JPH03135006A - Breaker for transformer excitation rush-current suppresion - Google Patents

Breaker for transformer excitation rush-current suppresion

Info

Publication number
JPH03135006A
JPH03135006A JP27320489A JP27320489A JPH03135006A JP H03135006 A JPH03135006 A JP H03135006A JP 27320489 A JP27320489 A JP 27320489A JP 27320489 A JP27320489 A JP 27320489A JP H03135006 A JPH03135006 A JP H03135006A
Authority
JP
Japan
Prior art keywords
switch
transformer
resistance
resistor
rush current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27320489A
Other languages
Japanese (ja)
Inventor
Miyuki Tsuchikawa
土川 幸
Yasuhiko Kanetaka
金高 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27320489A priority Critical patent/JPH03135006A/en
Publication of JPH03135006A publication Critical patent/JPH03135006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)

Abstract

PURPOSE:To control a rush current satisfactorily without making a constitution large by a method wherein a series circuit, of a series resistance and a switch, which is connected in series to a main switch of a breaker is installed inside a breaker container and an opening operation and a closing operation of the switch is controlled as required in synchronization with a closing operation of the main switch. CONSTITUTION:A series circuit, of a series resistance 5 and a resistance switch 3, which is connected in series to a main switch 4 of a breaker for a transformer is installed inside a container 20 together with the main switch 4. When the switch 4 is closed via a link mechanism 10, a driving arm 43 of a closing means is moved to the left in synchronization with the switch 4, and moves a switch 3 in conjunction with it via a hook 33 which can be moved downward freely; the switch 3 is closed before the switch 4 is closed; an excitation rush current is suppressed by means of the resistance 5. In addition, when the switch 4 is moved to the left, the hook is moved downward via the arm 43; the switch 3 is opened by means of a coil spring 34 at a point of time not less than one cycle before the switch 4 is closed; also an exciation rush current at a closing operation of the switch 4 is suppressed. Thereby, it is possible to suppress the rush current satisfactorily without making a constitution large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は変圧器を系統に投入する際に発生する励磁突
流を直列抵抗を用いて抑制するための変圧器励磁突流抑
制用遮断器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transformer excitation rush current suppression circuit breaker for suppressing an excitation rush current generated when a transformer is connected to a power system using a series resistor.

〔従来の技術〕[Conventional technology]

変圧器を直接電源に投入すると励磁突流と称される過渡
的な電流が一次側に流れることはよく知られている。そ
の最大値は変圧器の容量にもよるが定格電流の数倍ない
し士数倍にもなる。励磁突流の発生は変圧器内部の異常
を検出するための差電流継電器の誤動作の原因になるこ
と、系統に瞬間的な電圧降下が生ずるなどの問題が生ず
るが、差電流継電器の誤動作については投入後一定時間
差電流継電器を動作しないようにしておくなどの対策で
対処できるし、電圧降下についてはこれまで重要な問題
とはなっていなかった。
It is well known that when a transformer is directly connected to a power source, a transient current called an excitation rush current flows through the primary side. The maximum value depends on the capacity of the transformer, but it can be several times or even several times the rated current. The generation of excitation rush current causes problems such as the malfunction of the differential current relay used to detect abnormalities inside the transformer and the generation of instantaneous voltage drops in the grid. This can be dealt with by measures such as keeping constant time difference current relays from operating, and voltage drops have not been a major problem to date.

しかし、近年のOA機器の普及、とりわけコンピュータ
の普及はより高い品質の電力が要求されるようになった
0例えば系統の短絡事故によって一時的に停電になった
場合、コンピュータ内のメモリーに記憶されているデー
タが一瞬にして消滅するし、電圧変動に対しても誤動作
の原因になり得ることが考えられる。大きなコンピュー
タの場合専用の安定化電源を設けて上記のような支障が
生じないような処置が講じられているが、パーソナルコ
ンピュータのように小さなコンピュータの場合は充分な
対策が講じられる訳ではないので安定な電力の供給が特
に重要になる。この点でより品質の高い電力の供給を要
求される結果となり実質的に励磁突流が発生しなとみな
せる程度としてその変圧器の定格電流以下に励磁突流を
抑制することが必要になりその対策の一貫として励磁突
流抑制対策が重要になって来た。
However, with the spread of office automation equipment in recent years, and especially the spread of computers, higher quality power has come to be required. The stored data disappears in an instant, and voltage fluctuations can also cause malfunctions. In the case of large computers, measures are taken to prevent the above problems by installing a dedicated stabilized power supply, but in the case of small computers such as personal computers, sufficient measures cannot be taken. A stable supply of electricity will be particularly important. In this respect, as a result of the demand for the supply of higher quality power, it is necessary to suppress the excitation rush current to a level below the rated current of the transformer to the extent that it can be considered that the excitation rush current does not actually occur. Measures to suppress excitation rush current have become increasingly important.

励磁突流発生は変圧器鉄心の非線型飽和特性によって生
ずるもので更に残留磁束と言われているヒステリシス現
象によって電源遮断後に変圧器鉄心中に残る磁束によっ
て励磁突流の値がなおさら増大することがある。ただ、
励磁突流はその変圧器に電圧を印加する時の位相により
その値は変わりまた電圧遮断時の位相によって残留磁束
の値が変わるので励磁突流の大きさは不確定であるが、
励磁突流が最大となる条件とその値について検討された
り対策されたりする。この条件での励磁突流発生現象に
ついて第4図、第5図を基に説明す第4図は変圧器を含
む結線図、第5図はこの変圧器に電源投入時の電圧等の
時間的変化を示す波形図である。第4図において、単相
の電源65の電圧Vgが丁度零になる時点に開閉器62
が閉じて変圧器61の一次側に印加されたとする。この
電源65の電圧Vgに相当する逆起電圧が発生するため
には鉄心中の磁束密度Bは第5図のBo の波形となら
ねばならない。すなわち、この電圧に対する定常状態で
の鉄心中の定格磁密度最大値を81とすると第5図の磁
束密度の最大値BsはこのB1の2倍と残留磁束密度B
アとの和となり、次式で表される。
The generation of excitation rush current is caused by the nonlinear saturation characteristics of the transformer core, and due to a hysteresis phenomenon called residual magnetic flux, the value of the excitation rush current may further increase due to the magnetic flux remaining in the transformer core after the power is cut off. just,
The value of the excitation rush current changes depending on the phase when voltage is applied to the transformer, and the value of the residual magnetic flux changes depending on the phase when the voltage is cut off, so the magnitude of the excitation rush current is uncertain.
The conditions under which the excitation rush current is maximum and its value will be studied and countermeasures will be taken. The excitation rush current generation phenomenon under these conditions will be explained based on Figures 4 and 5. Figure 4 is a wiring diagram including the transformer, and Figure 5 is the temporal change in voltage etc. when power is turned on to this transformer. FIG. In FIG. 4, when the voltage Vg of the single-phase power supply 65 becomes exactly zero, the switch 62
Suppose that the voltage is closed and applied to the primary side of the transformer 61. In order to generate a back electromotive voltage corresponding to the voltage Vg of the power source 65, the magnetic flux density B in the iron core must have the waveform Bo shown in FIG. That is, if the maximum rated magnetic density in the iron core in a steady state for this voltage is 81, the maximum value Bs of magnetic flux density in Fig. 5 is twice this B1 and the residual magnetic flux density B.
It is the sum of A and A, and is expressed by the following formula.

