JPH03136235A - Formation of p-n junction - Google Patents

Formation of p-n junction

Info

Publication number
JPH03136235A
JPH03136235A JP27428089A JP27428089A JPH03136235A JP H03136235 A JPH03136235 A JP H03136235A JP 27428089 A JP27428089 A JP 27428089A JP 27428089 A JP27428089 A JP 27428089A JP H03136235 A JPH03136235 A JP H03136235A
Authority
JP
Japan
Prior art keywords
type semiconductor
deposition
thin film
type
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27428089A
Other languages
Japanese (ja)
Other versions
JP2522560B2 (en
Inventor
Mamoru Sato
守 佐藤
Yozo Tokumaru
徳丸 洋三
Yoshinobu Shimoiya
良信 下井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUTAAROI SANGYO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SUTAAROI SANGYO KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUTAAROI SANGYO KK, Agency of Industrial Science and Technology filed Critical SUTAAROI SANGYO KK
Priority to JP1274280A priority Critical patent/JP2522560B2/en
Publication of JPH03136235A publication Critical patent/JPH03136235A/en
Application granted granted Critical
Publication of JP2522560B2 publication Critical patent/JP2522560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniform mixing layer on the surface of an Si wafer or the like and to form an electrically stable and superior thin film type N-type semiconductor to form a P-N junction by a method wherein a thin film type N-type semiconductor layer is formed on the surface of the P-type semiconductor by performing simultaneous ly an ion implantation and a vacuum deposition. CONSTITUTION:A thin film type N-type semiconductor layer is formed on the surface of a P-type semiconductor 7 by performing simultaneously an ion implantation and a vacuum, deposition. For example, an ionimplantation device is used as shown in the diagram, the P-type Si wafer single crystal 7 subjected to an ultrasonic cleaning is placed on a sample stand 17 toward the direction of an ion implantation and after the interior of the device is hermetically sealed, the interior is evacuated by a turbo- molecular pump up to reach 5X10<-7>Torr or thereabouts. Then, in order to remove gaseous molecules being occluded in Al which is a deposition substance, Al placed on a deposition device 11 is preheated as a shutter is put up on the substrate 7. After that, while the amount of deposition of Al and the amount of N ions are respectively adjusted by a film thickness meter 12 and a current integrating meter 19, the shutter is opened to execute a mixing treatment and an AIN thin film is formed on the wafer 7.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はPN接合形成法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for forming a PN junction.

[従来の技術] 従来、特定の元素をSiウェーハなどの表面に打ち込む
ことによってドーピングを行なう方法として、イオン注
入法が知られている。即ち、基板であるSiウェーハに
B、P、Asなどの元素をイオン注入することにより、
所定の半導体接合素子を形成するのである。
[Prior Art] Ion implantation is conventionally known as a method for doping by implanting a specific element into the surface of a Si wafer or the like. That is, by ion-implanting elements such as B, P, and As into the Si wafer that is the substrate,
A predetermined semiconductor junction element is formed.

[発明が解決しようとする課題] しかしながら、従来のイオン注入法では、注入されたイ
オンが基板表面の一定の深さのところに偏って集るとい
う問題があり、必ずしも電気的特性の点で満足すべきも
のとはならなかった。そこで、注入されたイオンを均一
拡散させる処理がさらに必要となる。しかし、注入層の
みを確実に均一拡散する処理は必ずしも容易ではなく、
十分なものとはなり難かった。
[Problem to be solved by the invention] However, in the conventional ion implantation method, there is a problem in that the implanted ions concentrate unevenly at a certain depth on the substrate surface, and the electrical characteristics are not always satisfactory. It wasn't what it should have been. Therefore, further processing is required to uniformly diffuse the implanted ions. However, it is not always easy to ensure uniform diffusion of only the injection layer.
It was hardly enough.

上記従来技術の課題に鑑み、本発明の目的は、P型半導
体、たとえばSiウェーハなどの表面に均一なミキシン
グ層を形成し、電気的に安定で優れた薄膜状のN型半導
体を作成することによりPN接合を形成する方法を提供
することにある。
In view of the problems of the prior art described above, an object of the present invention is to form a uniform mixing layer on the surface of a P-type semiconductor, such as a Si wafer, and to create an electrically stable and excellent thin film N-type semiconductor. An object of the present invention is to provide a method for forming a PN junction.

