowmeters
US3940693A (en) Phase sensitive detector
JPS5965771A (en) Current detecting circuit
US3651514A (en) Synchro-to-digital converter
US3109939A (en) Quadrature eliminator and selectrive lag circuit using a single rectifier ring and half wave discriminator modulator action
JP2520137B2 (en) Position detection device
JPH0351748Y2 (en)
JPS63133069A (en) Apparatus for measuring dc difference voltage
JPS58131571A (en) Detection of speed of hall motor
JPH0645207Y2 (en) Synchronous rectifier circuit
JPS5938731Y2 (en) phase detector
JPH0463611B2 (en)
JPH06140840A (en) Synchronization detector
JP2575983B2 (en) Displacement detector
SU413519A1 (en)
JPH04220571A (en) Method for detecting order of phase of three-phase power supply
JPS59214784A (en) Magnetic sensor
JPH0355105Y2 (en)