JPH03135513A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH03135513A
JPH03135513A JP27416589A JP27416589A JPH03135513A JP H03135513 A JPH03135513 A JP H03135513A JP 27416589 A JP27416589 A JP 27416589A JP 27416589 A JP27416589 A JP 27416589A JP H03135513 A JPH03135513 A JP H03135513A
Authority
JP
Japan
Prior art keywords
optical
magneto
light
wedge
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27416589A
Other languages
Japanese (ja)
Inventor
Yuichi Yamada
裕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27416589A priority Critical patent/JPH03135513A/en
Publication of JPH03135513A publication Critical patent/JPH03135513A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent isolation from deteriorating owing to variation and variance in the laser light wavelength by installing a wedgelike magnetooptic element which varies in thickness gradually at right angles to the optical axis in a member which is displaced by the rotating operation of a motor. CONSTITUTION:The magnetooptic element 1 which is equipped with a polarization separating element, a magnetooptic element, and a magnet and varies in thickness gradually perpendicularly to the optical axis is installed in the member which is displaced by the rotating operation of the motor. In such a case, the quantity of reflected light from the polarization separating element varies according to use ambient temperature and variance in laser light wavelength and the wedgelike magnetooptic element 1 is displaced perpendicularly to the optical axis corresponding to the variation in the quantity of reflected light. The thickness of the magnetooptic element c3 can be controlled by said displacement so that the angle of rotation of the polarizing direction of light passed through the magnetooptic element 3 is kept invariably to 45 deg., so even if the use temperature and laser light wavelength vary, reflected return light can be cut off completely at all times. Consequently, the optical isolator which provides high isolation is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信、光計測及び光記録において反射戻り
光の除去等に使用される光アイソレータに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical isolator used for removing reflected return light in optical communication, optical measurement, and optical recording.

従来の技術 半導体レーザを光通信等の光信号伝送系の光源として用
いる場合、半導体レーザからの出射光の一部が、伝送路
あるいは伝送用光学部品の各接続部で反射して、半導体
レーザの発振特性の不安定化や雑音増加を引き起こす原
因となる。この反射戻り光が半導体レーザに帰還するの
を防止するために、一般に光アイソレータが使用されて
いる。
Conventional technology When a semiconductor laser is used as a light source in an optical signal transmission system such as optical communication, a part of the light emitted from the semiconductor laser is reflected at the transmission line or at each connection of the transmission optical components, causing the semiconductor laser to emit light. This causes oscillation characteristics to become unstable and noise to increase. An optical isolator is generally used to prevent this reflected return light from returning to the semiconductor laser.

従来の光アイソレータは、例えば第4図に示すように偏
光子31.磁気光学素子30.検光子32及び磁石33
を備えた構成をとる。
A conventional optical isolator includes, for example, a polarizer 31 . Magneto-optical element 30. Analyzer 32 and magnet 33
A configuration with

光アイソレータの原理は、第5図(a)に示すように、
矢印33のように進行してきた光34aは1、まず偏光
子31を通過して直線偏光34bとなる。続いてこの直
線偏光34bは、飽和磁界H中のファラデー効果を持つ
磁気光学素子30を通過する際に、その偏光方向は45
度回転されて直線偏光34cとなる。従ってこの直線偏
光34cは、光の通過できる方向を偏光子31と45度
の角度に配置した検光子32を通過できる。逆に第5図
(b)に示すように、矢印35のように進行してきた反
射戻り光36aは、まず検光子32を通過して直線偏光
36bとなる。続いてこの直線偏光36bは、飽和磁界
H中の磁気光学素子30を通過する際に、ファラデー効
果の持つ非相反性により、その偏光方向はさらに45度
回転されて直線偏光36cとなる。従ってこの直線偏光
36cは、偏光子31を通過できる方向と直交するため
に通過できなくなる。
The principle of the optical isolator is as shown in Figure 5(a).
The light 34a traveling in the direction of the arrow 33 first passes through the polarizer 31 and becomes linearly polarized light 34b. Subsequently, when this linearly polarized light 34b passes through a magneto-optical element 30 having a Faraday effect in a saturation magnetic field H, its polarization direction becomes 45.
The light is rotated by a degree and becomes linearly polarized light 34c. Therefore, this linearly polarized light 34c can pass through the analyzer 32, whose direction in which light can pass is arranged at an angle of 45 degrees with the polarizer 31. Conversely, as shown in FIG. 5(b), the reflected return light 36a that has progressed as indicated by the arrow 35 first passes through the analyzer 32 and becomes linearly polarized light 36b. Subsequently, when this linearly polarized light 36b passes through the magneto-optical element 30 in the saturation magnetic field H, its polarization direction is further rotated by 45 degrees due to the non-reciprocity of the Faraday effect, and becomes linearly polarized light 36c. Therefore, this linearly polarized light 36c cannot pass through the polarizer 31 because it is perpendicular to the direction in which it can pass.