Bs =2B、 +B。Bs = 2B, +B.

一方、変圧器鉄心に使用される珪素鋼板の飽和磁束密度
B1に対して定格磁束密度Bmは80%以上に設計され
るのが一般であり、また残留磁束密度B、、の最大値は
定格磁束密度B、Iの70%程度なので磁束密度の最大
値Bsの最大値は飽和磁束密度の約220%になる。
On the other hand, the rated magnetic flux density Bm is generally designed to be 80% or more of the saturation magnetic flux density B1 of the silicon steel plate used for the transformer core, and the maximum value of the residual magnetic flux density B, , is the rated magnetic flux Since the densities B and I are approximately 70%, the maximum value of the maximum magnetic flux density Bs is approximately 220% of the saturation magnetic flux density.

第5図で磁束密度Bが飽和磁束密度Bhより小さい時は
鉄心の比透磁率は非常に大きいことから一次巻線のイン
ダクタンスは非常に大きいので励磁電流1eは小さく第
5図では無視して零として表示して5いる。番荘束密度
Bが飽和69束密度B1より大きくなると鉄心中の磁束
密度は飽和してしまい一次巻線のインダクタンスは空心
のインダクタンスとなりこの値はおおむね定格電圧と定
格電流の比を定格インピーダンスとすると、この空心イ
ンダクタンスに相当するインピーダンスは定格インピー
ダンスの数分の1なのでこの時の電流は定格電流の数倍
となるが、これが励磁突流であり第5図の1pである。
In Fig. 5, when the magnetic flux density B is smaller than the saturation magnetic flux density Bh, the relative magnetic permeability of the iron core is very large, so the inductance of the primary winding is very large, so the exciting current 1e is small and is ignored in Fig. 5 and becomes zero. It is displayed as 5. When the magnetic flux density B becomes larger than the saturation flux density B1, the magnetic flux density in the iron core becomes saturated and the inductance of the primary winding becomes the inductance of the air core.This value is approximately the ratio of the rated voltage to the rated current as the rated impedance. Since the impedance corresponding to this air-core inductance is a fraction of the rated impedance, the current at this time is several times the rated current, and this is an excitation rush current, which is 1p in FIG. 5.

数10MVA程度の変圧器の励m電流の大きさは定格電
流の1%以下故この励磁電流+eは励磁突1JtIρの
大きさに比べて略3桁小さい。
Since the magnitude of the excitation current m of a transformer of approximately several tens of MVA is less than 1% of the rated current, this excitation current +e is approximately three orders of magnitude smaller than the magnitude of the excitation peak 1JtIρ.

第5図での点、線で示した磁束密度B°、励磁突流1,
1は巻線などの抵抗を無視した時の波形であるが、実際
にはこの抵抗があるために励磁突流rρは抵抗分だけ小
さくなりこれに伴って磁束密度Bの波形も下に下がり直
流成分が減衰し次のサイクルでは飽和磁束密度B1を越
える部分が小さくなり従ってこのサイクルでの励磁突流
1pも小さくなる。このように励磁突流は回路の抵抗成
分によって時間と共に減衰し、いずれ定常状態に達する
Magnetic flux density B° indicated by points and lines in Figure 5, excitation rush 1,
1 is a waveform when the resistance of the winding etc. is ignored, but in reality, due to this resistance, the excitation rush current rρ becomes smaller by the resistance, and the waveform of the magnetic flux density B also decreases accordingly, resulting in a direct current component. is attenuated, and in the next cycle, the portion exceeding the saturation magnetic flux density B1 becomes smaller, and therefore the exciting rush current 1p in this cycle also becomes smaller. In this way, the excitation rush attenuates over time due to the resistance component of the circuit, and eventually reaches a steady state.

電力系統は一般に平衡三相交流であるので、3相のうち
少なくとも1相が励磁突流を発生する条件となる確率が
高いことから、前述のような単相の場合に比べてより高
い頻度で励磁突流が発生することが知られている。また
、励磁突流が問題になるのは前述のように電力系統にお
いてであるから、励磁突流抑制対策も平衡3相交流系統
を対象とするのが普通である。
Since power systems are generally balanced three-phase AC systems, there is a high probability that at least one of the three phases will generate an excitation rush current, so excitation is performed more frequently than in the case of a single phase as described above. It is known that rush currents occur. Furthermore, as mentioned above, excitation rush currents are a problem in electric power systems, so measures to suppress excitation rush currents are usually aimed at balanced three-phase AC systems.

励磁突流の値は前述のように遮断時の変圧器鉄心内の残
留磁束量と投入時の投入位相との関係により決ぼるので
、投入の度ごとに異なる値の励磁突流が発生するのであ
るが、励磁突流に対する何らかの検討や対策を行う際に
は理論的に得られる励磁突流の最大値でもって励磁突流
の値とするのが一般である。実際に発生する励磁突流か
らこの励磁突流量大値を得るためには、何度も変圧器電
源を遮断、投入を繰り返すことにより得られるが試験的
にこのような測定が行われることがあるにしても一般的
ではない。
As mentioned above, the value of the exciting rush current is determined by the relationship between the amount of residual magnetic flux in the transformer core at the time of shutoff and the closing phase at the time of turning on, so a different value of the exciting rush current is generated each time the transformer is turned on. When conducting some kind of study or countermeasure against the excitation rush, it is common to use the maximum value of the excitation rush that can be theoretically obtained as the value of the excitation rush. In order to obtain a large value of the excitation rush amount from the excitation rush current that actually occurs, it can be obtained by repeatedly turning off and turning on the power to the transformer, but such measurements may be carried out on a trial basis. However, it is not common.