[課題を解決するための手段] 上記目的を達成するため、本発明にかかるPN接合形成
法の特徴構成は、P型半導体表面上にイオンの注入と真
空蒸着を同時に行なうことにより薄膜状のN型半導体層
を形成する点にある。
[Means for Solving the Problems] In order to achieve the above object, the characteristic configuration of the PN junction forming method according to the present invention is to form a thin N film by simultaneously performing ion implantation and vacuum deposition on the surface of a P-type semiconductor. The point is that a type semiconductor layer is formed.

このうち、P型半導体表面上に形成される薄膜状のN型
半導体層がAINからなるとともに、N/Alが2.0
〜15.0の比率であると、とくに好ましい [作用・効果] つぎに、本発明にがかるPN接合形成法の作用効果を説
明する。
Among these, the thin N-type semiconductor layer formed on the P-type semiconductor surface is made of AIN, and N/Al is 2.0.
A ratio of 15.0 to 15.0 is particularly preferable [Function/Effect] Next, the function and effect of the PN junction forming method according to the present invention will be explained.

本発明にがかるPN接合形成法は、P型半導体表面上に
イオンの注入と真空蒸着を同時に行なうことによる。こ
のような方法として、いわゆるダイナミックミキシング
法あるいはI V D (Jon andVapor 
Deposition)法と称されるもの(M、 5a
tou。
The PN junction forming method according to the present invention involves simultaneously performing ion implantation and vacuum deposition on the surface of a P-type semiconductor. As such a method, the so-called dynamic mixing method or IVD (Jon and Vapor
What is called the Deposition method (M, 5a
tou.

K、Fukui and F、Fujimoto、Pr
oc、、5th Symp、 l5IAT。
K, Fukui and F, Fujimoto, Pr.
oc,, 5th Symp, l5IAT.

349頁)がある、この方法であると、注入イオンが特
定の深さのところで偏って集ることがない。
With this method, the implanted ions do not gather unevenly at a specific depth.

即ち、この方法では、真空蒸着とイオン注入とが同時に
行なわれるので、薄膜形成の過程で蒸着原子と注入イオ
ンとが均一に混合されながら所定の厚みの薄膜が形成、
成長するのである(第2図)。
That is, in this method, vacuum evaporation and ion implantation are performed simultaneously, so that a thin film of a predetermined thickness is formed while the evaporated atoms and implanted ions are uniformly mixed during the thin film formation process.
It grows (Figure 2).

同図で、1は基板を形成する原子、2は注入イオン、3
は蒸着原子である。したがって、蒸着原子と注入イオン
の混合比も一定の関係が維持されることとなる。
In the figure, 1 is an atom forming the substrate, 2 is an implanted ion, and 3 is an atom forming the substrate.
is the evaporated atom. Therefore, the mixing ratio of vapor deposited atoms and implanted ions also maintains a constant relationship.

さらに、基板の表層は、蒸着原子と注入イオン及び基板
原子とが十分にミキシングされ混合層を形成するので、
基板と薄膜との密着性が極めて強固なものとなっている
Furthermore, in the surface layer of the substrate, vapor deposited atoms, implanted ions, and substrate atoms are sufficiently mixed to form a mixed layer.
The adhesion between the substrate and the thin film is extremely strong.

蒸着原子と注入イオンの混合比は、イオン注入の条件あ
るいは蒸着条件を制御することにより、精度よく容易に
調整することができる。
The mixing ratio of vapor deposited atoms and implanted ions can be easily adjusted with high accuracy by controlling the ion implantation conditions or the vapor deposition conditions.

本発明が、注入する元素の選択が容易であり、目的に応
じて各種の表層を形成することができるのみならず表層
形成元素の一部がイオン状態であることから極めて活性
であるという、イオン注入技術を利用しているので、ミ
キシングされた基板との一体性が良く、2種以上のイオ
ンをミキシングしても基板に確実に所望の金属間化合物
層を形成させることができるのである。
The present invention not only allows easy selection of the element to be implanted and forms various surface layers depending on the purpose, but also has the advantage of being extremely active because some of the elements forming the surface layer are in an ionic state. Since it uses implantation technology, it has good integrity with the mixed substrate, and even when two or more types of ions are mixed, it is possible to reliably form a desired intermetallic compound layer on the substrate.

