JPH03135040A - Bonding fine wire for semiconductor use and manufacture thereof - Google Patents

Bonding fine wire for semiconductor use and manufacture thereof

Info

Publication number
JPH03135040A
JPH03135040A JP1273519A JP27351989A JPH03135040A JP H03135040 A JPH03135040 A JP H03135040A JP 1273519 A JP1273519 A JP 1273519A JP 27351989 A JP27351989 A JP 27351989A JP H03135040 A JPH03135040 A JP H03135040A
Authority
JP
Japan
Prior art keywords
wire
concentration
alloy
thin
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1273519A
Other languages
Japanese (ja)
Other versions
JP2708573B2 (en
Inventor
Kohei Tatsumi
宏平 巽
Takahide Ono
恭秀 大野
Tomohiro Uno
智裕 宇野
Shunpei Miyajima
俊平 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1273519A priority Critical patent/JP2708573B2/en
Publication of JPH03135040A publication Critical patent/JPH03135040A/en
Application granted granted Critical
Publication of JP2708573B2 publication Critical patent/JP2708573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • H01L2224/48511Heat affected zone [HAZ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal Extraction Processes (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To obtain the soft central part and a surface-layer part having a desired characteristic and to satisfy various characteristics required by a mounting body by a method wherein, when a bonding fine wire used to connect a semiconductor chip to a lead wire is manufactured, an alloy element whose concentration is changed continuously is contained from an outer circumference part to the central part of a conductor thin wire. CONSTITUTION:In order to enhance an overall characteristic of a bonding fine wire, an alloy concentration is changed continuously at a surface-layer part and in the central part. For example, in order to make a loop shape high, the fine wire must be soft; and therefore, the central-part side is made wide and highly pure or an element which does not increase a recrystallization temperature of the fine wire so much is added. In order to enhance reliability in a neck part, only recrystallized particles near the surface are made fine. In order to bond a ball part, the alloy concentration is made small as far as possible so that a ball can easily be deformed. When a characteristic at the surface-layer part and in the central part is especially important, a ratio of an average concentration within a range of 1/20 of a wire diameter from the surface to an average concentration of 1/2 of a wire diameter from the central part is set to 1.2 or higher.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体チップとリードを結ぶボンディング細
線、特に、合金元素を含有するボンディング細線および
その製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin bonding wire that connects a semiconductor chip and leads, and particularly to a thin bonding wire containing an alloy element and a method for manufacturing the same.

(従来の技術) ボンディング細線は、通常半導体チップやリードフレー
ムと接合するのであるが、この際、例えば強度、延性、
ネック部(熱影響部)強度、ループ高さ、接合性などの
特性が要求される。従来、これらの特性は、合金元素で
成分調整することによってその向上を計ってきた。例え
ば特公昭5735577号公報、特公昭57−3485
9号公報、特公昭58−28882号公報、および特開
昭83−145729号公報等にあるように、Au線の
場合には、Ca。
(Prior art) Bonding thin wires are usually bonded to semiconductor chips and lead frames, and at this time, for example, strength, ductility,
Characteristics such as neck (heat affected zone) strength, loop height, and bondability are required. Conventionally, these properties have been improved by adjusting the composition with alloying elements. For example, Japanese Patent Publication No. 5735577, Japanese Patent Publication No. 57-3485
In the case of Au wire, Ca.

Ge、Be、In等を添加することによってそれぞれの
特性向上に有効で有ることが開示されている。
It is disclosed that adding Ge, Be, In, etc. is effective in improving the respective characteristics.

ところがこれらの合金元素の添加方法は、溶解法によっ
て素材に均一に行われており、あまり多く(数10pp
ω〜数100ppe+以上)添加すると、電気トーチに
よる放電等でボールを成型する際に、真球のボールかえ
られなかったり、ボールの組成が微細化することが原因
となって、チップへの接合ができなかったり、或いは、
チップの損傷をもたらすという問題があった。従って、
一般には、合金元素の添加は数pp+n〜数10ppm
の範囲に制限されているが、ボール部近傍の熱影響部(
ネック部)の強度が十分でなく、ネック部の破断が原因
で、半導体装置が不良となることが多く、その対策が望
まれている。
However, these alloying elements are added uniformly to the material by the melting method, and they are added in too large a quantity (several tens of parts per million).
If ω~several 100ppe+ or more) is added, it may not be possible to turn the ball into a true sphere when forming the ball by discharging with an electric torch, or the composition of the ball may become finer, making it difficult to bond to the chip. unable or
There was a problem in that it caused damage to the chip. Therefore,
Generally, the addition of alloying elements is from several pp+n to several tens of ppm.
Although it is limited to the range of heat affected zone near the ball part (
Semiconductor devices often fail due to insufficient strength of the neck (neck portion) and breakage of the neck portion, and countermeasures are desired.

また、合金元素を添加し、熱影響部の組織を細粒化して
強度を上げようとすると、細線は硬質となり、ループ形
状が低くなるという傾向がある。
Furthermore, if an attempt is made to increase the strength by adding alloying elements and making the structure of the heat-affected zone finer, the thin wire tends to become harder and the loop shape becomes lower.

ループ形状が低いと、チップ等との接触によりショート
が起こる可能性が高くなり、半導体装置の信頼性を低下
させる。
If the loop shape is low, there is a high possibility that a short circuit will occur due to contact with a chip or the like, reducing the reliability of the semiconductor device.

Cu合金の場合にも、ネック部組織の細粒化のために合
金化が有効であるが、ボール部の硬度が上昇しすぎてボ
ンディング時にチップを損傷するという問題が起きる。
In the case of Cu alloys, alloying is also effective in making the neck structure finer, but the problem arises that the hardness of the ball portion increases too much and the chip is damaged during bonding.

更に、複数の合金元素を複合添加することで総合的特性
を向上することが計られているが、すべての特性を満足
することは困難で、従来の方法では限界が有る。
Furthermore, attempts have been made to improve the overall properties by adding multiple alloying elements in combination, but it is difficult to satisfy all properties, and conventional methods have limitations.