励磁突流量大値としての励磁突流の値は変圧器の容量に
よって変わり、一般に変圧器容量の大きい程励磁突流の
定格電流に対する比率は低下する。
The value of the exciting rush current as a large value of the exciting rush amount changes depending on the capacity of the transformer, and generally, the larger the transformer capacity, the lower the ratio of the exciting rush current to the rated current.

lO万KVA前後の大容量器が5ないし6倍、千KVA
前後の小容量の変圧器では10倍前後である。
A large capacity vessel of around 10,000 KVA is 5 or 6 times larger, 1,000 KVA.
For small capacity transformers before and after, it is about 10 times as much.

励磁突流の抑制方法として具体的に実用されている方法
としては、変圧器−次側に負荷時タップ切換器が有る時
に一次側の巻線の巻数が最も大きいタップを選んだ状態
で系統に投入し前記の磁束密度B、をなるべく小さい値
にするという方法がとられている。この方法は前記の系
統の電圧に対する磁束密度B、を小さくすると言う方法
であり、巻数最大時の磁束密度B、の値にもよるが大幅
な励磁突流の抑制を期待することはできない。
A practical method for suppressing excitation rush current is to select the tap with the largest number of turns on the primary side when the transformer has an on-load tap changer on the downstream side and then connect it to the system. However, a method is adopted in which the above-mentioned magnetic flux density B is made as small as possible. This method is a method of reducing the magnetic flux density B with respect to the voltage of the system, and although it depends on the value of the magnetic flux density B at the maximum number of turns, it cannot be expected to significantly suppress the excitation rush current.

また、実用されているものではないが、励磁突流抑制の
方法として提案されている方法には次のようなものがあ
る。
Although not in practical use, the following methods have been proposed as methods for suppressing excitation rush currents.

イ)抵抗2段投入 開閉器と変圧器との間に直列抵抗を接続して投入し、一
定の時間経過後直列抵抗を除去するというように、変圧
器を電力系統に投入するのに2段階に分けて投入するこ
とにより、励磁突流を低減する。この方式は古くから考
えられている方法であるが、この方法の欠点は次のよう
に言われている。
B) Two-step resistor connection There are two steps to connect a transformer to the power system, such as connecting a series resistor between the switch and the transformer, and then removing the series resistance after a certain period of time. The excitation rush current is reduced by dividing the charge into two parts. This method has been considered for a long time, but the drawbacks of this method are as follows.

この方法についての従来の考え方は、第1段階で直列抵
抗により変圧器負担電圧を半分近くに落として投入する
ため、励磁電流による電圧降下が75〜80%になるよ
うな抵抗値を持ち、しかも短絡電流を投入しても損傷し
ないだけの容量の抵抗器が必要なことである。もう一つ
の欠点としては、抵抗の電圧降下と変圧器のそれとは位
相が異なるため、抵抗の定格電圧は第1段階で変圧器に
負担させる電圧の約2倍も必要なことがあげられる。
The conventional way of thinking about this method is that in the first stage, the voltage borne by the transformer is reduced by nearly half using a series resistor. It is necessary to have a resistor with a capacity that is large enough not to be damaged even when short-circuit current is applied. Another drawback is that the rated voltage of the resistor must be approximately twice the voltage applied to the transformer in the first stage, since the voltage drop across the resistor and the transformer are in different phases.

更に、第1段階と第2段階とでは変圧器に加わる電圧位
相が同相にならず、そのため第2段階で抵抗を除去した
後再び大きな励磁突流が発生する。
Furthermore, the phases of the voltages applied to the transformer are not in phase in the first stage and the second stage, and therefore a large excitation rush current is generated again after the resistance is removed in the second stage.

このような欠点があるとされてきたためこの方法は実用
されていない。
This method has not been put into practical use because it has been considered to have such drawbacks.

口)負荷時タップ切り換え変圧器を一次側に設けて投入
する変圧器の一次側電圧を順次上昇させることにより励
磁突流が発生しない投入を行う、この方式はこの発明の
出願人により提案され、特開昭62−255980号公
報に示されているものであるが、投入に時間がかかるの
で系統の運用上に支障が生ずるという問題がある。
(1) A tap changeover transformer is installed on the primary side of the transformer to be turned on, and the primary side voltage of the transformer to be turned on is sequentially increased to make the turning on without causing an excitation rush.This system was proposed by the applicant of the present invention, and has This method is disclosed in Japanese Patent Application No. 62-255980, but there is a problem in that it takes a long time to turn on the system, which poses a problem in the operation of the system.

ハ)遮断時の位相を記憶しておき投入位相をこの位相に
合わせる。この方式は特開昭55−100034号公報
に示されているものであるが、3相の残留磁束は遮断時
の電圧位相で一義的に決まるものではなく、遮断後の過
渡的な電圧や、またl相が遮断されても他相がまた遮断
されていない場合は、3相の電気的・磁気的な結合によ
り遮断相の磁束もまだ変化するため、必ずしも3相の各
残留磁束に合致した位相で3相投入できるとは限らない
ので、期待する励磁突流抑制効果が得られないという問
題がある。
c) Memorize the phase when shutting off and match the closing phase to this phase. This method is shown in Japanese Patent Application Laid-Open No. 55-100034, but the residual magnetic flux of the three phases is not uniquely determined by the voltage phase at the time of interruption, but is determined by the transient voltage after interruption, Furthermore, even if the l phase is blocked, if the other phases are not blocked again, the magnetic flux of the blocked phase will still change due to the electrical and magnetic coupling of the three phases, so it will not necessarily match the residual magnetic flux of each of the three phases. Since it is not always possible to input three phases at the same time, there is a problem that the expected effect of suppressing the excitation rush current cannot be obtained.

二)3相のうちの1相を電圧波形の最大値となる位相で
投入し他の2相を遅れて投入する。この方式は特開昭5
5−93619号公報と特開昭55−94540号公報
に示されており、励磁突流低減効果として無対策の場合
に比べて約3分の1の低減効果が期待できるが、励磁突
流を実質的に無(することは出来ないという問題がある
2) One of the three phases is turned on at the phase where the voltage waveform has the maximum value, and the other two phases are turned on with a delay. This method was developed in the Japanese Unexamined Patent Application Publication No. 5
5-93619 and JP-A-55-94540, it is expected that the effect of reducing the excitation rush current will be about one third compared to the case without countermeasures, but the excitation rush current can be reduced substantially. There is a problem that it is impossible to do something.

この外にも残留磁束をL−C回路の減衰振動で消磁する
方法なども考えられているがその効果は期待程ではない
ことが分かっている。
In addition to this, a method of demagnetizing the residual magnetic flux by damping vibration of an LC circuit has been considered, but it has been found that the effect is not as good as expected.