本発明による方法によれば、CVD法によるPN接合形
成法のような加熱の必要がないので、必要な熱処理を行
った後に薄膜形成処理を行うことができる。
According to the method according to the present invention, there is no need for heating as in the PN junction forming method using the CVD method, so that the thin film forming process can be performed after performing the necessary heat treatment.

P型半導体表面上に形成される薄膜状のN型半導体層が
AINからなるとともに、N/Alが2゜0〜15.0
の比率であると、好ましい整流特性が得られる。
The thin N-type semiconductor layer formed on the P-type semiconductor surface is made of AIN, and N/Al is 2°0 to 15.0.
When the ratio is , favorable rectification characteristics can be obtained.

[実施例] 以下に、本発明にかかるPN接合形成法の一実施例を、
図面を参照して詳細に説明する。
[Example] An example of the PN junction forming method according to the present invention will be described below.
This will be explained in detail with reference to the drawings.

基板としては、面方位が(100)であるP型Stウェ
ーハ単結晶を用い、この表面に窒化アルミニウム薄膜層
を形成する方法を例にとった。
As an example, a method of forming a thin aluminum nitride film layer on the surface of a P-type St wafer single crystal with a (100) plane orientation was used as the substrate.

まず、本発明に用いたイオン注入装置について説明する
First, the ion implantation device used in the present invention will be explained.

第1図に、本発明に用いたイオン注入装置の概略構成を
示す、この装置は、イオン源(5)として冷陰極型イオ
ン源を用い、このイオン源(5)から出たイオンは質量
分析系(6)によって注入したいイオンのみを取り出し
て試料台(17)に載置された試料(7)に注入するよ
うになっている。したがって、予定していない不純物元
素は質量分析系(6)によってふるい分けられ、試料(
7)には不純物元素が混入しないのである。さらに、選
択したイオンの電流密度を制御することによって、試料
表層で形成される化合物薄膜の組成比を制御できるよう
になっている。
FIG. 1 shows the schematic configuration of the ion implantation device used in the present invention. This device uses a cold cathode ion source as the ion source (5), and the ions emitted from this ion source (5) are analyzed by mass spectroscopy. Only the ions desired to be implanted are taken out by the system (6) and implanted into the sample (7) placed on the sample stage (17). Therefore, unplanned impurity elements are screened out by the mass spectrometry system (6) and the sample (
7) does not contain any impurity elements. Furthermore, by controlling the current density of selected ions, it is possible to control the composition ratio of the compound thin film formed on the surface layer of the sample.

図中(14)はバルブであり、(8)は試料(7)に照
射されるイオン電流を正確に知るための追い返し電極で
、これに試料(7)における電流密度および均質な照射
領域を得るためのレンズ作用を持たせたものである0図
中(9)は、試料(7)に照射されるイオン電流を測定
するための電流積算計である。
In the figure, (14) is a valve, and (8) is a repulsion electrode to accurately determine the ion current irradiated to the sample (7), and to obtain the current density and homogeneous irradiation area in the sample (7). (9) in the figure is a current integrator for measuring the ion current irradiated onto the sample (7).

他方、イオン源(5)からのイオンとともに、試料(7
)の表層に別イオンをミキシングさせるため、チャンバ
ー(lO)内に電子ビーム蒸着装置(11)を設置しで
ある。電子ビーム蒸着装置(11)を用いれば、蒸着速
度を電子ビーム電流の調整により容易に制御できて都合
がよい、チャンバー(10)内には、電子ビーム蒸着装
置(11)による試料表層の蒸着量を測定するため、石
英板を備えた水晶振動型膜厚計(12)も設置されてい
る。これは水晶振動子の振動数変化によって蒸着膜厚を
正確に測定できるのである0図中(13)は、チャンバ
ー(10)内を排気するための細流分子ポンプ(図示せ
ず)に接続する排気口で・ある、もっとも、別イオンを
混合させるための蒸着装置は、上記したように電子ビー
ム蒸着装置に限られず、通常の蒸着装置であってもよい
On the other hand, along with the ions from the ion source (5), the sample (7
) An electron beam evaporator (11) is installed in the chamber (10) in order to mix other ions into the surface layer of the sample. If the electron beam evaporator (11) is used, it is convenient because the evaporation rate can be easily controlled by adjusting the electron beam current. A crystal vibrating film thickness meter (12) equipped with a quartz plate is also installed to measure the thickness. This allows the thickness of the deposited film to be accurately measured by changing the frequency of the crystal oscillator. In the figure, (13) is an exhaust gas connected to a trickle molecular pump (not shown) for exhausting the inside of the chamber (10). However, the vapor deposition device for mixing different ions is not limited to the electron beam vapor deposition device as described above, but may be a normal vapor deposition device.