(発明が解決しようとする課題) 本発明は、ボンディング細線に、異なった濃度に合金元
素の一種又は二種以上を添加することにより、細線にと
って必要な特性、すなわち細線強度、ポールネック部強
度、接合部信頼性、ループ形状および電気伝導性等を総
合的に高めることを主たる目的とする。
(Problems to be Solved by the Invention) The present invention achieves properties necessary for the thin wire, such as thin wire strength, pole neck strength, and The main purpose is to comprehensively improve joint reliability, loop shape, electrical conductivity, etc.

本発明の別の目的は、伸線により細線(極細線)化する
ために十分な引張り強さを有するボンディング細線を提
供することにある。
Another object of the present invention is to provide a bonding thin wire that has sufficient tensile strength to be made into a thin wire (ultra-fine wire) by wire drawing.

(課題を解決するための手段) 上記した目的を達成するための本発明の要旨は、次の通
りである。
(Means for Solving the Problems) The gist of the present invention for achieving the above objects is as follows.

(1)導体細線の外周部から中心部にかけて、連続的に
濃度変化した合金元素を含有していることを特徴とする
半導体用ボンディング細線。
(1) A thin bonding wire for semiconductors characterized by containing an alloying element whose concentration changes continuously from the outer periphery to the center of the thin conductor wire.

(2)細線が20−以下であることを特徴とする前記(
1)記載の半導体用ボンディング細線。
(2) The above-mentioned (
1) The bonding thin wire for semiconductors as described above.

(3)導体細線の表面に、合金元素或いは高濃度合金を
被覆し、該導体細線に、その外周部から中心部にかけて
、連続的に合金元素の濃度が変化する拡散処理を行うこ
とを特徴とする半導体用ボンディング細線の製造方法。
(3) The surface of the thin conductor wire is coated with an alloying element or a high-concentration alloy, and the thin conductor wire is subjected to a diffusion treatment in which the concentration of the alloying element changes continuously from the outer periphery to the center. A method for manufacturing a thin bonding wire for semiconductors.

(4)導体細線の表面に、合金元素或いは高濃度合金を
被覆し、該導体細線に、その外周部から中心部にかけて
、連続的に合金元素の濃度が変化する拡散処理を行った
のち、線引きすることを特徴とする半導体用ボンディン
グ細線の製造方法。
(4) The surface of the thin conductor wire is coated with an alloying element or a high-concentration alloy, and the thin conductor wire is subjected to a diffusion treatment in which the concentration of the alloying element changes continuously from the outer periphery to the center, and then the wire is drawn. A method for producing a thin bonding wire for semiconductors, characterized in that:

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、上述したように、ボンディング細線の総合的
な特性を向上させるために、細線の表層部と中心部とで
、合金濃度を連続的に変化させるものである。
As described above, in the present invention, in order to improve the overall characteristics of the bonding wire, the alloy concentration is continuously changed between the surface layer and the center of the wire.

各特性について、例えば、ループ形状を高くするために
は、細線は軟質であることが必要であり、この場合は細
線の中心部側を広く高純度であるようにするか、或いは
細線の再結晶温度をあまり上げない元素を添加すれば良
い。また、ネック部の信頼性向上のためには、細線の特
に表面近傍の再結晶粒のみを細粒化するだけでも効果的
である。
Regarding each characteristic, for example, in order to increase the loop shape, the thin wire needs to be soft, and in this case, the center side of the thin wire must be wide and highly pure, or the thin wire must be recrystallized. It is sufficient to add elements that do not raise the temperature too much. Furthermore, in order to improve the reliability of the neck portion, it is effective to simply refine the recrystallized grains of the thin wire, particularly near the surface.

ボール部の接合には、合金濃度はできるだけ少なくシ、
ボールが変形しやすいようにする。そのため、合金化は
表面近傍のみに限ったほうが良い。
For joining the ball part, the alloy concentration should be kept as low as possible.
Make the ball easy to deform. Therefore, it is better to limit alloying to the vicinity of the surface.

このような観点から、高ループ、ボール変形能を大にす
るためには、中心部側の多くを高純のままとし、ネック
部強度を大にするためには、表層部の細粒化(合金化)
を計るようにする。従って、細線合金化は、特に、表層
部が重要な特性と中心部が重要な特性を、ともに満足さ
せるために、表層部と中心部で濃度を変化させることが
好適となる。実際的には、裏面部濃度(例えば、表面か
ら線径の1/20の範囲の平均濃度)と中心部濃度(例
えば、中心部から線径の1/3の平均濃度)の比が1.
2以上であることが好ましく、最も好ましくは1.5以
上である。
From this point of view, in order to increase the loop and deformability of the ball, most of the center part should remain highly pure, and in order to increase the strength of the neck part, the surface layer should be made finer ( alloying)
Try to measure it. Therefore, in fine wire alloying, in order to satisfy both the characteristics that are important in the surface layer and the characteristics that are important in the center, it is preferable to change the concentration between the surface layer and the center. In practice, the ratio of the density on the back side (for example, the average density in a range of 1/20 of the wire diameter from the front surface) to the density in the center area (for example, the average density in a range of 1/3 of the wire diameter from the center) is 1.
It is preferably 2 or more, most preferably 1.5 or more.