ところで、前述の抵抗2段投入の方式では、変圧器と適
当な電圧分担をするために、変圧器の励磁インピーダン
スと同程度の抵抗値の直列抵抗が使用されるが、この場
合の1段目での直列抵抗が接続されているときの電流値
は変圧器の励磁電流程度である。一般に励磁電流は定格
電流の1%以下と小さい値である。このように励磁突流
を励磁電流レベルに抑制するのではなく、定格電流レベ
ルに抑制することで励磁突流による種々の問題を解決す
ることができるという点に着目した実用的な励磁突流抑
制方式があり、この方式の概要は次のとおりである。
By the way, in the above-mentioned two-stage resistance method, a series resistor with a resistance value similar to the excitation impedance of the transformer is used in order to share the voltage appropriately with the transformer. When a series resistor is connected, the current value is approximately the same as the excitation current of the transformer. Generally, the excitation current has a small value of 1% or less of the rated current. There is a practical excitation rush current suppression method that focuses on the fact that various problems caused by excitation rush current can be solved by suppressing the excitation rush current to the rated current level rather than to the excitation current level. , The outline of this method is as follows.

直列抵抗の値を励磁インピーダンスよりも1桁上度小さ
く、変圧器の定格電圧を定格電流で除した値で定義され
る定格インピーダンスよりも桁違いに大きな適当な値に
設定する。励磁インピーダンスは定格インピーダンスに
比べて3桁上度大きいので、このような直列抵抗の適当
な値は存在するのである。
The value of the series resistance is set to an appropriate value that is one order of magnitude smaller than the excitation impedance and one order of magnitude larger than the rated impedance defined by the rated voltage divided by the rated current of the transformer. Since the excitation impedance is more than three orders of magnitude larger than the rated impedance, a suitable value for such a series resistance exists.

変圧器を電力系統に投入するときに、まず第1段投入と
して、直列抵抗を変圧器と直列に挿入した状態で投入し
、■サイクル以上時間が経過したところで第2段投入と
して直接変圧器を電力系統に投入するが、実際には直列
抵抗を短絡することになる。
When a transformer is connected to the power system, it is first connected as a first step, with a series resistor inserted in series with the transformer, and after more than one cycle has passed, the transformer is directly connected as a second step. into the power grid, but it actually shorts out the series resistor.

第6図は前述の方式による変圧器励磁突流抑制装置の回
路図である。この図において、三相変圧器1は三相電源
100に投入されるのであるが、それぞれの相U、V、
Wごとに主開閉器4とこの主開閉器4に並列に直列抵抗
5と抵抗用開閉器3との直列回路が接続されて変圧器励
磁突流抑制装置を形成している。
FIG. 6 is a circuit diagram of a transformer excitation rush current suppressing device according to the above-described method. In this figure, a three-phase transformer 1 is connected to a three-phase power supply 100, and each phase U, V,
For each W, a main switch 4 and a series circuit of a series resistor 5 and a resistor switch 3 are connected in parallel to the main switch 4 to form a transformer excitation rush current suppression device.

三相変圧器1を電源100に投入する際には次の順序で
行う。
When turning on the three-phase transformer 1 to the power supply 100, the following sequence is performed.

■初期状態は、主開閉器4、抵抗用開閉器3とも「開」
の状態にあり、三相変圧器1は電源100から切り離さ
れた状態にある。
■The initial state is that both main switch 4 and resistance switch 3 are open.
, and the three-phase transformer 1 is disconnected from the power supply 100.

■第1段投入として、抵抗用開閉器3を投入する。■As the first step, the resistor switch 3 is turned on.

直列抵抗5の抵抗値は三相変圧器1の励磁インピーダン
スよりも桁違いに小さいので、電源100の電圧の殆ど
が三相変圧器1に印加されることになり、前述のように
鉄心が飽和して励磁突流が流れる。しかし、この励磁突
流の値は直列抵抗5に抑制されて定格電流以上には流れ
ない。直列抵抗の抵抗値をR8、定格インピーダンスの
値をZllとすると、励磁突流I7は定格電流のz +
+ / Rs倍となる。前述のようにR8はZllに比
べはるかに大きい値に設定するので、励磁突流Itは定
格電流よりはるかに小さな値になる。しかし、定格電圧
の定常状態における励磁電流よりははるかに大きい値で
ある。
Since the resistance value of the series resistor 5 is an order of magnitude smaller than the excitation impedance of the three-phase transformer 1, most of the voltage of the power supply 100 is applied to the three-phase transformer 1, and as mentioned above, the iron core becomes saturated. An excitation rush current flows. However, the value of this excitation rush current is suppressed by the series resistor 5, and the current does not exceed the rated current. If the resistance value of the series resistor is R8 and the value of the rated impedance is Zll, the excitation rush current I7 is the rated current z +
+/Rs times. As mentioned above, R8 is set to a value much larger than Zll, so the excitation rush current It becomes a value much smaller than the rated current. However, the value is much larger than the excitation current in a steady state at the rated voltage.

■第2段投入として、第1段投入から1サイクル以上時
間経過の後に主開閉器4を投入する。この結果、直列抵
抗は短絡されて三相変圧器1は直接型1iooに接続さ
れたことになる。ただし、このとき三相変圧器1に印加
される電圧が変化することからここでも励磁突流が発生
する。直列抵抗の値を最適に設定すれば、第1段投入時
の励磁突流と第2段投入時の励磁突流とを略同じ値にす
ることができ、この条件が励磁突流抑制効果の最も大き
い最適の条件でもある。
(2) As the second stage closing, the main switch 4 is closed after one or more cycles have elapsed since the first stage closing. As a result, the series resistor is short-circuited and the three-phase transformer 1 is directly connected to the type 1ioo. However, since the voltage applied to the three-phase transformer 1 changes at this time, an exciting rush current also occurs here. By setting the value of the series resistor optimally, the excitation rush current when the first stage is turned on and the excitation rush current when the second stage is turned on can be made to approximately the same value, and this condition is the optimum condition that has the greatest excitation rush current suppression effect. It is also a condition.

■第2段投入後適当な時に抵抗用開閉器3を開く。■Open the resistor switch 3 at an appropriate time after the second stage is turned on.

短絡電流などの遮断は主開閉器4で行い、このとき抵抗
用開閉器3が電流を遮断することのないようにするため
である。
This is to prevent short-circuit current and the like from being interrupted by the main switch 4, and at this time, the resistance switch 3 does not interrupt the current.