以上のような原理で、光アイソレータを用いることによ
って、反射戻り光が半導体レーザに帰還するのを防止す
ることができる。しかし現実には、わずかながら漏れ光
36dが存在するため、光アイソレータの特性はアイソ
レーション■ (逆方向損失)として次式のように表さ
れる。
Based on the principle described above, by using an optical isolator, reflected return light can be prevented from returning to the semiconductor laser. However, in reality, there is a small amount of leakage light 36d, so the characteristics of the optical isolator are expressed as isolation (reverse direction loss) as shown in the following equation.

1=  LOG(12/IO) ここで、Ioは逆方向の入射光強度、■2は逆方向の漏
れ光強度である。
1=LOG(12/IO) Here, Io is the intensity of incident light in the opposite direction, and 2 is the intensity of leaked light in the opposite direction.

光アイソレータ用の磁気光学素子としては、YIG(イ
ツトリウム・鉄−ガーネット)、RIG(希土類・鉄・
ガーネット)、BiRIG(ビスマス置換希土類・鉄・
ガーネット)等ガーネット構造の単結晶が一般的に用い
られる。このような磁気光学素子による偏光方向の回転
角θは次式のように表わすことができる。
Magneto-optical elements for optical isolators include YIG (yttrium/iron/garnet), RIG (rare earth/iron/garnet),
garnet), BiRIG (bismuth-substituted rare earth, iron,
Garnet) and other single crystals with a garnet structure are generally used. The rotation angle θ of the polarization direction by such a magneto-optical element can be expressed as follows.

θ=VHL ここでVはヴエルデ定数、Hは磁界の強さ、Lは磁気光
学素子の厚さである。
θ=VHL where V is Werde's constant, H is the strength of the magnetic field, and L is the thickness of the magneto-optical element.

この中でヴエルデ定数■は温度依存性、波長依存性を持
ち、磁気光学素子の種類や組成によっても異なる。従っ
て、磁気光学素子は飽和磁界中で定温(一般には室温)
で一つの波長に対して偏光方向の回転角が45度となる
ように、種類1組成、厚み等が設計されている。例えば
、1.3μm用光アイソレータに、磁気光学素子として
YIGを用いる場合、その厚みは約2.0mmとなる。
Among these, the Weerde constant ■ has temperature dependence and wavelength dependence, and varies depending on the type and composition of the magneto-optical element. Therefore, magneto-optical elements are kept at a constant temperature (generally room temperature) in a saturated magnetic field.
The type 1 composition, thickness, etc. are designed so that the rotation angle of the polarization direction is 45 degrees for one wavelength. For example, when YIG is used as a magneto-optical element in a 1.3 μm optical isolator, the thickness thereof is approximately 2.0 mm.

発明が解決しよう表する課題 ところが、従来の光アイソレータには使用環境の違いや
、温度変化、レーザ光波長の変化やバラツキのために偏
光方向の回転角が45度からずれてしまい、逆方向の漏
れ光強度が大きくなるため、アイソレージ3ンが劣化す
るという欠点があった。従って、常に安定して高アイソ
レーションを得るには、光アイソレータを使用する際に
、温度を一定にする装置や、レーザ光波長を一定にする
装置等が必要であるという課題があった。
However, with conventional optical isolators, the rotation angle of the polarization direction deviates from 45 degrees due to differences in the usage environment, temperature changes, and changes and variations in the laser light wavelength. This had the disadvantage that the isolation deteriorated due to the increased leakage light intensity. Therefore, in order to consistently obtain high isolation, there is a problem in that when using an optical isolator, a device that keeps the temperature constant, a device that keeps the laser light wavelength constant, etc. are required.