裏面部濃度と中心部濃度の比(Cs/Co)が1.2以
下のときはループ高さやネック部の強度において顕著な
改善はみられていない。金線にベリリウムを合金化した
ときの例を示す。金線0,5龍φに銅−2重量%ベリリ
ウム合金をスパッタリングにより表面に均一に蒸着した
のち、400℃以上の拡散熱処理により、表面部と中心
部の濃度比を調整した。伸線して25tlIaφの線径
にしたのち、仕上げ熱処理を行い各線とも破断までの伸
びがほぼ4%となるようにした。
When the ratio of the back surface concentration to the center concentration (Cs/Co) is 1.2 or less, no significant improvement is observed in the loop height or neck strength. An example is shown in which gold wire is alloyed with beryllium. After a copper-2% by weight beryllium alloy was uniformly deposited on the surface of the gold wire 0.5 φ by sputtering, the concentration ratio between the surface and center was adjusted by diffusion heat treatment at 400° C. or higher. After wire drawing to a wire diameter of 25 tlIaφ, finishing heat treatment was performed so that each wire had an elongation of approximately 4% until breakage.

第1図にベリリウムの裏面部濃度と中心部濃度の比(C
s/Co)とループ高さの関係を、第2図にネック部強
度との関係を求めた結果を示す。なおループ高さは、C
s/Coが変化したときのループ高さH,とCs/Co
が1.0のとき(合金元素濃度が均一)のループ高さ(
HA )の比HB/HAとして表わした。又2IIIm
のスパンでボールボンディングしたときのネック部強度
をプルテストにより調べた。Cs/Coが1.0以上の
ときの強度(FB)とCs/Coが1.0のときの強度
(F^)の比FB/FAを求めた。なおベリリウムが均
一に拡散した場合の濃度は約5 ppmであった。
Figure 1 shows the ratio of the concentration on the back surface and the concentration on the center of beryllium (C
Figure 2 shows the relationship between the loop height and the neck strength. The loop height is C
Loop height H when s/Co changes, and Cs/Co
When is 1.0 (alloy element concentration is uniform), the loop height (
HA) was expressed as the ratio HB/HA. Also 2IIIm
A pull test was conducted to examine the neck strength when ball bonding was performed with a span of . The ratio FB/FA of the strength (FB) when Cs/Co is 1.0 or more and the strength (F^) when Cs/Co is 1.0 was determined. Note that the concentration when beryllium was uniformly diffused was about 5 ppm.

図から明らかなようにCs/Coが1.2以上で効果が
あり、1.5以上で顕著な効果がみられた。
As is clear from the figure, there was an effect when Cs/Co was 1.2 or more, and a remarkable effect was seen when Cs/Co was 1.5 or more.

近時IC,LSIの多ピン化に伴って、高密度のボンデ
ィング配線が行われるようになり、そのため径20μm
以下の極細線が望まれている。しかしこのような極細線
になると、通常の合金化では、細線強度が不足して伸線
中に断線が多発し、また、ネック部強度が不足する。そ
のために高合金化すると、ボンディング時ボールの形成
が安定でなく、接合不良を起こすことが多くなる。本発
明は、後述するように、拡散処理後伸線を行うため20
tm以下の極細線をトラブル無く製造でき、このような
2〇−以下の極細線を得ることが本発明の特徴の一つで
もある。
In recent years, with the increase in the number of pins in ICs and LSIs, high-density bonding wiring has become possible, and as a result, wires with a diameter of 20 μm
The following ultra-fine wires are desired. However, when it comes to such ultra-fine wires, normal alloying results in insufficient wire strength, resulting in frequent wire breakage during wire drawing, and insufficient neck strength. For this reason, when the alloy is made to be highly alloyed, the formation of the ball during bonding becomes unstable and bonding failures often occur. As will be described later, the present invention provides wire drawing after diffusion treatment.
It is one of the features of the present invention that ultrafine wires of tm or less can be produced without trouble, and that such ultrafine wires of 20 or less can be obtained.

本発明の細線外周部から中心部にかけて合金元素の濃度
変化を形成する方法は、細線表面に蒸着、めっき等の手
段で高濃度合金を被覆し、その後拡散処理をすることに
よって行う。蒸着方法には、スパッタリング、イオンブ
レーティング、真空蒸着に代表される物理蒸着方法、プ
ラズマCVDに代表される化学蒸着方法を用い、めっき
は通常行われている浸漬、電解方法を採用する。
The method of forming a change in the concentration of alloying elements from the outer periphery to the center of the thin wire according to the present invention is carried out by coating the surface of the thin wire with a high concentration alloy by means such as vapor deposition or plating, and then performing a diffusion treatment. For the vapor deposition method, physical vapor deposition methods such as sputtering, ion blating, and vacuum deposition, and chemical vapor deposition methods such as plasma CVD are used, and for plating, commonly used immersion and electrolytic methods are used.

本発明で被覆した合金の拡散は、線径の太いところで行
い、その後伸線をして所望の径の細線とする。すなわち
、本発明においては、例えば径30−φ以下の細線を得
ようとする場合には、径0.2mmφ以上の中間材に合
金を被覆し拡散処理を施してから伸線する。このように
することによって、生産性が極めて大となり、細線化し
た後に蒸着−拡散処理をした場合に起こる粒の粗大化を
防ぐことができる。
Diffusion of the coated alloy according to the present invention is carried out at a point where the wire has a large diameter, and then the wire is drawn to form a thin wire with a desired diameter. That is, in the present invention, when it is desired to obtain a fine wire with a diameter of 30 mm or less, for example, an intermediate material with a diameter of 0.2 mm or more is coated with an alloy, subjected to a diffusion treatment, and then drawn. By doing so, productivity can be extremely increased, and it is possible to prevent coarsening of grains, which occurs when a vapor deposition-diffusion treatment is performed after thinning.

尚、電気伝導性については、添加する合金によってはこ
れを低下することかあり、これが低いと発熱の原因にな
ってICの不良を招く恐れがあるが、同一の合金元素添
加量であっても、本発明の細線は、従来の細線よりも良
好である。
Regarding electrical conductivity, it may be reduced depending on the alloy added, and if it is low, it may cause heat generation and lead to IC failure, but even if the amount of alloying elements added is the same, , the thin wire of the present invention is better than the conventional thin wire.

本発明に用いられる金属細線は、Au、 Cu。The metal thin wire used in the present invention is Au or Cu.