〔発明が解決しようとする課題] このような三相変圧器1の電源100への投入と遮断を
実際に行うだめの変圧器励磁突流抑制装置の構成は、ま
ず主開閉器4は元々励磁突流抑制装置とは関係なく必ず
設けられる遮断器を流用する。
[Problems to be Solved by the Invention] The structure of the transformer excitation rush current suppressing device that actually turns on and off the power supply 100 of the three-phase transformer 1 is as follows. Reuse the circuit breaker that is always provided regardless of the suppression device.

この主開閉器4としての遮断器に並列に、直列抵抗5と
抵抗用開閉器3を直列に接続することになるが、直列抵
抗5は対地電圧が電源100と同じ高電圧なので、この
高電圧に耐えるだけの絶縁耐力を持たせる必要があり、
抵抗用開閉器3は電源投入しか行わず、また、短時間し
か電流が流れないので、定格電流は小さくてよいが、絶
縁的には主開閉器4と同じ絶縁耐力を必要とすることか
らいずれも高価になり、また、 それぞれ独立して設置
することから広い設置面積を必要とするという問題があ
る。また、抵抗用開閉器3の投入時点を主開閉器4のそ
れの1サイクル以上前に設定するためには、それぞれの
開閉器3,4の投入時点のばらつきの小さな高性能の開
閉器でなければならないとともに、投入時点を正確に制
御し、主開閉器4の投入後抵抗用開閉器3が開状態に復
帰する制御を行うための制御装置が必要になり、いずれ
もが変圧器励磁突流抑制装置を高価格にするものである
A series resistor 5 and a resistor switch 3 are connected in series in parallel to this circuit breaker as the main switch 4, but since the series resistor 5 has the same high voltage to ground as the power supply 100, this high voltage It is necessary to have dielectric strength sufficient to withstand
Since the resistance switch 3 only turns on the power and the current flows only for a short time, the rated current may be small, but in terms of insulation, it requires the same dielectric strength as the main switch 4. There is also the problem that they are expensive and require a large installation area because they are each installed independently. In addition, in order to set the closing time of the resistance switch 3 at least one cycle before that of the main switch 4, the switches 3 and 4 must be high-performance switches with small variations in the closing time. In addition, a control device is required to accurately control the closing point and to control the resistor switch 3 to return to the open state after the main switch 4 is closed. This makes the device expensive.

この発明はこのような問題を解決し、安価でしかも設置
面積が殆ど増加しない変圧器励磁突流抑制装置を提供す
ることを目的とする。
It is an object of the present invention to solve such problems and provide a transformer excitation rush current suppressing device that is inexpensive and hardly increases the installation area.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するためにこの発明によれば、変圧器を
電力系統に投入又は電力系統から遮断するための遮断器
において、この遮断器に並列に接続した直列抵抗と抵抗
用開閉器との直列回路を前記遮断器の容器内に設け、主
可動接点としての前記遮断器の可動接点の移動に同期し
て抵抗用可動接点としての前記抵抗用開閉器の可動接点
を駆動し前記主開閉器が閉状態になる時点より所定の時
間前に前記抵抗用開閉器が閉状態にする投入駆動手段と
、前記主開閉器が閉状態になった後所定の時間を経て前
記抵抗用開閉器を開状態に復帰させる復帰手段とを備え
るものとする。
In order to solve the above problems, according to the present invention, in a circuit breaker for connecting or disconnecting a transformer from the power system, a series resistor connected in parallel to the circuit breaker and a resistor switch are connected in series. A circuit is provided in the case of the circuit breaker, and in synchronization with the movement of the movable contact of the circuit breaker as a main movable contact, a movable contact of the resistor switch as a movable contact for resistance is driven so that the main switch closing driving means for causing the resistor switch to close a predetermined time before the resistor switch becomes closed; and opening the resistor switch after a predetermined time elapses after the main switch becomes closed. It shall be provided with a return means for returning to the state.

〔作用〕[Effect]

この発明の構成において、直列抵抗と抵抗用開閉器との
直列回路を主開閉器と同じ容器内に設けて主開閉器に並
列に接続したことにより、主開閉器である遮断器だけを
設置した場合と殆ど変わらない設置面積の変圧器励磁突
流抑制装置とすることができる。
In the configuration of this invention, a series circuit of a series resistor and a resistor switch is provided in the same container as the main switch and connected in parallel to the main switch, thereby making it possible to install only the circuit breaker which is the main switch. It is possible to create a transformer excitation rush current suppressing device with almost the same installation area as in the case of the present invention.

投入駆動手段により主可動接点の移動に同期して抵抗用
可動接点を駆動し、主開閉器が閉状態になる前に抵抗用
開閉器を閉状態にすることにより、最初に直列抵抗が変
圧器に直列接続された状態で電源に投入されるので、直
列抵抗による励磁突流の抑制作用が生ずる。
By driving the resistor movable contact in synchronization with the movement of the main movable contact by the closing drive means and closing the resistor switch before the main switch is closed, the series resistor is first connected to the transformer. Since the power is turned on while connected in series with the resistor, the series resistor suppresses the excitation rush current.

抵抗用開閉器が閉状態になった後、主開閉器が閉状態に
なる時間を1サイクルを下回らない値にすることによっ
て主開閉器が閉状態になった時点で発生する励磁突流を
最初の励磁突流と同等程度の値に抑制することができる
By setting the time for the main switch to close after the resistance switch is closed to a value not less than one cycle, the excitation rush generated when the main switch becomes closed can be reduced from the initial It can be suppressed to a value comparable to the excitation rush current.

引き続いて復帰手段により抵抗可動接点を元の位置に復
帰させることにより、抵抗用開閉器を開状態にして以後
の運転中に変圧器を電力系統から遮断する際に支障が生
ずるのを回避することできる。
By subsequently returning the movable resistance contact to its original position by means of a return means, it is possible to avoid trouble occurring when the resistance switch is opened and the transformer is cut off from the power system during subsequent operation. can.