次に、上記イオン注入装置を用いて、P型半導体表面上
に薄膜状のN型半導体層を形成する方法を説明する。
Next, a method of forming a thin film-like N-type semiconductor layer on the surface of a P-type semiconductor using the above-mentioned ion implantation apparatus will be explained.

超音波洗浄が施されたP型Stウェーハ単結晶をイオン
注入方向に向けて試料台に設置する。装置内を密封した
後、ターボ分子ポンプによって5X 10 =Torr
程度になるまで排気した。ついで、蒸着物質であるA1
に吸蔵されている気体分子を除去するため、基板にシャ
ッターをしたま5蒸着装置に載置されたAIを予備加熱
した。しかる後、A1蒸着量は膜厚計で、またNイオン
量は電流積算計で夫々調整しながらシャッターを開放し
てミキシング処理を実施した。
A P-type St wafer single crystal that has been subjected to ultrasonic cleaning is placed on a sample stage facing the ion implantation direction. After sealing the inside of the device, the turbo molecular pump pumps 5X 10 = Torr.
It was evacuated until it reached a certain level. Next, A1 which is a vapor deposition substance
In order to remove the gas molecules occluded in the substrate, the AI placed on the vapor deposition apparatus was preheated while the substrate was shuttered. Thereafter, the shutter was opened and a mixing process was performed while adjusting the amount of A1 vapor deposited using a film thickness meter and the amount of N ions using a current integrator.

P型Siウェーハ上に作成したA I Nl膜の各種作
成条件を第1表に示す。
Table 1 shows various conditions for forming the A I Nl film formed on the P-type Si wafer.

上記条件でP型Siウェーハ上に形成したAIN薄膜に
ついて、−196,20,100℃の各温度にて電気的
特性(電圧−電流特性)を測定した。その結果を第3図
〜第7図に示す。
Electrical characteristics (voltage-current characteristics) of the AIN thin film formed on a P-type Si wafer under the above conditions were measured at temperatures of -196, 20, and 100°C. The results are shown in FIGS. 3 to 7.

いずれの試料も−196,20℃の各温度においては、
顕著な整流特性を示すことがわかる。
At each temperature of -196 and 20℃ for both samples,
It can be seen that it exhibits remarkable rectification characteristics.

尚、P型Siウェーハ上に形成されたAIN薄膜がN型
であることは、熱電効果によって確認された。
It was confirmed by the thermoelectric effect that the AIN thin film formed on the P-type Si wafer was N-type.

本発明を実施するSLウェー八への結晶方位が、(10
0)に限られるものでないことは言うまでもない。
The crystal orientation of the SL wafer in which the present invention is implemented is (10
Needless to say, this is not limited to 0).

更に、P型半導体としてはP型Siウェーハに限られず
、N型半導体層としてはAINからなるものに限られる
ものではない、N型半導体層として、例えばMg、I 
n、Pb、Sn、Cd、Sb。
Furthermore, the P-type semiconductor is not limited to a P-type Si wafer, and the N-type semiconductor layer is not limited to AIN.
n, Pb, Sn, Cd, Sb.

Ag、Cu、Niなどの金属原子とN原子とのミキシン
グ層が形成されたものからなるものであってもよい。
It may be made of a layer in which a mixing layer of metal atoms such as Ag, Cu, Ni, etc. and N atoms is formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いたイオン注入装置の概略構
成図、 第2図は第1図の装置により基板にミキシング層が形成
される状態を示す模式図、 第3図は試料Aの電圧−電流曲線を表す図、第4図は試
料Bの電圧−を流面線を表す図、第5図は試料Cの電圧
−電流曲線を表す図、第6図は試料りの電圧−電流曲線
を表す図、第7図は試料Eの電圧−を流面線を表す因で
ある。
FIG. 1 is a schematic diagram of the ion implantation apparatus used to carry out the present invention, FIG. 2 is a schematic diagram showing the state in which a mixing layer is formed on a substrate by the apparatus of FIG. 1, and FIG. Figure 4 shows the voltage-current curve of sample B. Figure 5 shows the voltage-current curve of sample C. Figure 6 shows the voltage-current curve of sample B. A diagram showing a curve, FIG. 7, shows the voltage of sample E as a flow surface line.