AIであり、これに被覆する合金元素には、Au。It is Al, and the alloying element coated on it is Au.

Cu、Al、Be、Ca、Ge、In、Sl。Cu, Al, Be, Ca, Ge, In, Sl.

Fe、Ga、Zn、Ba、Mg、Ni、SnおよびLa
、Eu、Ce、Ndなどのランタノイド等があり、これ
らの一種又は二種以上を0的に応じて使用する。
Fe, Ga, Zn, Ba, Mg, Ni, Sn and La
, Eu, Ce, Nd, etc., and one or more of these are used depending on the purpose.

線径150mφのCu細線(Cu純度99.999%)
表面に、Auを蒸着した後、異なった温度で拡散処理し
た実施例を以下に示す。
Cu thin wire with a wire diameter of 150mφ (Cu purity 99.999%)
Examples are shown below in which Au was vapor-deposited on the surface and then diffused at different temperatures.

合金(蒸着)元素蒸着膜厚さ 拡散条件(a)    
Au      200人  400℃、4時間(b)
    A u      20G人  650℃、4
時間(c)    A u     200人  90
0℃、4時間拡散処理後の元素の拡散状況を第3図(a
) 、 (b)。
Alloy (vapor deposition) element deposition film thickness Diffusion conditions (a)
Au 200 people 400℃, 4 hours (b)
A u 20G person 650℃, 4
Time (c) A u 200 people 90
Figure 3 (a) shows the diffusion status of elements after 4 hours of diffusion treatment at 0°C.
), (b).

(C)に示す。これらの図は、細線の断面を研磨し、第
4図に示すように細線1の直径方向2にX線分析(EP
MA線分析)したものであり、900℃。
Shown in (C). These figures show that the cross section of the thin wire is polished and subjected to X-ray analysis (EP) in the diametrical direction 2 of the thin wire 1 as shown in FIG.
MA line analysis) at 900°C.

4時間の熱処理(e)では、中心部で住かに濃度低下が
みられるものの、線中にほぼ均一に拡散し、元素の濃度
勾配はな(なっている。一方、(a)。
In the heat treatment for 4 hours (e), although a decrease in the concentration of elements is observed in the center, the element is diffused almost uniformly throughout the wire, and there is no concentration gradient of the element. On the other hand, in (a).

(b)の処理条件では、線表層部と中心部の濃度差が明
らかである。その後、これらの15(JimφのCu線
を25如φに伸線し、前記と同様のX線分析をしたとこ
ろ、元素の分布は150mnφの場合とほぼ相似の分析
結果が得られた。
Under the processing conditions of (b), there is a clear difference in density between the surface layer and the center of the line. Thereafter, when these 15 (Jimφ) Cu wires were drawn to 25 mmφ and subjected to the same X-ray analysis as described above, analysis results were obtained in which the element distribution was almost similar to that in the case of 150 mmφ.

前記のような事象から本発明者らは合金元素の拡散につ
いて次のように考えた。すなわち、金属に合金元素を拡
散する場合、元素の拡散距離(N )は、拡散温度(T
6K)と拡散時間(L)で決定される。その関係は近似
的に、 g−列五一 として表される。ここで、 DmD、exp T 二二でDは拡散係数であり、DoとQが与えられれば各
温度に対して求められる。
Based on the above-mentioned phenomenon, the present inventors considered the diffusion of alloying elements as follows. In other words, when diffusing an alloying element into a metal, the diffusion distance (N) of the element is determined by the diffusion temperature (T
6K) and diffusion time (L). The relationship is approximately expressed as g-column 51. Here, DmD, exp T 22 and D is the diffusion coefficient, which can be found for each temperature if Do and Q are given.

DoとQは、各元素特有の定数で、例えば日本金属学界
編の「金属データーブック」或はCRCPress発行
のCRCHandbook of chc+n+5tr
y anctPhysics”等に掲載されている。
Do and Q are constants specific to each element, for example, the "Metal Data Book" edited by the Japanese Society of Metals, or the CRC Handbook of chc+n+5tr published by CRC Press.
y anctPhysics” etc.

Rは気体常数、Tは絶対温度である。R is a gas constant and T is an absolute temperature.

本発明の要旨である合金化元素が、表面部と中心部で濃
度勾配のついた細線を製造するためには、拡散処理する
場合の線径をdとすると、次式で見積ることができる。
In order to produce a thin wire in which the alloying element has a concentration gradient between the surface and the center, which is the gist of the present invention, it can be estimated by the following equation, where d is the wire diameter in the case of diffusion treatment.

d/2≧Kjl−に題〒 ここで、Kは定数でほぼ1〜1oの間にある値である。d/2≧Kjl- Here, K is a constant and has a value approximately between 1 and 1o.

そして拡散条件として好ましい範囲はd2:l■7≧d
1500であり、 最も好ましい範囲はd/10≧Jb]−≧d150(1
となる。
And the preferable range for diffusion conditions is d2:l■7≧d
1500, and the most preferable range is d/10≧Jb]−≧d150(1
becomes.

上記したCu細線中へのAu拡散実験を例にして上記計
算を適用してみると、“CRC1landbookor
Chc+++1stry and Physics”に
よるとD −0,03cd/sac、 Q =42.f
3kcalの値が与えられている。
Applying the above calculation using the above-mentioned Au diffusion experiment into Cu thin wire as an example, we find that “CRC1landbookor
According to "Chc+++1stry and Physics", D -0.03cd/sac, Q = 42.f
A value of 3 kcal is given.

拡散実験の結果から900℃以下で4時間以下の熱処理
では、合金濃度は、表面外周部と中心部で変化している
と考えられるので、その時のdとKfIの関係を求める
とd≧44にとなるので、K−3〜4程度の値となり、
上述の範囲内であることがわかる。
From the results of the diffusion experiment, it is thought that during heat treatment at 900°C or less for 4 hours or less, the alloy concentration changes between the outer periphery of the surface and the center, so when we calculate the relationship between d and KfI at that time, d≧44. Therefore, the value is about K-3 to 4,
It can be seen that it is within the above range.