(実施例〕 第1図はこの発明の実施例を示す変圧器励磁突流抑制用
遮断器の断面図である。この図において、主開閉器4と
直列抵抗5用の抵抗用開閉器3とが1つの容器20に収
納した構成であり、主開閉器4は主固定接点41と主可
動接点42とからなり、主可動接点42は、図示しない
油圧ジヤツキによって駆動されるリンク機構によって図
の左右方向に駆動される。主固定接点41は引出リード
61に、主可動接点42は引出リード62にそれぞれ接
続されていて、これら引出リード61.62はブッシン
グ63.64の中を通って外部に引き出されている。主
開閉器4、引出リード61,62、ブッシング63.6
4及び容器20は基本的には励磁突流抑制とは関係なし
に変圧器の投入、遮断のために設けられる遮断器と基本
的に同一の構成である。
(Embodiment) Fig. 1 is a sectional view of a transformer excitation rush current suppression circuit breaker showing an embodiment of the present invention.In this figure, a main switch 4 and a resistor switch 3 for a series resistor 5 are shown. The main switch 4 consists of a main fixed contact 41 and a main movable contact 42, and the main movable contact 42 is moved in the left-right direction in the figure by a link mechanism driven by a hydraulic jack (not shown). The main fixed contact 41 is connected to a pull-out lead 61, and the main movable contact 42 is connected to a pull-out lead 62, and these pull-out leads 61 and 62 are pulled out through the bushing 63 and 64. Main switch 4, drawer leads 61, 62, bushings 63.6
4 and the container 20 basically have the same configuration as a circuit breaker provided for turning on and cutting off a transformer, regardless of excitation rush current suppression.

抵抗用開閉器5は抵抗用固定接点31と抵抗用可動接点
32とからなり、固定接点31と主固定接点41との間
に直列抵抗5が接続されており、抵抗用可動接点32は
主可動接点42に電気的に接続されているとともに、投
入の際に駆動腕43によって主可動接点42に同期して
図の左側に移動する。駆動腕43は主可動接点に固着さ
れていて、リンク機構10によって駆動されて移動する
主可動接点42と一緒に移動するものである。
The resistor switch 5 consists of a fixed resistor contact 31 and a movable resistor contact 32. A series resistor 5 is connected between the fixed contact 31 and the main fixed contact 41, and the movable resistor contact 32 is connected to the main movable contact. It is electrically connected to the contact 42, and is moved to the left side in the drawing in synchronization with the main movable contact 42 by a drive arm 43 when the main movable contact 42 is turned on. The drive arm 43 is fixed to the main movable contact and moves together with the main movable contact 42 which is driven by the link mechanism 10 and moves.

主固定接点41と主可動接点42との接触位置からの離
隔距離は、抵抗用固定接点31と抵抗用可動接点32と
の離隔距離よりも太き(設定しである。したがって、主
可動接点32と抵抗用可動接点42とが一緒に図の左側
に向かって移動すると抵抗用可動接点42の方が先に抵
抗用固定接点41に接触するように構成されている。
The separation distance between the main fixed contact 41 and the main movable contact 42 from the contact position is larger than the separation distance between the resistance fixed contact 31 and the resistance movable contact 32. Therefore, the main movable contact 32 When the movable resistor contact 42 moves together toward the left side of the figure, the movable resistor contact 42 contacts the fixed resistor contact 41 first.

第2図は第1図の要部拡大断面図であり、抵抗用開閉器
3を含む部分を拡大したものである。この図において、
駆動腕43が第1図の主可動接点42と一緒に動(こと
によって抵抗用可動接点32に設けられている掛金33
を押しこの力で抵抗用可動接点32も移動することにな
る。掛金33は抵抗用可動接点32に対して図の左右方
向にはその位置が固定され、図の下方間には可動になる
ように設けられていて、左の方に移動して当金37に上
部の傾斜面が当たると下方へ押しやられ、その結果、駆
動腕43から外れるようになっている。掛金33が駆動
腕43から外れると、コイルばね34の復元力によって
抵抗用可動接点32は元の位置に戻る。駆動腕43が図
示の位置に戻るのは主開閉器4が開状態になったときで
ある。
FIG. 2 is an enlarged cross-sectional view of the main part of FIG. 1, and shows a portion including the resistor switch 3 on an enlarged scale. In this diagram,
The drive arm 43 moves together with the main movable contact 42 of FIG.
When pressed, the movable resistance contact 32 will also move with this force. The latch 33 is fixed in position in the horizontal direction in the figure with respect to the movable resistance contact 32, and is movable between the lower parts of the figure, and moves to the left to connect to the stopper 37. When it hits the upper slope, it is pushed downward, and as a result, it comes off the drive arm 43. When the latch 33 is removed from the drive arm 43, the restoring force of the coil spring 34 causes the movable resistance contact 32 to return to its original position. The drive arm 43 returns to the illustrated position when the main switch 4 is in the open state.

第3図は第1図、第2図における主可動接点42の移動
距離であるストロークと主開閉器4、抵抗用開閉器3の
開閉の状態との時間的変化を示す線図である。この図に
おいて、横軸は時間であり、縦軸はストロークの距離を
表すとともに、主開閉器4と抵抗用開閉器3との開状態
、閉状態の区別を示している。
FIG. 3 is a diagram showing temporal changes in the stroke, which is the moving distance of the main movable contact 42, and the open/close states of the main switch 4 and the resistance switch 3 in FIGS. 1 and 2. FIG. In this figure, the horizontal axis represents time, and the vertical axis represents stroke distance, and also shows the distinction between the open state and closed state of the main switch 4 and the resistance switch 3.

主可動接点42の図の左方向の移動距離であるストロー
クは、最初は最低の位置にあり、このときの主開閉器4
と抵抗用開閉器3とは双方とも開状態にある。リンク機
構10によって駆動されて短い時間の加速の後略一定速
度で大きくなり、最後に最も右に移動後停止する。この
ストロークの増大に伴って、前述のように抵抗用開閉器
3の方が早く接点同士が接触するように構成しであるの
で、まず抵抗用可動接点32が時点T、に抵抗用固定接
点31と接触して抵抗用開閉器3が閉状態となり、この
時点T1から時間ΔTだけ経った時点Ttで主開閉器4
が閉状態になる。更に、第2図の掛金33が当金37に
当たることによって抵抗用可動接点32が元の位置に復
帰するので、抵抗用開閉器3は時点T、に開状態に復帰
する。
The stroke, which is the moving distance of the main movable contact 42 in the left direction in the diagram, is initially at the lowest position, and the main switch 4 at this time is at the lowest position.
and resistance switch 3 are both in an open state. Driven by the link mechanism 10, it accelerates for a short period of time, increases at a substantially constant speed, and finally moves to the rightmost position and then stops. As the stroke increases, as mentioned above, the resistor switch 3 is configured so that the contacts come into contact with each other sooner, so the movable resistor contact 32 first changes to the fixed resistor contact 31 at time T. The resistance switch 3 is brought into a closed state by contact with
becomes closed. Further, as the latch 33 in FIG. 2 hits the stopper 37, the movable resistance contact 32 returns to its original position, so the resistance switch 3 returns to the open state at time T.