本発明はこのような課題を解決するもので、使用環境の
違いや、温度変化、レーザ光波長の変化やバラツキによ
るアイソレーションの劣化を防止できる光アイソレータ
を提供することを目的とするものである。
The present invention solves these problems, and aims to provide an optical isolator that can prevent deterioration of isolation due to differences in usage environments, temperature changes, and changes and variations in laser light wavelength. .

課題を解決するための手段 本発明は前記課題を解決するために、偏光分離素子、磁
気光学素子、及び磁石を具備し、厚さが光軸に対して垂
直方向に徐々に変化するくさび状とした前記磁気光学素
子をモータの回転動作により変位する部材に設置し、か
つ前記偏光分離素子からの反射光の変化により、前記く
さび状磁気光学素子が光軸に対して垂直方向に変位可能
な構成とした光アイソレータを提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention comprises a polarization separation element, a magneto-optical element, and a magnet, and has a wedge-shaped structure whose thickness gradually changes in a direction perpendicular to the optical axis. The magneto-optical element is disposed on a member that is displaced by the rotational movement of a motor, and the wedge-shaped magneto-optical element is displaceable in a direction perpendicular to the optical axis due to a change in reflected light from the polarization separation element. The present invention provides an optical isolator with the following characteristics.

作用 本発明の光アイソレータによれば、使用環境温度や、レ
ーザ光波長のバラツキに伴い、前記偏光分離素子からの
反射光量が変化し、これに対応し。
Function: According to the optical isolator of the present invention, the amount of reflected light from the polarization separation element changes with variations in the operating environment temperature and the wavelength of the laser light, and the amount of light reflected from the polarization separation element changes.

て前記くさび状磁気光学素子を光軸に対して垂直方向に
変位させるものである。このような変位によって、磁気
光学素子を通過後の光の偏光方向の回転角が常に45度
となるように前記磁気光学素子の厚さを制御することが
できるので、使用温度やレーザ光波長が変化しても、常
に反射戻り光を完全に遮断することが可能となり、高ア
イソレーションの光アイソレータが得られることとなる
The wedge-shaped magneto-optical element is displaced in a direction perpendicular to the optical axis. By such displacement, the thickness of the magneto-optical element can be controlled so that the rotation angle of the polarization direction of the light after passing through the magneto-optic element is always 45 degrees, so the operating temperature and laser light wavelength can be controlled. Even if it changes, it is possible to always completely block the reflected return light, and an optical isolator with high isolation can be obtained.

実施例 第1図、第2図、及び第3図は、本発明による光アイソ
レータの実施例を示すもので、第1図は光軸を含む断面
図、第2図は第1図のA−A ’断面図、第3図は第2
図のB−B ’断面図で本発明による光アイソレータの
動作を説明する図である。
Embodiment FIGS. 1, 2, and 3 show an embodiment of the optical isolator according to the present invention. FIG. 1 is a cross-sectional view including the optical axis, and FIG. A' sectional view, Figure 3 is the 2nd
FIG. 3 is a diagram illustrating the operation of the optical isolator according to the present invention using a sectional view taken along line BB' in the figure.

まず、円筒形に切り出した磁気光学結晶を、厚さが光軸
に垂直な方向で徐々に変化するくさび状となるように斜
めに切断した後、光の入出射面を鏡面に研磨し、くさび
状磁気光学素子1とする。
First, a magneto-optic crystal cut into a cylindrical shape is cut diagonally into a wedge shape whose thickness gradually changes in the direction perpendicular to the optical axis, and then the light input and output surfaces are polished to a mirror surface, and the wedge is cut into a wedge shape. The magneto-optical element 1 has a shape.

一方、くさび状磁気光学素子1と等しい屈折率を有し、
かつ磁気光学効果を持たない光学材料を、同様のくさび
状に切断した後、光の入出射面を鏡面に研磨し、くさび
状光学素子2とする。これらくさび状磁気光学素子1と
くさび状光学素子2とを、光の入射面と出射面とが互い
に平行となるように接着して磁気光学部品3とした後、
光の入出射面3aと、3bとに反射防止膜を形成し、永
久磁石6中に固定する。さらに、この永久磁石6に回転
子12の回転動作を永久磁石6の変位動作に変換するた
めのガイド10及び11を取り付け、永久磁石6を変位
させるための台9上に設置する。
On the other hand, it has a refractive index equal to that of the wedge-shaped magneto-optical element 1,
After cutting an optical material that does not have a magneto-optical effect into a similar wedge shape, the light entrance/exit surface is polished to a mirror surface to obtain a wedge-shaped optical element 2. After bonding these wedge-shaped magneto-optical element 1 and wedge-shaped optical element 2 so that the light incident surface and the light exit surface are parallel to each other to form a magneto-optical component 3,
An antireflection film is formed on the light entrance/exit surfaces 3a and 3b, and fixed in the permanent magnet 6. Furthermore, guides 10 and 11 for converting the rotational movement of the rotor 12 into a displacement movement of the permanent magnet 6 are attached to the permanent magnet 6, and the permanent magnet 6 is placed on a stand 9 for displacing the permanent magnet 6.