Claims (2)

【特許請求の範囲】[Claims] 1.P型半導体表面上にイオンの注入と真空蒸着を同時
に行なうことにより薄膜状のN型半導体層を形成するP
N接合形成法。
1. A thin N-type semiconductor layer is formed on the surface of a P-type semiconductor by simultaneously performing ion implantation and vacuum deposition.
N-junction formation method.
2.P型半導体表面上に形成される薄膜状のN型半導体
層がAINからなるとともに、N/Alが2.0〜15
.0の比率である請求項1記載のPN接合形成法。
2. The thin N-type semiconductor layer formed on the P-type semiconductor surface is made of AIN, and N/Al is 2.0 to 15.
.. 2. The method for forming a PN junction according to claim 1, wherein the ratio is 0.
JP1274280A 1989-10-21 1989-10-21 PN junction formation method Expired - Lifetime JP2522560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1274280A JP2522560B2 (en) 1989-10-21 1989-10-21 PN junction formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1274280A JP2522560B2 (en) 1989-10-21 1989-10-21 PN junction formation method

Publications (2)

Publication Number Publication Date
JPH03136235A true JPH03136235A (en) 1991-06-11
JP2522560B2 JP2522560B2 (en) 1996-08-07

Family

ID=17539457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1274280A Expired - Lifetime JP2522560B2 (en) 1989-10-21 1989-10-21 PN junction formation method

Country Status (1)

Country Link
JP (1) JP2522560B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582022A (en) * 1981-06-27 1983-01-07 Agency Of Ind Science & Technol Thin film formation
JPS60223113A (en) * 1985-03-30 1985-11-07 Agency Of Ind Science & Technol Forming method of thin-film
JPS6212655A (en) * 1985-07-08 1987-01-21 川崎炉材株式会社 Carbon-containing refractory brick
JPH02105408A (en) * 1988-10-13 1990-04-18 Nissin Electric Co Ltd Semiconductor device and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582022A (en) * 1981-06-27 1983-01-07 Agency Of Ind Science & Technol Thin film formation
JPS60223113A (en) * 1985-03-30 1985-11-07 Agency Of Ind Science & Technol Forming method of thin-film
JPS6212655A (en) * 1985-07-08 1987-01-21 川崎炉材株式会社 Carbon-containing refractory brick
JPH02105408A (en) * 1988-10-13 1990-04-18 Nissin Electric Co Ltd Semiconductor device and its manufacture

Also Published As

Publication number Publication date
JP2522560B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
CA2021993C (en) Impurity doping method with diffusion source
US4814842A (en) Thin film transistor utilizing hydrogenated polycrystalline silicon
Rand et al. Silicon Oxynitride Films from the NO‐NH 3‐SiH4 Reaction
US4905072A (en) Semiconductor element
Schmolla et al. Amorphous BN films produced in a double-plasma reactor for semiconductor applications
US5660694A (en) Film forming method
JPS582022A (en) Thin film formation
GB1602386A (en) Method of manufacturing semiconductor devices
EP0055032B1 (en) Field effect transistors
Klein et al. Hydrogenated silicon nitride thin films deposited between 50 and 250° C using nitrogen/silane mixtures with helium dilution
Hata et al. High rate deposition of thick piezoelectric ZnO films using a new magnetron sputtering technique
JPH03136235A (en) Formation of p-n junction
JPS59218728A (en) Impurity introduction into semiconductor substrate
CA1184020A (en) Method of manufacturing semiconductor device
JPH0290568A (en) Manufacture of thin film transistor
JPS62261128A (en) Manufacture of mos type semiconductor device
JP3180122B2 (en) Method of impurity doping
von Münch et al. Production of β-SiC buffer layers for CVD diamond thin films by ion implantation
JP2600336B2 (en) Method of manufacturing base material for high thermal conductive IC
Sibran et al. Ion beam techniques combining insulator deposition and hydrogen plasma etching for III–V compound metal/insulator/semiconductor device applications
Biedenbender et al. Chemical Nature of Silicon Nitride‐Indium Phosphide Interface and Rapid Thermal Annealing for InP MISFETs
Beyers et al. The Effect of Oxygen in Cosputtered (Titanium+ Silicon) Films
JPS61256625A (en) Manufacture of thin film semiconductor element
JP2876414B2 (en) Manufacturing method of diffusion resistance element
JPH07120636B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term