抵抗用開閉器3と主開閉器4との閉状態になる時点の差
である時間ΔTの値は1サイクル以上に設定することに
よって、主開閉器4が閉状態になったときに発生する励
磁突流を抑制することができる。1サイクルは周波数が
50七の場合20m5ec、6〇七の場合18.3m5
ecなので、機械工作の誤差やリンク機構の動作速度の
ばらつきなどを考慮して例えば、22m5ecになるよ
うにするというように、5〇七、60)IZ共通にして
しかも余裕を持った値に設定する。
By setting the value of time ΔT, which is the difference between the times when the resistance switch 3 and the main switch 4 reach the closed state, to one cycle or more, the excitation that occurs when the main switch 4 becomes the closed state can be reduced. Rush current can be suppressed. One cycle is 20m5ec when the frequency is 507, and 18.3m5 when the frequency is 607.
ec, so it is set to a value that is common to 507, 60) IZ and has a margin, such as 22m5ec, taking into account machining errors and variations in the operating speed of the link mechanism. do.

第1図、第2図では、時間ΔTを確保するために主開閉
器4、抵抗用開閉器3のそれぞれの固定接点と可動接点
との離隔距離に差を付ける方法を示したが、これの代わ
りに、りん機構を利用して抵抗用可動接点32を主可動
接点42よりも早く移動させることによって閉状態にな
る時点に差をつけることもできる。また、第1図や第2
図とは逆に駆動腕を抵抗用可動接点32に取付け、掛金
を主可動接点42に設けてリンク機構10で抵抗用可動
接点を直接駆動する方式とし、かつ、抵抗用可動接点が
ある程度の距離移動したところで駆動腕が掛金に当たっ
て主可動接点を駆動する構成を採用することもできる。
In Figs. 1 and 2, a method is shown in which the separation distances between the fixed contacts and movable contacts of the main switch 4 and the resistance switch 3 are made different in order to secure the time ΔT. Alternatively, the resistance movable contact 32 may be moved earlier than the main movable contact 42 using the phosphor mechanism, thereby making a difference in the point at which the closed state is reached. Also, Figure 1 and 2
Contrary to the diagram, the drive arm is attached to the movable resistance contact 32, a latch is provided to the main movable contact 42, and the link mechanism 10 directly drives the movable resistance contact, and the movable resistance contact is placed at a certain distance. It is also possible to adopt a configuration in which the drive arm hits the latch when the main movable contact is moved and drives the main movable contact.

このとき、抵抗用可動接点を開状態の元の位置に戻す復
帰手段は駆動手段に応じた適切な構成を西洋することに
なる。いずれにしても、機械的構成によって時間差を生
じるようにして2つの可動接点の閉状態になる時点を確
実にずらすことができる。
At this time, the return means for returning the movable resistance contact to its original open position will have an appropriate configuration depending on the drive means. In any case, the time points at which the two movable contacts reach the closed state can be reliably shifted by creating a time difference depending on the mechanical configuration.

抵抗用開閉器3と直列抵抗5とは主開閉器4と同じ容器
20内に収納しであるので、主開閉器4と同じ絶縁媒体
、例えば一般にSF6と略称されている六ふっ化硫黄か
らなる絶縁ガスで絶縁されるので、主開閉器3と同程度
の絶縁耐力を容易にかつコンパクトに実現することがで
きる。直列抵抗5の値は、最初の励磁突流が定格電流の
数分の1になる程度の抵抗値に設定されしかも通電時間
は前述の時間ΔTだけなので、直列抵抗5と抵抗用開閉
器3との電流容量は主開閉器4に比べてはるかに小さな
ものでよく、同じ容器20に収納することによる容器2
0の寸法の増大はそれほど大きいものとはならない。
Since the resistor switch 3 and the series resistor 5 are housed in the same container 20 as the main switch 4, they are made of the same insulating medium as the main switch 4, for example, sulfur hexafluoride, which is generally abbreviated as SF6. Since it is insulated with an insulating gas, a dielectric strength comparable to that of the main switch 3 can be easily and compactly achieved. The value of the series resistor 5 is set to such a value that the initial excitation rush current becomes a fraction of the rated current, and the energization time is only the aforementioned time ΔT, so the resistance between the series resistor 5 and the resistor switch 3 is The current capacity may be much smaller than that of the main switch 4, and by storing it in the same container 20, the container 2
The increase in the size of 0 will not be very large.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、直列抵抗とその開閉器とを主
開閉器と同じ容器内に設けたことにより、変圧器励磁突
流抑制遮断器を従来の単なる遮断器だけを設置した場合
と殆ど変わらない設置面積で設置することが可能になる
。投入駆動手段により主可動接点と抵抗用可動接点を同
期して駆動し、抵抗用開閉器が閉状態になる時点を主開
閉器が閉状態になる時点より所定の時間だけ早くなるよ
うにすることにより、最初に直列抵抗が変圧器に直列接
続された状態で電源に投入されるので、直列抵抗によっ
て励磁突流が抑制作用される。閉状態になる時間の差を
1サイクルを下回らない値にすることによって主開閉器
が閉状態になった時点で発生する励磁突流を最初の励磁
突流と同等程度の値に抑制することができる。引き続い
て復帰手段で抵抗可動接点を元の位置に復帰させて抵抗
用開閉器を開状態にして以後の運転中に変圧器を電力系
統から遮断する際に支障が生ずるのを回避することでき
る。
As mentioned above, in this invention, by installing the series resistor and its switch in the same container as the main switch, the transformer excitation rush current suppression circuit breaker is almost different from the case where only a conventional circuit breaker is installed. This makes it possible to install it in a small footprint. The main movable contact and the movable resistor contact are driven synchronously by a closing drive means so that the point in time when the resistor switch becomes closed is earlier than the time when the main switch becomes closed by a predetermined time. As a result, the series resistor is first connected to the transformer in series before the power is turned on, so that the series resistor suppresses the excitation rush current. By setting the difference in time to the closed state to a value not less than one cycle, the excitation rush that occurs when the main switch becomes the closed state can be suppressed to a value comparable to the initial excitation rush. Subsequently, the resistor movable contact is returned to its original position by the return means, and the resistor switch is opened, thereby avoiding trouble when the transformer is cut off from the power system during subsequent operation.