次に、光の入出射面4a及び4bに反射防止膜を形成し
た偏光子4と、光の入出射面5a及び5bに反射防止膜
を形成した検光子5を、それぞれ偏光子ホルダ7及び検
光子ホルダ日中に固定する。
Next, a polarizer 4 with an anti-reflection film formed on the light incident/exit surfaces 4a and 4b and an analyzer 5 with an anti-reflection film formed on the light incident/exit surfaces 5a and 5b are attached to the polarizer holder 7 and the detector, respectively. Fix the photon holder during the day.

これらの偏光子4と検光子5とが互いに45度となり、
かつ磁気光学部品3の両側に位置するように、偏光子ホ
ルダ7と検光子ホルダ8を、下ケース19中に固定する
。ここで、この光アイソレータの使用環境中で、逆方向
の漏れ光強度が最も小さくなる位置、すなわちアイソレ
ーションが最も高くなる位置に永久磁石6を設置してお
く。この時、検光子5からの反射成分を受光するための
受光素子15、及び永久磁石6を変位させるための回転
子12を設けておく。その後、上ケース20をかぶせ、
光通過孔21aを設けたカバー21、及び光通過孔22
aを設けたカバー22を取り付ける。
These polarizer 4 and analyzer 5 are at 45 degrees to each other,
Polarizer holder 7 and analyzer holder 8 are fixed in lower case 19 so as to be located on both sides of magneto-optical component 3. Here, in the usage environment of this optical isolator, the permanent magnet 6 is installed at a position where the leakage light intensity in the opposite direction is the smallest, that is, a position where the isolation is the highest. At this time, a light receiving element 15 for receiving the reflected component from the analyzer 5 and a rotor 12 for displacing the permanent magnet 6 are provided. After that, cover the upper case 20,
A cover 21 provided with a light passage hole 21a and a light passage hole 22
Attach the cover 22 provided with a.

最後に、モータ支持台18に取り付けた回転モータ14
と回転子12とを、モータ軸13を介して接続する。そ
の後、受光素子15と回転モータ14とをそれぞれ回転
制御機16に接続して光アイソレータとする。
Finally, the rotary motor 14 attached to the motor support stand 18
and rotor 12 are connected via a motor shaft 13. Thereafter, the light receiving element 15 and the rotary motor 14 are each connected to a rotation controller 16 to form an optical isolator.

ここで、使用環境が変化した場合、例えば周囲温度が変
化した場合には、くさび状磁気光学素子1を通過した光
の偏光方向の回転角は45度からずれてしまい、検光子
5を通過できない偏光成分が生じる。この偏光成分を、
検光子5からの反射成分として、光路17を通して受光
素子15で受光する。この反射成分は、偏光方向の回転
角が45度からずれるほど多くなるので、受光素子15
での受光光量によって、偏光方向の回転角の45度から
のずれの大きさを検出できる。この受光光量を、光−電
気変換した後、得られた電気出力を回転制御機16に導
き、受光光量に対応した電圧を回転モータ14へ導くこ
とにより、回転モータ14、モータ軸139回転子12
を回転させることができ、そして永久磁石6を矢印23
の方向に変位させることができる。これによって、第3
図+al、 fbl、 fc)のように、光軸24に当
たるくさび状磁気光学素子1の厚さが変化し、偏光方向
の回転角を45度に補正することが可能となる。
Here, if the usage environment changes, for example, if the ambient temperature changes, the rotation angle of the polarization direction of the light that has passed through the wedge-shaped magneto-optical element 1 will deviate from 45 degrees, and it will not be able to pass through the analyzer 5. A polarized component is generated. This polarized component is
The reflected component from the analyzer 5 is received by the light receiving element 15 through the optical path 17. This reflected component increases as the rotation angle of the polarization direction deviates from 45 degrees, so the light receiving element 15
The magnitude of the deviation of the rotation angle of the polarization direction from 45 degrees can be detected based on the amount of light received at . After photo-electrically converting the amount of received light, the obtained electrical output is guided to the rotation controller 16, and a voltage corresponding to the amount of received light is introduced to the rotary motor 14, thereby controlling the rotation motor 14, motor shaft 139, rotor 12, etc.
can be rotated, and the permanent magnet 6 is rotated by the arrow 23
can be displaced in the direction of This allows the third
As shown in Figures +al, fbl, fc), the thickness of the wedge-shaped magneto-optical element 1 that corresponds to the optical axis 24 changes, making it possible to correct the rotation angle of the polarization direction to 45 degrees.

また、レーザ光波長が変化した場合にも、同様の作用で
偏光方向の回転角を45度に補正することができる。
Further, even when the wavelength of the laser beam changes, the rotation angle of the polarization direction can be corrected to 45 degrees by the same effect.

このようにして本発明によれば、使用環境の違いや、温
度変化、使用するレーザの光波長の変化やバラツキに合
わせて、偏光方向の回転角を45度に調整または補正し
て使用できるので、高アイソレーションの光アイソレー
タが実現できることとなる。
In this way, according to the present invention, the rotation angle of the polarization direction can be adjusted or corrected to 45 degrees in accordance with differences in the usage environment, temperature changes, and changes and variations in the optical wavelength of the laser used. , an optical isolator with high isolation can be realized.

なお、本実施例ではくさび状光学素子を使用したが、く
さび状磁気光学素子のみを使用した光アイソレータも可
能である。
Although a wedge-shaped optical element is used in this embodiment, an optical isolator using only a wedge-shaped magneto-optical element is also possible.

発明の効果 以上のように本発明によれば、使用環境の違いや、温度
変化、使用するレーザの光波長の変化やバラツキに合わ
せて、くさび状磁気光学素子が光軸に対して垂直方向に
変位するため、磁気光学素子通過後の光の偏光方向の回
転角が常に45度となるように磁気光学素子の厚さを制
御することができるので、反射戻り光を完全に遮断する
ことが可能となり、高アイソレーションの光アイソレ−
夕が得られることとなる。
Effects of the Invention As described above, according to the present invention, the wedge-shaped magneto-optical element can be adjusted in a direction perpendicular to the optical axis in accordance with differences in the usage environment, temperature changes, and changes and variations in the optical wavelength of the laser used. Because of the displacement, the thickness of the magneto-optical element can be controlled so that the rotation angle of the polarization direction of the light after passing through the magneto-optic element is always 45 degrees, making it possible to completely block reflected return light. Therefore, a high isolation optical isolator
The evening will come.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光アイソレータの光軸を含む断面
図、第2図は第1図のA−A ’断面図、第3図は第2
図のB−B ’断面で本発明による光アイソレータの動
作を説明する説明図、第4図は従来の光アイソレータの
構成図、第5図は光アイソレータの原理図である。 1・・・・・・くさび状磁気光学素子、2・・・・・・
くさび状光学素子、3・・・・・・磁気光学部品、3a
、3b、4a4b、5a、5b・・・・・・入出射面、
4・・・・・・偏光子、5・・・・・・検光子、6・・
・・・・永久磁石、7・・・・・・偏光子ホルダ、8・
・・・・・検光子ホルダ、9・・・・・・台、10.1
1・・・・・・ガイド、12・・・・・・回転子、13
・・・・・・モータ軸、14・・・・・・回転モータ、
15・・・・・・受光素子、16・・・・・・回転制御
機、17・・・・・・光路、18・・・・・・モータ支
持台、19・・・・・・下ケース、20・・・・・・上
ケース、21.22・・・・・・カバー 21a、22
a・・・・・・光通過孔、24・・・・・・光軸。
FIG. 1 is a sectional view including the optical axis of an optical isolator according to the present invention, FIG. 2 is a sectional view taken along line A-A' in FIG.
An explanatory diagram illustrating the operation of the optical isolator according to the present invention using a cross section taken along line B-B' in the figure, FIG. 4 is a block diagram of a conventional optical isolator, and FIG. 5 is a diagram showing the principle of the optical isolator. 1... Wedge-shaped magneto-optical element, 2...
Wedge-shaped optical element, 3...Magneto-optical component, 3a
, 3b, 4a4b, 5a, 5b... input/output surface,
4...Polarizer, 5...Analyzer, 6...
...Permanent magnet, 7...Polarizer holder, 8.
...Analyzer holder, 9...stand, 10.1
1...Guide, 12...Rotor, 13
...Motor shaft, 14...Rotating motor,
15... Light receiving element, 16... Rotation controller, 17... Optical path, 18... Motor support stand, 19... Lower case , 20...Top case, 21.22...Cover 21a, 22
a...Light passing hole, 24...Optical axis.

Claims (2)

【特許請求の範囲】[Claims] (1)偏光分離素子、磁気光学素子、及び磁石を具備し
厚さが光軸に対して垂直方向に徐々に変化するくさび状
とした前記磁気光学素子をモータの回転動作により変位
する部材に設置し、かつ前記偏光分離素子からの反射光
の変化により、前記くさび状磁気光学素子が光軸に対し
て垂直方向に変位可能な構成としたことを特徴とする光
アイソレータ。
(1) The wedge-shaped magneto-optical element, which includes a polarization separation element, a magneto-optic element, and a magnet, and whose thickness gradually changes in a direction perpendicular to the optical axis, is installed on a member that is displaced by the rotational operation of a motor. An optical isolator characterized in that the wedge-shaped magneto-optical element can be displaced in a direction perpendicular to the optical axis by changes in reflected light from the polarization separation element.
(2)磁気光学素子として、くさび状磁気光学素子と等
しい屈折率を有しかつ磁気光学効果を持たない光学素子
とくさび状磁気光学素子とを、光の入射面と出射面とが
互いに平行となるように一体化した磁気光学部品を使用
したことを特徴とする請求項1記載の光アイソレータ。
(2) As a magneto-optical element, an optical element having a refractive index equal to that of the wedge-shaped magneto-optical element and having no magneto-optic effect and a wedge-shaped magneto-optical element are used, with the light incident surface and the light exit surface being parallel to each other. 2. The optical isolator according to claim 1, further comprising a magneto-optical component that is integrated so as to have the following characteristics.
JP27416589A 1989-10-20 1989-10-20 Optical isolator Pending JPH03135513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27416589A JPH03135513A (en) 1989-10-20 1989-10-20 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27416589A JPH03135513A (en) 1989-10-20 1989-10-20 Optical isolator

Publications (1)

Publication Number Publication Date
JPH03135513A true JPH03135513A (en) 1991-06-10

Family

ID=17537941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27416589A Pending JPH03135513A (en) 1989-10-20 1989-10-20 Optical isolator

Country Status (1)

Country Link
JP (1) JPH03135513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038792A1 (en) * 2022-08-17 2024-02-22 日本電気硝子株式会社 Optical isolator and optical monitoring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038792A1 (en) * 2022-08-17 2024-02-22 日本電気硝子株式会社 Optical isolator and optical monitoring method

Similar Documents

Publication Publication Date Title
CA2069684C (en) Optical isolator
EP0525208B1 (en) Optical isolator
US4756607A (en) Optical isolator device having two cascaded isolator elements with different light beam rotation angles
US5345329A (en) Polarization-independent optical isolator
US6275323B1 (en) Optical attenuator
JP2815509B2 (en) Optical attenuator
US20130170785A1 (en) Multifunctional integrated optical device
JPH1090639A (en) Faraday rotator and optical device using the same faraday rotator
US4952014A (en) Optical systems with thin film polarization rotators and method for fabricating such rotators
US6055102A (en) Optical isolator having surface mountable open core
US6631238B2 (en) Variable optical attenuator
JPH0283523A (en) Optical isolator
JPH03135513A (en) Optical isolator
JP2567697B2 (en) Faraday rotation device
EP0647869A1 (en) Non-reciprocal optical device
GB2143337A (en) Optical isolator
JP2751475B2 (en) Optical isolator
JP2509845B2 (en) Polarization-independent optical isolator
JPH04264515A (en) Optical isolator
JP2570830B2 (en) Method of forming optical isolator
JP2926787B2 (en) Optical isolator
JP3154169B2 (en) Optical circulator
JPH07120711A (en) Optical variable attenuator and optical output control unit using the same
JPS634214A (en) Optical isolator
JPH02160213A (en) Plane of polarization rotating device