次に添加する元素の種類と、蒸希厚みの範囲と、その後
の熱処理条件について説明する。
Next, the types of elements to be added, the range of the steam thinning thickness, and the subsequent heat treatment conditions will be explained.

元素は、前記した各元素を、単独に、或は複数組合せて
よく、また特定元素のみを濃度変化させ、他の元素は均
一に合金化してもよい。均一合金化は、あらかじめ溶解
法により、或は表面被覆した合金を高温長時間拡散処理
して行うことができる。
The above-mentioned elements may be used singly or in combination, or the concentration of only a specific element may be changed, and the other elements may be uniformly alloyed. Uniform alloying can be carried out in advance by a melting method or by subjecting the surface-coated alloy to a high-temperature, long-time diffusion treatment.

各元素の蒸着、めっき厚みおよび拡散処理条件は、蒸着
される金属中での各元素の原子サイズ、固溶量、拡散係
数によってそれぞれ異なる。AuおよびCu線に蒸着す
べき元素としての好ましいものおよび好ましい厚みを第
1表および第2表に例示する。線径は1關であるが、線
径が変化する場合は線径に比例して蒸着二を変化させる
必要がある。また、被覆厚みの選択は、各元素の特性に
及ぼす効果の違いによりそれぞれ最大、最小値が異なる
。多すぎると細線接合時に形成するボールが硬化しすぎ
、半導体チップを損傷する等の問題が生じる。
The vapor deposition, plating thickness, and diffusion treatment conditions for each element vary depending on the atomic size, solid solution amount, and diffusion coefficient of each element in the metal to be vapor deposited. Preferred elements to be deposited on Au and Cu wires and preferred thicknesses are illustrated in Tables 1 and 2. The wire diameter is the same, but when the wire diameter changes, it is necessary to change the evaporation rate in proportion to the wire diameter. Further, when selecting the coating thickness, the maximum and minimum values differ depending on the effect of each element on the characteristics. If the amount is too large, the balls formed during thin wire bonding will become too hard, causing problems such as damage to the semiconductor chip.

第1表 Au線に蒸着する元素の種類と被覆厚み元素名
 Cu Be Ca Gc In Si Fe最小厚み
(人)   50  10  7   +0  7  
20  30Wみ(人)   4000 2500 3
000 1000  700 2000  6o。
Table 1 Types of elements deposited on Au wire and coating thickness Element name Cu Be Ca Gc In Si Fe Minimum thickness (people) 50 10 7 +0 7
20 30W (person) 4000 2500 3
000 1000 700 2000 6o.

元素名 最小厚み(人) MりSみ(入) Ga  Zn  La  Ba  Mg  Ni  S
n8  7   B   14  27   5  7
800 700 800  +400 2800 50
0 700第2表 Cu線に蒸着する元素の種類と被覆
厚み元素名 最小厚み(八) 最大厚み(人) A、ill   Zn   Fe  Au   Be 
  In8’3   5  10  12   380
0 600 1200 200 1200 6o。
Element Name Minimum Thickness (person) M Ri S Mi (In) Ga Zn La Ba Mg Ni S
n8 7 B 14 27 5 7
800 700 800 +400 2800 50
0 700 Table 2 Types of elements deposited on Cu wire and coating thickness Element name Minimum thickness (8) Maximum thickness (person) A, ill Zn Fe Au Be
In8'3 5 10 12 380
0 600 1200 200 1200 6o.

(実 施 例) 以下本発明の実施例を示す。(Example) Examples of the present invention will be shown below.

実施例 1 直径1++mφ、長さ5mのAu線試料を、送り出しリ
ールおよび巻取リールを有する回転巻取装置にセットし
、これをイオンブレーティング装置の真空槽内に設置し
た。前記線は、回転しながら送り出しリールより蒸着ゾ
ーンを通って巻取リールに移行する。この際、蒸着ゾー
ンでは、Au線表面に合金元素を均一に蒸着させる。蒸
着の条件は次の通りである。
Example 1 An Au wire sample with a diameter of 1++ mφ and a length of 5 m was set in a rotary winding device having a delivery reel and a take-up reel, and this was placed in a vacuum chamber of an ion blating device. The wire rotates as it passes from the delivery reel through the deposition zone and onto the take-up reel. At this time, in the vapor deposition zone, alloying elements are uniformly vapor deposited on the surface of the Au wire. The conditions for vapor deposition are as follows.

手   法  イオンブレーティング 蒸発物質および厚み 第3表の通り(各試料について の蒸着(合金)元素および膜厚 を示す) 蒸着雰囲気  5 X 10−’ Torr以下蒸 発
 法  電子ビーム、10kV、lO〜20On+A高
周波パワー 0.1kW コイル(線)送り速度 30〜100cm/分 蒸着後、線をA、  Bの2つの方法で拡散処理を行っ
た。A処理は、線表面より中心部まで合金濃度がほぼ均
一になるようにした拡散処理であり、前記式における7
6π−がd/2 (dは線径)以上であるように温度と
時間を設定した。拡散係数りの値が、データーとして文
猷にないものについては、棒状試料による拡散実験によ
り、事前にDを求めた。またB処理は、本発明の処理法
であって、合金元素が、線表面部と中心部とで連続的に
濃度が変化するように、線の表面部(表面からd/20
の範囲)の平均濃度と中心部(中心から1/3の範囲)
の平均濃度の比が3以上になるように、拡散処理の温度
と時間を設定した。すなわち前記式におけるに761−
がほぼd/20である条件により選定した。ただしKは
5を採用した。
Method: Ion-blating evaporation substance and thickness As shown in Table 3 (indicates the evaporation (alloy) element and film thickness for each sample) Vaporization atmosphere: 5 x 10-' Torr or less Evaporation method: Electron beam, 10kV, 1O~20On+A High frequency power: 0.1 kW Coil (wire) feeding speed: 30 to 100 cm/min After vapor deposition, the wire was subjected to diffusion treatment using two methods, A and B. The A treatment is a diffusion treatment in which the alloy concentration is made almost uniform from the wire surface to the center, and 7 in the above formula is
The temperature and time were set so that 6π- was greater than or equal to d/2 (d is the wire diameter). For cases where the value of the diffusion coefficient was not available as data, D was determined in advance by a diffusion experiment using a rod-shaped sample. The B treatment is a treatment method of the present invention in which the concentration of the alloying element is changed continuously between the wire surface and the center.
range) and the center (1/3 range from the center)
The temperature and time of the diffusion treatment were set so that the ratio of the average concentration of was 3 or more. That is, in the above formula, 761-
The selection was made under the condition that the ratio is approximately d/20. However, 5 was adopted for K.