このように、従来の遮断器と設置面積が余り増大しない
という効果が得られまた、直列抵抗とその開閉器をそれ
ぞれ単体として別に設ける場合に比べまとめて1つの容
器に収納することによって低価格になるという効果も得
られる。設置面積が従来と余り変わらずしかも低価格と
なることから、既設の変圧器に対してもこの変圧器励磁
突流抑制遮断器の設置が容易になることから、より広い
範囲の電力系統での電力品質の向上に貢献することがで
きるという効果も得られる。
In this way, the installation area does not increase much compared to conventional circuit breakers, and the cost is reduced by storing the series resistor and its switch in one container compared to when each is provided separately. You can also get the effect of Since the installation area is not much different from conventional ones and the price is low, this transformer-excited rush current suppression circuit breaker can be easily installed on existing transformers, so it can be used in a wider range of power systems. This also has the effect of contributing to quality improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す変圧器励磁突流抑制用
遮断器の断面図、第2図は第1図の要部拡大断面図、第
3図は可動接点のストロークと開閉器の開閉の状態との
時間的変化を示す線図、第4図は変圧器を含む結線図、
第5図は電源投入時の電圧等の時間的変化を示す波形図
、第6図は変圧器励磁突流抑制装置の回路図である。 2・・・変圧器励磁突流抑制遮断器、2o・・・容器、
3・・・抵抗用開閉器、31・・・抵抗用固定接点、3
2・・・抵抗用可動接点、33・・・掛金33.34・
・・固定接点ばね(復帰手段)、37・・・当金、4・
・・主開閉器、41・・・主固定接点、42・・・主可
動接点、 43・・・駆動腕(投入駆動手段)、5・・・直列抵抗
、1・・・三相変圧器(変圧器) 、100・・・電源
。 躬3圓 第4図
Fig. 1 is a sectional view of a transformer exciting rush current suppression circuit breaker showing an embodiment of the present invention, Fig. 2 is an enlarged sectional view of the main part of Fig. 1, and Fig. 3 is a stroke of a movable contact and opening/closing of a switch. A line diagram showing changes over time with the state of , Figure 4 is a wiring diagram including a transformer,
FIG. 5 is a waveform diagram showing temporal changes in voltage, etc. when the power is turned on, and FIG. 6 is a circuit diagram of the transformer excitation rush current suppressing device. 2...Transformer excitation rush current suppression circuit breaker, 2o...Container,
3... Resistance switch, 31... Resistance fixed contact, 3
2... Movable contact for resistance, 33... Latch 33.34.
・・Fixed contact spring (returning means), 37 ・Weight, 4・
...Main switch, 41...Main fixed contact, 42...Main movable contact, 43...Drive arm (closing drive means), 5...Series resistance, 1...Three-phase transformer ( transformer), 100...power supply. 3 circles diagram 4

Claims (1)

【特許請求の範囲】 1)変圧器を電力系統に投入又は電力系統から遮断する
ための遮断器において、 この遮断器に並列に接続した直列抵抗と抵抗用開閉器と
の直列回路を前記遮断器の容器内に設け、主可動接点と
しての前記遮断器の可動接点の移動に同期して抵抗用可
動接点としての前記抵抗用開閉器の可動接点を駆動し前
記主開閉器が閉状態になる時点より所定の時間前に前記
抵抗用開閉器が閉状態にする投入駆動手段と、前記主開
閉器が閉状態になった後所定の時間を経て前記抵抗用開
閉器を開状態に復帰させる復帰手段とを備えたことを特
徴とする変圧器励磁突流抑制用遮断器。
[Scope of Claims] 1) In a circuit breaker for connecting or disconnecting a transformer from the power system, a series circuit consisting of a series resistor and a resistor switch connected in parallel to the circuit breaker is connected to the circuit breaker. A point in time when the movable contact of the resistance switch, which is a movable resistance contact, is driven in synchronization with the movement of the movable contact of the circuit breaker, which is a main movable contact, and the main switch is in a closed state. closing driving means for bringing the resistor switch into a closed state before a predetermined time; and return means for returning the resistor switch to an open state after a predetermined time has elapsed after the main switch has been in a closed state. A circuit breaker for suppressing a transformer excitation rush current, characterized by comprising:
JP27320489A 1989-10-20 1989-10-20 Breaker for transformer excitation rush-current suppresion Pending JPH03135006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27320489A JPH03135006A (en) 1989-10-20 1989-10-20 Breaker for transformer excitation rush-current suppresion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27320489A JPH03135006A (en) 1989-10-20 1989-10-20 Breaker for transformer excitation rush-current suppresion

Publications (1)

Publication Number Publication Date
JPH03135006A true JPH03135006A (en) 1991-06-10

Family

ID=17524548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27320489A Pending JPH03135006A (en) 1989-10-20 1989-10-20 Breaker for transformer excitation rush-current suppresion

Country Status (1)

Country Link
JP (1) JPH03135006A (en)

Similar Documents

Publication Publication Date Title
US5563459A (en) Apparatus for controlling opening and closing timings of a switching device in an electric power system
Taylor et al. Single-phase transformer inrush current reduction using prefluxing
US11747841B2 (en) Current control apparatus
CN103180926A (en) Inrush current suppressing device
CN201936800U (en) Outdoor high-voltage intelligent type permanent magnet vacuum switch
CN102779612A (en) Pre-magnetizing device for main power supply transformer of electric power circuit
CN108573828B (en) Switching device for medium-voltage switchgear assemblies
CN103633978A (en) Economical on-load tap-changer and method thereof
Aleksandrova et al. Optimal conditions for controlled switching of a three-phase shunt reactor
JPH03135006A (en) Breaker for transformer excitation rush-current suppresion
Sonagra et al. Controlled switching of non-coupled & coupled reactor for re-ignition free de-energization operation
CN101630916B (en) Transformer on-load voltage regulating device and method therefor
US6911810B2 (en) Reduction of energization transients in a three phase Y-connected load
CN113228216B (en) Method and apparatus for monitoring switching device operation for controlled switching applications
CN110994551A (en) Excitation inrush current suppression device and method for transformer
CN112782439A (en) Manufacturing method of characteristic current for single-phase earth fault detection in small-current grounding system
Panda et al. Controlled switching of power circuit breakers
CN221326705U (en) Novel analog circuit breaker
CN213783271U (en) Switching-on inrush current control device of no-load transformer
US11715612B2 (en) Low impact auxiliary switch mechanically operated contacts (MOC) mechanism
JPH03128622A (en) Transformer excitation rush current suppressor
Alarfaj et al. Transformer Sympathetic Inrush Effect on Radially Fed Off-Shore Oil Production Platforms: A Case Study
US2303445A (en) Means for minimizing transient voltages
Xu et al. Study on transient recovery voltage characteristics of on-load tap charger during switching process
Aghazadeh et al. Modified Pre-Fluxing Method for Energization of Single-Phase Transformers