各拡散処理した1 mm径の各試料について、25趨φ
の極細線に線引き加工をした。そして、各試料細線(N
α1〜37)についてEPM−A分析(第2図参照)、
又は化学分析により表面部(Cs)と中心部(Ci)と
の拡散合金元素の濃度比(Cs/CI)を求めた。EP
MA分析で感度の低いものについては、細線試料の表面
部と中心部を酸溶解により分離する化学分析を行った。
For each sample with a diameter of 1 mm after each diffusion treatment, 25 φ
The ultra-fine wire was drawn. Then, each sample thin wire (N
α1-37) EPM-A analysis (see Figure 2),
Alternatively, the concentration ratio (Cs/CI) of the diffusion alloying element between the surface portion (Cs) and the center portion (Ci) was determined by chemical analysis. EP
For those with low sensitivity in MA analysis, chemical analysis was performed in which the surface and center portions of the thin wire samples were separated by acid dissolution.

この結果A処理をした各試料のCs/Ciは1.2以下
であり、はぼ均一な拡散濃度であったが、B処理した各
試料は、いづれも3以上であり、表面部と中心部との合
金元素の拡散濃度が大きく変化していることが明らかと
なった。
As a result, the Cs/Ci of each sample treated with A was 1.2 or less, and the diffusion concentration was almost uniform, whereas the Cs/Ci of each sample treated with B was 3 or more, and the Cs/Ci was found at the surface and center. It became clear that the diffusion concentration of alloying elements with

上記それぞれの試料について伸線後件びがほぼ4%とな
るような仕上げ熱処理を施したものを用いてボールボン
ディングおよびステッチボンディングを行った。ボール
接合側とステッチ接合側の距離は2關とした。その時の
ルーピイングの最高高さを、A処理によるものの平均値
をHA。
Ball bonding and stitch bonding were performed on each of the above-mentioned samples, which had been subjected to a finishing heat treatment such that the wire drawing resistance was approximately 4%. The distance between the ball joint side and the stitch joint side was set to two. The maximum height of looping at that time is the average value of those obtained by processing A.

B処理によるものの平均値をH[lとしてH,3/HA
を求めた。また、フックテスト(ボールおよびステッチ
接合し形成したループ部にフックを引張る)によりフッ
ク破断強度を測定した。この際のA処理のフック強度の
平均をFA、B処理をF、とし、F a / F Aを
求めた。なおループ高さ、フック強度とも80本のδp
1定値の平均値を求めた。
The average value of those obtained by B treatment is expressed as H[l, H, 3/HA
I asked for In addition, the hook breaking strength was measured by a hook test (pulling a hook across a loop portion formed by joining a ball and stitch). In this case, the average hook strength of the A treatment was designated as FA, and the B treatment was designated as F, and F a / F A was determined. Both loop height and hook strength are 80 δp.
The average value of 1 constant value was determined.

第4表に各試料におけるHB/HA、Fa/FAの値を
示した。
Table 4 shows the values of HB/HA and Fa/FA in each sample.

第4表特性値 上記の結果から、各試料においてループ高さ、フック強
度共に本発明範囲のB処理材が優れていることが明らか
である。
Table 4 Characteristic Values From the above results, it is clear that the B-treated material within the scope of the present invention is superior in both loop height and hook strength in each sample.

また、電気導電性を調べるために、各試料の合金化によ
る電気抵抗の増加、すなわち残留抵抗(ρI)をilN
定した。残留抵抗は、室温(295K)と4.2にでの
電気抵抗の比(残留抵抗比RRR)から求められる。そ
してA処理によるものをρ4、B処理(本発明)による
ものをρ□とし、ρ8/ρ9を求めたところ何れもその
値が1.2以上であって、本発明によるものが優れてい
ることが明らかであった。
In addition, in order to investigate the electrical conductivity, we calculated the increase in electrical resistance due to alloying of each sample, that is, the residual resistance (ρI) by ilN.
Established. The residual resistance is determined from the ratio of the electrical resistance at room temperature (295K) and 4.2 (residual resistance ratio RRR). Then, when we calculated ρ8/ρ9 by using ρ4 for the A process and ρ□ for the B process (the present invention), the values were 1.2 or more in both cases, indicating that the present invention is superior. was clear.

実施例 2 0.15關φのCu線に、実施例1と同様の装置および
方法で、イオンブレーティング処理を行った。
Example 2 A 0.15 mm diameter Cu wire was subjected to ion blating treatment using the same apparatus and method as in Example 1.

蒸着物質として純金(99,999%)を用い、前記C
u線に200人の均一皮膜を形成した。その後拡散処理
を650℃×4時間(B処理)および950”CX4時
間(B処理、本発明範囲)の条件で行い、線引きして2
5mφの細線とした。この細線を実施例1と同様のフッ
クテストをそれぞれの処理材について80本行いFB/
FAを求めたところ、全て1.15以上であり、本発明
によるものが優れた特性を示していることが明らかとな
った。
Pure gold (99,999%) was used as the vapor deposition material, and the C
A uniform film was formed on 200 people on the U-ray. After that, diffusion treatment was performed under the conditions of 650°C x 4 hours (B treatment) and 950"C x 4 hours (B treatment, scope of the present invention), and the line was drawn.
A thin wire with a diameter of 5 m was used. FB/
When the FA was determined, all of them were 1.15 or more, and it became clear that the products according to the present invention exhibited excellent characteristics.

実施例 3 0.15mmφのCu線の表面に、Auを、500人の
均一膜厚となるように蒸着被覆(実施例1と同様のイオ
ンブレーティング装置、方法を使用)した後火の拡散処
理を行った。
Example 3 The surface of a 0.15 mmφ Cu wire was coated with Au to a uniform film thickness of 500 people (using the same ion blating device and method as in Example 1), and then subjected to fire diffusion treatment. I did it.

■ 650℃、4時間(B処理) ■ 950℃、4時間(A処理) 0.15mmφのAu線表面に、Cuを、7000人の
均一膜厚となるように蒸着被覆(前記同様の手法で)し
た後、次の拡散処理を行った。
■ 650℃, 4 hours (B treatment) ■ 950℃, 4 hours (A treatment) Cu was vapor-deposited on the surface of the 0.15 mmφ Au wire to a uniform film thickness of 7000 mm (using the same method as above). ), the following diffusion treatment was performed.

■ 950℃、4時間(A処理) 次の2つの合金線■、■を溶解法で製造し、圧延および
伸線で0.15++usφの線径とした後中間焼鈍した
(2) 950° C., 4 hours (A treatment) The following two alloy wires (1) and (2) were produced by a melting method, rolled and drawn to a wire diameter of 0.15++usφ, and then intermediately annealed.

■ ■と同じ濃度(0,O[1lvt%Au)の合金線
■ ■と同じ濃度(0,86wt%Cu)の合金線上記
■〜■とも、それぞれ伸線して12unφの細線とした
。この際、12mmφに1000mm作成するまでの断
線回数を測定し、その結果を第5表に示した。
■ Alloy wire with the same concentration (0, O [1 lvt% Au) as ■ ■ Alloy wire with the same concentration (0.86 wt% Cu) as in ■ ■ All of the above ■ to ■ were each drawn into thin wires of 12 unφ. At this time, the number of wire breaks until 1000 mm was created in 12 mmφ was measured, and the results are shown in Table 5.

第5表 伸線処理性 試料魔断線回数  合金処理法 ■Cu線   OB処理(本発明性拡散処理)■Cu線
   2  A処理(蒸着−均一拡散性)■Au線  
 OA処理(同  上  )■Cu線 10   溶解
法 ■Au線 2  溶解法 合金添加量 Au ロ、061wL% Cu O,80〃 Au 0.08  ” Cu 0.8G  /1 ■は、本発明対象材であり、断線はなかったが、■は同
様の合金量であるが、均一拡散であるため断線がみられ
た。■は■と同様均一拡散であるが、合金濃度が高いた
め断線はなかった。しかし、チップとのボンディングテ
ストを実施したところ、チップに損傷がみられた。■、
■は溶解法であり介在物などの混入がみられ、何れも断
線がみられる。特に■は、合金濃度が低く、■に比し、
断線回数が非常に多かった。■は■に比し、少ないが■
と同様チップボンディングに際してのダメージ(傷)が
みられた。このような結果から本発明方法が優れている
ことがわかる。
Table 5 Number of wire drawing process samples Magic wire breakage Alloy treatment method ■Cu wire OB treatment (inventive diffusion treatment) ■Cu wire 2 A treatment (vapor deposition - uniform diffusivity) ■Au wire
OA treatment (same as above) ■Cu wire 10 Melting method ■Au wire 2 Melting method Alloy addition amount Au RO, 061 wL% Cu O, 80〃 Au 0.08'' Cu 0.8G /1 ■ is the material targeted by the present invention. There was no disconnection, but ■ had the same amount of alloy, but due to uniform diffusion, disconnection was observed. ■: Same as ■, uniform diffusion, but there was no disconnection due to the high alloy concentration. However, when we conducted a bonding test with the chip, we found that the chip was damaged.
(2) is a melting method, and inclusions are observed, and wire breaks are observed in both cases. In particular, ■ has a low alloy concentration, compared to ■.
There were many disconnections. ■ is less than ■, but ■
Similarly, damage (scratches) caused by chip bonding was observed. These results show that the method of the present invention is superior.

(発明の効果) 以上説明したように、本発明によって得られる線材は、
合金元素の添加によって溶解法等にみられる不純物元素
の混入がなく、また添加量も自由に選択できると共に軟
い中心部と所望の特性を何する表層部との組合せにより
、製造上およびボンディングに際し、更には実装体に要
求される諸特性を所望の通り得ることができ、信頼でき
る半導体装置を製造することができるため、その工業的
な価値は極めて大きい。
(Effect of the invention) As explained above, the wire rod obtained by the present invention is
The addition of alloying elements eliminates the contamination of impurity elements that occur during melting methods, and the amount added can be freely selected.The combination of a soft core and a surface layer that provides the desired properties makes it easy to manufacture and bond. Furthermore, it is possible to obtain various characteristics required for a package as desired, and a reliable semiconductor device can be manufactured, so its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金合金の表面濃度と中心部濃度の比とループ高
さの関係を示す図、第2図は金合金の表面濃度と中心部
濃度の比とプル強度の関係を示す図、第3図は拡散処理
した各線祠のEPMA分析結果を示す図、第4図は、試
料(線)のE PME分析位置を示す図である。
Figure 1 is a diagram showing the relationship between the ratio of the surface concentration and center concentration of a gold alloy and the loop height. Figure 2 is a diagram showing the relationship between the ratio of the surface concentration and center concentration of a gold alloy and the pull strength. FIG. 3 is a diagram showing the results of EPMA analysis of each line hod after diffusion treatment, and FIG. 4 is a diagram showing the EPME analysis position of the sample (line).

Claims (4)

【特許請求の範囲】[Claims] (1)導体細線の外周部から中心部にかけて、連続的に
濃度変化した合金元素を含有していることを特徴とする
半導体用ボンディング細線。
(1) A thin bonding wire for semiconductors characterized by containing an alloying element whose concentration changes continuously from the outer periphery to the center of the thin conductor wire.
(2)細線が20μm以下であることを特徴とする請求
項1記載の半導体用ボンディング細線。
(2) The thin bonding wire for semiconductors according to claim 1, wherein the thin wire has a diameter of 20 μm or less.
(3)導体細線の表面に、合金元素或いは高濃度合金を
被覆し、該導体細線に、その外周部から中心部にかけて
、連続的に合金元素の濃度が変化する拡散処理を行うこ
とを特徴とする半導体用ボンディング細線の製造方法。
(3) The surface of the thin conductor wire is coated with an alloying element or a high-concentration alloy, and the thin conductor wire is subjected to a diffusion treatment in which the concentration of the alloying element changes continuously from the outer periphery to the center. A method for manufacturing a thin bonding wire for semiconductors.
(4)導体細線の表面に、合金元素或いは高濃度合金を
被覆し、該導体細線に、その外周部から中心部にかけて
、連続的に合金元素の濃度が変化する拡散処理を行った
のち、線引きすることを特徴とする半導体用ボンディン
グ細線の製造方法。
(4) The surface of the thin conductor wire is coated with an alloying element or a high-concentration alloy, and the thin conductor wire is subjected to a diffusion treatment in which the concentration of the alloying element changes continuously from the outer periphery to the center, and then the wire is drawn. A method for producing a thin bonding wire for semiconductors, characterized in that:
JP1273519A 1989-10-20 1989-10-20 Bonding wire for semiconductor and method of manufacturing the same Expired - Fee Related JP2708573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273519A JP2708573B2 (en) 1989-10-20 1989-10-20 Bonding wire for semiconductor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1273519A JP2708573B2 (en) 1989-10-20 1989-10-20 Bonding wire for semiconductor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03135040A true JPH03135040A (en) 1991-06-10
JP2708573B2 JP2708573B2 (en) 1998-02-04

Family

ID=17528990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273519A Expired - Fee Related JP2708573B2 (en) 1989-10-20 1989-10-20 Bonding wire for semiconductor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2708573B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216929A (en) * 2005-01-05 2006-08-17 Nippon Steel Corp Bonding wire for semiconductor device
JP2008533707A (en) * 2005-03-08 2008-08-21 ヴェー ツェー ヘレーウス ゲゼルシャフト ミット ベシュレンクテル ハフツング Copper bonding wire or extra fine wire with improved bonding and corrosion properties
US7969021B2 (en) 2000-09-18 2011-06-28 Nippon Steel Corporation Bonding wire for semiconductor device and method for producing the same
JP2011129942A (en) * 2004-06-16 2011-06-30 Nippon Steel Materials Co Ltd Metallic material, and method of manufacturing the same
JP2013232693A (en) * 2013-08-20 2013-11-14 Nippon Steel Sumikin Materials Co Ltd Bonding wire for semiconductor device
JP2014082369A (en) * 2012-10-17 2014-05-08 Nippon Micrometal Corp Bonding wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969021B2 (en) 2000-09-18 2011-06-28 Nippon Steel Corporation Bonding wire for semiconductor device and method for producing the same
JP2011129942A (en) * 2004-06-16 2011-06-30 Nippon Steel Materials Co Ltd Metallic material, and method of manufacturing the same
JP2006216929A (en) * 2005-01-05 2006-08-17 Nippon Steel Corp Bonding wire for semiconductor device
JP2008533707A (en) * 2005-03-08 2008-08-21 ヴェー ツェー ヘレーウス ゲゼルシャフト ミット ベシュレンクテル ハフツング Copper bonding wire or extra fine wire with improved bonding and corrosion properties
JP2014082369A (en) * 2012-10-17 2014-05-08 Nippon Micrometal Corp Bonding wire
JP2013232693A (en) * 2013-08-20 2013-11-14 Nippon Steel Sumikin Materials Co Ltd Bonding wire for semiconductor device

Also Published As

Publication number Publication date
JP2708573B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
KR101057271B1 (en) Bonding Wires for Semiconductor Devices
US8940403B2 (en) Alloy wire and methods for manufacturing the same
US20230018430A1 (en) Copper alloy bonding wire for semiconductor devices
KR101055957B1 (en) Bonding Wires for Semiconductor Devices
EP3470168B1 (en) Process for the manufacture of a coated wire
US9997488B2 (en) Copper-based alloy wire and methods for manufaturing the same
WO2013094482A1 (en) Pd-COATED COPPER BALL BONDING WIRE
JP2008533707A (en) Copper bonding wire or extra fine wire with improved bonding and corrosion properties
JPH03135040A (en) Bonding fine wire for semiconductor use and manufacture thereof
JPH03135041A (en) Manufacture of bonding fine wire for semiconductor use
TW201736606A (en) Coated wire
TWI627637B (en) Silver alloyed copper wire
TWI649433B (en) Alloyed silver wire
KR101253227B1 (en) Method for forming oxidation prevention layer on surface of copper bonding wire via sputtering method and oxidized copper bonding wire manufactured using the method
JPH05198227A (en) Formation of niobium 3/tin superconductor
Hung et al. Recrystallization effect and electric flame-off characteristic of thin copper wire
TWI649434B (en) Alloyed silver wire
TW201711150A (en) Copper alloy wire for ball bonding capable of increasing the Young's modulus by adjusting the blending ratio
TW202326989A (en) Ball-bond arrangement
JPH04363036A (en) Bonding wire for semiconductor device use and its manufacture
JPS62141749A (en) Bonding wire for wiring

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees