JPH03134607A - Confocal scanning type microscope - Google Patents

Confocal scanning type microscope

Info

Publication number
JPH03134607A
JPH03134607A JP27295289A JP27295289A JPH03134607A JP H03134607 A JPH03134607 A JP H03134607A JP 27295289 A JP27295289 A JP 27295289A JP 27295289 A JP27295289 A JP 27295289A JP H03134607 A JPH03134607 A JP H03134607A
Authority
JP
Japan
Prior art keywords
light
sample
scanning
photodetector
guide member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27295289A
Other languages
Japanese (ja)
Inventor
Toshihito Kimura
俊仁 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP27295289A priority Critical patent/JPH03134607A/en
Publication of JPH03134607A publication Critical patent/JPH03134607A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a bright and vivid microscopic image and simplify the constitution by detecting the reflected light or the transmitted light from a sample. CONSTITUTION:Deflected illuminating light 11 is converged as a minute light spot P on a sample 20, and reflected light 11' from the sample 20 is converted to parallel rays by a lens 18 and goes on the same optical path as the illuminating path in the opposite direction and passes a half mirror 13, a relay lens 24, and a lens 25 to form an image at a point Q. A columnar light transmission member 26 is arranged in the position irradiated with the reflected light 11', and the light reception face of a photodetector 27 is optically coupled to one end face of the member 26. The reflected light 11' goes in the member 26 while repeating total reflection and is detected by the photodetector 27. A signal S indicating the brightness of the spot image Q is inputted to a processing circuit 28 to obtain a time series signal Sp divided to picture elements bearing the two-dimensional image of the sample 20.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は共焦点走査型顕微鏡、特に詳細には、試料から
の反射光あるいは透過光を検出する機構が改良された共
焦点走査型顕微鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a confocal scanning microscope, and more particularly, to a confocal scanning microscope with an improved mechanism for detecting reflected light or transmitted light from a sample. It is something.

(従来の技術) 従来より、照明光を微小な光点に収束させ、この光点を
試料上において2次元的に走査させ、その際該試料を透
過した光あるいはそこで反射した光を光検出器で検出し
て、試料の拡大像を担持する電気信号を得るようにした
光学式走査型顕微鏡が公知となっている。
(Prior Art) Conventionally, illumination light is converged into a minute light spot, and this light spot is scanned two-dimensionally on a sample, and at that time, the light that has passed through the sample or the light that has been reflected there is detected by a photodetector. Optical scanning microscopes are known that detect electrical signals that carry an enlarged image of a sample.

なかでも、照明光を光源から発生させた上で試料上にお
いて光点に収束させる一方、この試料からの光束を再度
点像に結像させてそれを光検出器で検出するように構成
した共焦点走査型顕微鏡は、試料面上にピンホールを配
する必要が無く、実現容易となっている。
Among these, there is a system in which illumination light is generated from a light source and converged to a light spot on the sample, and the light flux from this sample is re-imaged into a point image, which is detected by a photodetector. A focal scanning microscope does not require a pinhole on the sample surface, making it easy to implement.

この共焦点走査型顕微鏡は基本的に、 試料が載置される試料台と、 照明光を発する光源と、 この照明光を試料上において微小な光点として収束させ
る送光光学系と、 この光点を試料上において主、副走査させる走査機構と
、 上記試料からの光束を集光して点像に結像させる受光光
学系と、 この点像を検出する光検出器とから構成されるものであ
る。また、通常上記光検出器の前には、点像のハローや
試料における散乱光をカットするためのピンホール板が
設けられる。
This confocal scanning microscope basically consists of a sample stage on which a sample is placed, a light source that emits illumination light, a light transmission optical system that converges this illumination light as a minute light spot on the sample, and this light. It is composed of a scanning mechanism that main and sub-scans a point on a sample, a light receiving optical system that focuses the light beam from the sample and forms it into a point image, and a photodetector that detects this point image. It is. Further, a pinhole plate is usually provided in front of the photodetector to cut out a point image halo and scattered light from the sample.

この共焦点走査型顕微鏡には、試料で反射した光を検出
する反射型のものと、試料を透過した光を検出する透過
型のものがある。
There are two types of confocal scanning microscopes: a reflective type that detects light reflected by a sample, and a transmission type that detects light that has passed through the sample.

(発明が解決しようとする課題) 従来の共焦点走査型顕微鏡においては、上記走査機構と
して、 ■試料台を2次元的に移動させる機構、あるいは■照明
光ビームを光偏向器によって2次元的に偏向させる機構
が用いられていた。
(Problems to be Solved by the Invention) In conventional confocal scanning microscopes, the above-mentioned scanning mechanism includes: ■ a mechanism that moves the sample stage two-dimensionally, or ■ a mechanism that moves the illumination light beam two-dimensionally using an optical deflector. A deflection mechanism was used.

しかし■の機構を採用した場合には、高速走査を行なう
と試料が飛んでしまうという問題が生じていた。
However, when the mechanism (2) was adopted, there was a problem that the sample would fly away when high-speed scanning was performed.

一方、■の機構によれば十分高速の走査が可能であるが
、この機構を前述した透過型の共焦点走査型顕微鏡に適
用する場合は、別の問題が生じる。
On the other hand, although the mechanism (2) allows sufficiently high-speed scanning, another problem arises when this mechanism is applied to the above-mentioned transmission type confocal scanning microscope.

すなわちその場合は照明光が振られるため、試料を透過
した光束の結像位置もそれに応じて変化するので、光検
出器を照明光の偏向と同期させて2次元的に走査させる
必要が生じる。あるいは、光検出器を固定とする場合は
、試料透過光を照明光走査と同期を取って偏向させる手
段が必要となる。
That is, in that case, since the illumination light is deflected, the imaging position of the light beam transmitted through the sample changes accordingly, so it is necessary to scan the photodetector two-dimensionally in synchronization with the deflection of the illumination light. Alternatively, if the photodetector is fixed, a means for deflecting the sample transmitted light in synchronization with illumination light scanning is required.

このような光検出器の2次元走査機構、あるいは試料透
過光の偏向手段を設けると、共焦点走査型顕微鏡の構造
は非常に複雑化する。
Providing such a two-dimensional scanning mechanism for the photodetector or a means for deflecting light transmitted through the sample would make the structure of the confocal scanning microscope extremely complicated.

このような事情に鑑み、例えば特開昭62−20951
0号公報に示されるように、試料を透過した光束を照明
光副走査と同期を取って偏向させて、この方向には移動
しないようにするとともに、主走査方向には移動してし
まう該光束を、この方向に延びるラインセンサによって
検出する提案もなされている。
In view of these circumstances, for example, Japanese Patent Application Laid-Open No. 62-20951
As shown in Publication No. 0, the light flux that has passed through the sample is deflected in synchronization with the illumination light sub-scanning so that it does not move in this direction, and the light flux that moves in the main scanning direction is deflected. There has also been a proposal to detect this using a line sensor extending in this direction.

また反射型の共焦点走査型顕微鏡にあっても、例えば照
明光の主走査をAOD (音響光学光偏向器)等によっ
て行ない、副走査を機械式光偏向器によって行なうよう
な場合は、波面が乱れた試料からの反射光をAOD等に
再入射させることによって走査ムラが生じたり、あるい
は該反射光の検出効率が低下することを防止するため、
この反射光を機械式光偏向器で反射偏向させた後、AO
D等に再入射させずに照明光光路から分離させることが
考えられている。この場合も、照明光光路から分離され
た反射光は、上記と同様に主走査方向には移動してしま
うので、ラインセンサによって検出するのが便利である
Furthermore, even with a reflection-type confocal scanning microscope, if the main scanning of the illumination light is performed by an AOD (acousto-optic optical deflector), etc., and the sub-scanning is performed by a mechanical optical deflector, the wavefront may change. In order to prevent scanning unevenness from occurring due to the reflected light from the disturbed sample entering the AOD etc. again, or from reducing the detection efficiency of the reflected light,
After reflecting and deflecting this reflected light with a mechanical optical deflector, the AO
It has been considered to separate the illumination light from the optical path of the illumination light without making it re-enter the light beam D or the like. In this case as well, since the reflected light separated from the illumination light optical path moves in the main scanning direction as described above, it is convenient to detect it with a line sensor.

上記構造の透過型あるいは反射型の共焦点走査型顕微鏡
は、試料からの光束の点像を、副走査方向に関しては点
検出器で検出しているが、主走査方向に関してはそうで
はないので、完全な共焦点走査型顕微鏡とは言えないが
、透過光あるいは反射光の偏向手段が簡素化され、また
光検出器の走査機構も不要であるという利点を有してい
る。
Transmission type or reflection type confocal scanning microscopes with the above structure detect the point image of the light beam from the sample using a point detector in the sub-scanning direction, but this is not the case in the main scanning direction. Although it cannot be called a perfect confocal scanning microscope, it has the advantage that the means for deflecting transmitted light or reflected light is simplified, and a scanning mechanism for a photodetector is not required.

ところが、一般にラインセンサは光電子増倍管等に比べ
ると感度が低いため、上記構成の共焦点走査型顕微鏡は
、明るくて鮮明な顕微鏡像を得るのは難しくなっている
However, since line sensors generally have lower sensitivity than photomultiplier tubes and the like, it is difficult for the confocal scanning microscope with the above configuration to obtain bright and clear microscopic images.

本発明は上記のような事情に鑑みてなされたものであり
、光検出器を走査させる必要がなく、しかも高感度の光
検出器を採用することができる共焦点走査型顕微鏡を提
供することを目的とするものである。
The present invention has been made in view of the above circumstances, and aims to provide a confocal scanning microscope that does not require a scanning photodetector and can employ a highly sensitive photodetector. This is the purpose.

(課題を解決するための手段) 本発明による共焦点走査型顕微鏡は、先に述べたような
試料台と、光源と、送光光学系と、照明光光点を試料上
において主、副走査させる走査機構と、受光光学系と、
光検出器と、試料からの光束を照明光副走査と同期を取
って偏向させて、この副走査方向には移動しない状態と
する偏向手段とを備えた共焦点走査型顕微鏡において、
受光光学系によって結像された試料透過光あるいは反射
光の点像の1次元走査を受ける位置に配され、この走査
を受ける表面部分に、該走査の方向に複数のマスク部分
と複数の微小な光通過部分とが交互に配列された透明な
導光部材を設け、そして光検出器は、この導光部材の端
面に光学的に接続させて、該導光部材内に入射した光を
検出するように配設したことを特徴とするものである。
(Means for Solving the Problems) A confocal scanning microscope according to the present invention includes the above-mentioned sample stage, light source, light transmission optical system, and illumination light spot on a sample for main and sub-scanning. a scanning mechanism for scanning, a light-receiving optical system,
In a confocal scanning microscope equipped with a photodetector and a deflection means that deflects the light beam from the sample in synchronization with the illumination light sub-scanning so that it does not move in the sub-scanning direction,
It is arranged at a position where it receives one-dimensional scanning of the point image of transmitted light or reflected light from the sample formed by the light receiving optical system, and the surface part receiving this scanning has a plurality of mask parts and a plurality of microscopic parts in the scanning direction. A transparent light guide member is provided in which light passing portions are arranged alternately, and a photodetector is optically connected to the end face of the light guide member to detect light incident on the light guide member. It is characterized by being arranged as follows.

(作  用) 上記の構成においては、試料からの光束は、導光部材表
面の光通過部分から該部材内に入射し、その内部で全反
射して端面側に進み、光検出器によって検出される。し
たがってこの光検出器としては、光電子増倍管のように
広い受光面を有して、感度が高いものを利用することが
できる。
(Function) In the above configuration, the light beam from the sample enters the light guide member from the light passing portion on the surface thereof, is totally reflected inside the member, travels to the end face side, and is detected by the photodetector. Ru. Therefore, as this photodetector, one having a wide light-receiving surface and high sensitivity, such as a photomultiplier tube, can be used.

そして、照明光光点の主走査に応じて試料からの光束が
導光部材のマスク部分と光通過部分とを交互に横切るの
で、光検出器の出力はこの主走査と同期して周期的に変
調される。つまり上記光束が結ぶ点像がマスク部分にあ
るとき、光検出器の出力はゼロあるいは極めて低い一定
レベルとなり、一方該点像がマスク部材間の光通過部分
にあるときは、光検出器の出力はその点像の明るさを示
すものとなる。したがって、この光検出器の出力信号の
周期的変動に基づいて、画素分割をすることができる。
Since the light beam from the sample alternately crosses the mask part and the light passage part of the light guide member in accordance with the main scanning of the illumination light spot, the output of the photodetector is periodically transmitted in synchronization with this main scanning. Modulated. In other words, when the point image formed by the above-mentioned light beam is on the mask part, the output of the photodetector is zero or at an extremely low constant level, whereas when the point image is on the part where the light passes between the mask members, the output of the photodetector is indicates the brightness of the point image. Therefore, pixel division can be performed based on periodic fluctuations in the output signal of this photodetector.

また、上記点像がマスク部材間の光通過部分にあるとき
、該点像は微小なスリットあるいはピンホールを介して
検出されるのと同じことになる。
Further, when the point image is located in the light passing portion between the mask members, the point image is detected through a minute slit or pinhole.

それにより、点像のハローや試料における散乱光をカッ
トする作用が得られる。
This provides the effect of cutting off the point image halo and scattered light on the sample.

なお例えば特開昭59−81969号公報等には、1次
元方向に偏向された光ビームを表面部分で受けて、その
内部において端面側に伝達させ、この端面に結合された
光検出器に入射させる一方、上記表面部分に光ビーム偏
向方向に並ぶ光学格子を設けた導光部材が示されている
。しがしこの導光部材の光学格子は、光検出器出力の変
調のみを行なうものであり、前述のハローや散乱光をカ
ットするような作用は果たさない。
For example, in Japanese Patent Application Laid-open No. 59-81969, a light beam deflected in a one-dimensional direction is received by a surface portion, transmitted inside the surface portion to an end surface side, and is incident on a photodetector coupled to this end surface. On the other hand, a light guide member is shown in which an optical grating arranged in the light beam deflection direction is provided on the surface portion. However, the optical grating of this light guide member only modulates the output of the photodetector, and does not have the effect of cutting off the halo or scattered light described above.

(実 施 例) 以下、図面に示す実施例に基づいて本発明の詳細な説明
する。
(Example) Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図は、本発明の一実施例による反射型の共焦点走査
型顕微鏡を示すものである。図示されるようにレーザ光
源lOから射出された平行光であるレーザビーム(照明
光) 11は、ビームエキスパンダ12よりビーム径が
拡大されてAOD (音響光学光偏向器) 14に入射
する。照明光UはこのAOD14により、紙面とほぼ直
交する向きに偏向され、収差補正のためのリレーレンズ
15を通過し、ハーフミラ−13を透過して、振動ミラ
ー16に入射する。
FIG. 1 shows a reflection type confocal scanning microscope according to an embodiment of the present invention. As shown in the figure, a laser beam (illumination light) 11, which is parallel light emitted from a laser light source IO, has its beam diameter expanded by a beam expander 12 and enters an AOD (acousto-optic optical deflector) 14. The illumination light U is deflected by the AOD 14 in a direction substantially perpendicular to the plane of the paper, passes through a relay lens 15 for aberration correction, passes through a half mirror 13, and enters a vibrating mirror 16.

振動ミラー16は図中矢印A方向に揺動し、それにより
照明光11は、上記偏向の方向とほぼ直交する方向に偏
向される。
The vibrating mirror 16 swings in the direction of arrow A in the figure, thereby deflecting the illumination light 11 in a direction substantially perpendicular to the direction of deflection described above.

偏向されたこの照明光11は、リレーレンズ17を通っ
て対物レンズ18に入射し、該対物レンズ18により、
試料20上(表面あるいは内部)において微小な光点P
に収束せしめられる。なおこの試料2゜が載置される試
料台19は、移動機構21により矢印Z方向、すなわち
対物レンズ18の光軸方向に移動されるようになってい
る。
This deflected illumination light 11 passes through the relay lens 17 and enters the objective lens 18, and the objective lens 18
A minute light spot P on the sample 20 (on the surface or inside)
It is forced to converge. The sample stage 19 on which the sample 2° is placed is moved by a moving mechanism 21 in the direction of arrow Z, that is, in the optical axis direction of the objective lens 18.

試料20で反射した反射光11°は、対物レンズ18に
よって平行光とされる。平行光とされたこの反射光11
’ は、リレーレンズ17、振動ミラー16と、照明光
11と共通の光路を反対方向に進み、ハーフミラ−13
に入射する。反射光11’ はこのハーフミラ−13に
より照明光11の光路から分離され、リレーレンズ24
を通過して、集光レンズ25により点像Qに結像される
The reflected light 11° reflected by the sample 20 is converted into parallel light by the objective lens 18. This reflected light 11 made into parallel light
' travels in the opposite direction along the optical path common to the relay lens 17, the vibrating mirror 16, and the illumination light 11, and reaches the half mirror 13.
incident on . The reflected light 11' is separated from the optical path of the illumination light 11 by this half mirror 13, and is passed through the relay lens 24.
, and is focused into a point image Q by the condenser lens 25.

この反射光ll° の照射を受ける位置には、第1図中
紙面と直角な方向に延びる円柱状の導光部材26が配さ
れている。なお第2図に、この導光部材26を詳しく示
す。この導光部材26は光学ガラス等から形成され、そ
の周表面26Dが上記点像Qの結像位置に有るように配
されている。そしてこの周表面26Dには、遮光材料か
ら形成されて周方向に延びる多数の線状のマスク26A
が、導光部材26の軸方向に並設されている。これらの
マスク2[iAは各々所定の幅を有し、そして互いに所
定間隔をおいて設けられている。それによりこれらのマ
スク2OAの間には、微小な所定幅の光通過部分26B
が形成されている。一方この導光部材26の一端面26
Cには、光検出器27の受光面27Aが光学的に結合さ
れている。なおこの光検出器27としては光電子増倍管
等、広い受光面27Aを有する高感度のものを利用する
ことができる。
A cylindrical light guide member 26 extending in a direction perpendicular to the plane of the paper in FIG. 1 is arranged at a position receiving the reflected light ll°. Note that this light guiding member 26 is shown in detail in FIG. The light guide member 26 is made of optical glass or the like, and is arranged so that its peripheral surface 26D is located at the point image Q formation position. On this circumferential surface 26D, a large number of linear masks 26A are formed from a light-shielding material and extend in the circumferential direction.
are arranged in parallel in the axial direction of the light guide member 26. These masks 2[iA each have a predetermined width and are provided at a predetermined interval from each other. Thereby, between these masks 2OA, there is a small light passage portion 26B with a predetermined width.
is formed. On the other hand, one end surface 26 of this light guide member 26
A light receiving surface 27A of the photodetector 27 is optically coupled to C. Note that as this photodetector 27, a highly sensitive one having a wide light-receiving surface 27A, such as a photomultiplier tube, can be used.

先に述べた通り、試料20を照射する照明光11はA 
OD 14によって偏向されているので、光点Pは試料
20上をX方向に主走査し、それとともに照明光llが
振動ミラー16によって偏向されているので、光点Pは
試料20上を上記主走査の方向とほぼ直交するY方向に
副走査する。
As mentioned earlier, the illumination light 11 that irradiates the sample 20 is A
Since it is deflected by the OD 14, the light spot P scans the sample 20 in the X direction, and at the same time, since the illumination light 11 is deflected by the vibrating mirror 16, the light spot P scans the sample 20 in the main direction. Sub-scanning is performed in the Y direction, which is approximately perpendicular to the scanning direction.

こうして光点Pの主、副走査がなされるとき、前記の振
動ミラー16に入射した反射光11’ はこの振動ミラ
ー16により、照明光11と同じ角度で反射偏向される
から、ハーフミラ−13に入射する反射光ll° は、
副走査方向Yには移動しない。したがって導光部材26
の周表面26D上において点像Qは、主走査方向Xに、
つまり導光部材26の軸方向にのみ走査することになる
。こうして1次元的に走査する点像Qは、マスク26A
と光通過部分26Bとを交互に横切る。
When the main and sub-scanning of the light point P is performed in this way, the reflected light 11' incident on the vibrating mirror 16 is reflected and deflected by the vibrating mirror 16 at the same angle as the illumination light 11, so that it is reflected and deflected by the half mirror 13. The incident reflected light ll° is
It does not move in the sub-scanning direction Y. Therefore, the light guiding member 26
On the circumferential surface 26D, the point image Q is in the main scanning direction X,
In other words, scanning is performed only in the axial direction of the light guide member 26. The point image Q that is scanned one-dimensionally in this way is the mask 26A.
and the light passing portion 26B alternately.

この点像Qが光通過部分2i3B上に有る状態下では、
反射光11’が導光部材26の周表面26Dからその内
部に入射する。この反射光11’ は導光部材2G内で
全反射を繰り返して、その端面2BC側に進行し、光検
出器27によって検出される。光検出器27は、点像Q
の明るさを示す信号Sを出力する。
Under the condition that this point image Q is on the light passing portion 2i3B,
The reflected light 11' enters into the light guiding member 26 from the peripheral surface 26D. This reflected light 11' repeats total reflection within the light guiding member 2G, travels toward the end face 2BC, and is detected by the photodetector 27. The photodetector 27 detects a point image Q
A signal S indicating the brightness of the image is output.

力点像Qがマスク2BA上に有る状態下では、反射光1
1’が該マスク26Aによって遮られる。したがって時
系列の上記信号Sは、第3図に示すように変化するもの
となる。すなわち信号Sの値(、例えば電流値)は、反
射光11’ がマスク28Aによって遮られているとき
は極く低い一定しベル■oとなり、反射光11’が光通
過部分28Bを通過するときは、点像Qの明るさに対応
した値Isをとる。
Under the condition that the force point image Q is on the mask 2BA, the reflected light 1
1' is blocked by the mask 26A. Therefore, the time-series signal S changes as shown in FIG. That is, the value of the signal S (for example, the current value) is extremely low and constant when the reflected light 11' is blocked by the mask 28A, and is constant when the reflected light 11' passes through the light passing portion 28B. takes a value Is corresponding to the brightness of the point image Q.

このようにして信号Sは、光点Pの走査と同期して変調
されるので、この信号Sを信号処理回路28で処理する
ことにより、試料20の2次元像を担持する画素分割さ
れた時系列信号Spを容易に得ることができる。
In this way, the signal S is modulated in synchronization with the scanning of the light spot P. By processing this signal S in the signal processing circuit 28, the signal S is divided into pixels carrying a two-dimensional image of the sample 20. The sequence signal Sp can be easily obtained.

なお、上記点像Qがマスク26A間の光通過部分28B
にあるとき、該点像Qは微小なスリットを介して検出さ
れるのと同じことになる。それにより、点像Qのハロー
や試料20における散乱光をカットする作用が得られる
。より正確に言えば、上記の作用は主走査方向について
のみ得られる。しがしそれでも、このようなマスク部分
が全く無い場合と比べると、その場合は上記ハローや散
乱光が2次元的に導光部材2Bに入射してしまうのに対
し、この場合はそれらが1次元的(副走査方向)にしか
導光部材26に入射しないので、解像力は顕著に向上す
る。
Note that the point image Q is the light passing portion 28B between the masks 26A.
, the point image Q is the same as being detected through a minute slit. Thereby, the effect of cutting off the halo of the point image Q and the scattered light on the sample 20 can be obtained. More precisely, the above effect is obtained only in the main scanning direction. However, compared to the case where there is no such mask part at all, in that case the halo and scattered light will enter the light guide member 2B two-dimensionally, whereas in this case they will be incident on the light guide member 2B in a two-dimensional manner. Since the light enters the light guide member 26 only dimensionally (in the sub-scanning direction), the resolution is significantly improved.

また本実施例においては試料台19が、移動機構21に
より、主、副走査方向X1Yと直交する矢印Z方向に移
動される。こうして試料2oをZ方向に所定距離移動さ
せる毎に前記光点Pの2次元走査を行なえば、合焦点面
の情報のみが光検出器27によって検出される。そこで
、前記の出力信号Spをフレームメモリに取り込むこと
により、試料20を2方向に移動させた範囲内で、全て
の面に焦点が合った画像を担う信号を得ることが可能と
なる。
Further, in this embodiment, the sample stage 19 is moved by the moving mechanism 21 in the direction of arrow Z, which is perpendicular to the main and sub-scanning directions X1Y. If the light spot P is two-dimensionally scanned every time the sample 2o is moved a predetermined distance in the Z direction in this manner, only information on the focused plane is detected by the photodetector 27. Therefore, by importing the output signal Sp into the frame memory, it is possible to obtain a signal that represents an image in focus on all surfaces within the range in which the sample 20 is moved in two directions.

なお照明光11を偏向させる光偏向手段としては、以上
説明したA OD 14と振動ミラー1Gに限らず、そ
の他の公知のもの、例えばEOD (電気光学光偏向器
)とポリゴンミラー等が用いられてもよい。
Note that the light deflection means for deflecting the illumination light 11 is not limited to the AOD 14 and the vibrating mirror 1G described above, but other known means such as an EOD (electro-optic light deflector) and a polygon mirror may be used. Good too.

また、導光部材26の両端面にそれぞれ接続するように
2個の光検出器を設置して、反射光11°の検出効率を
さらに向上させることもできる。
Moreover, two photodetectors can be installed so as to be connected to both end surfaces of the light guide member 26, respectively, to further improve the detection efficiency of the reflected light 11°.

また以上説明した導光部材26に代えて、第4図に示す
ような導光部材30を用いることもできる。
Furthermore, instead of the light guide member 26 described above, a light guide member 30 as shown in FIG. 4 may be used.

この導光部材30は、周表面30Dに広く形成されたマ
スク30Aを有し、そしてこのマスク30Aに、主走査
方向Xに並ぶ多数の点状の光通過部分30Bが設けられ
てなるものである。このような導光部材30を用いる場
合は、点像Qがピンホールを介して検出されることにな
るから、上記導光部材26を用いる場合と比べれば、前
記ハローや散乱光をカットする作用がより顕著に得られ
る。
This light guide member 30 has a mask 30A widely formed on a circumferential surface 30D, and this mask 30A is provided with a large number of dot-shaped light passing portions 30B lined up in the main scanning direction X. . When such a light guide member 30 is used, the point image Q is detected through a pinhole, so compared to the case where the light guide member 26 is used, the effect of cutting the halo and scattered light is lower. is obtained more clearly.

さらに本発明は、前述したように試料からの透過光を副
走査用振動ミラーの裏面に導く等して、この透過光の副
走査方向の移動を無くすようにした反射型の共焦点走査
型顕微鏡に対して適用することも可能である。
Furthermore, as described above, the present invention provides a reflective confocal scanning microscope that eliminates movement of the transmitted light in the sub-scanning direction by guiding the transmitted light from the sample to the back surface of the sub-scanning vibrating mirror. It is also possible to apply it to

また、以上述べた実施例の共焦点走査型顕微鏡は、モノ
クロの顕微鏡像を得るものであるが、本発明は、従来か
ら知られているカラー画像を得る共焦点走査型顕微鏡に
対して適用することも勿論可能である。
Furthermore, although the confocal scanning microscope of the embodiments described above is for obtaining monochrome microscopic images, the present invention is applicable to conventionally known confocal scanning microscopes for obtaining color images. Of course, this is also possible.

(発明の効果) 以上詳細に説明した通り本発明の共焦点走査型顕微鏡は
、試料からの反射光あるいは透過光を透明な導光部材内
に入射させ、そしてこの導光部材の端面に接続された光
検出器によりこの光を検出するように構成したから、光
検出器として広い受光面を有する高感度のものを利用で
き、それにより、明るくて鮮明な顕微鏡像を得ることが
可能となる。
(Effects of the Invention) As explained in detail above, the confocal scanning microscope of the present invention allows reflected light or transmitted light from a sample to enter a transparent light guide member, and connects to the end face of this light guide member. Since this light is detected by a photodetector, a highly sensitive photodetector with a wide light-receiving surface can be used, thereby making it possible to obtain a bright and clear microscope image.

また本発明の共焦点走査型顕微鏡は、試料からの反射光
あるいは透過光の点像が照射される上記導光部材の表面
部分に、複数のマスク部分と複数の微小な光通過部分と
を交互に配列させて設けたことにより、点像のハローや
試料における散乱光をカットして解像力を高めることが
でき、さらには光検出器の出力信号を変調して、容易に
画素分割を行なうことが可能となる。
Further, in the confocal scanning microscope of the present invention, a plurality of mask portions and a plurality of minute light passing portions are alternately arranged on the surface portion of the light guiding member that is irradiated with a point image of reflected light or transmitted light from the sample. By arranging them in the same direction, it is possible to cut out the point image halo and scattered light from the sample, thereby increasing the resolution, and furthermore, it is possible to easily perform pixel division by modulating the output signal of the photodetector. It becomes possible.

そして本発明の共焦点走査型顕微鏡は、上記のようにし
て試料からの反射光あるいは透過光を検出するように構
成したから、光検出器を照明光走査と同期させて走査さ
せる必要も無く、よって構成が簡単で安価に形成可能と
なる。
Since the confocal scanning microscope of the present invention is configured to detect reflected light or transmitted light from the sample as described above, there is no need to scan the photodetector in synchronization with illumination light scanning. Therefore, the structure is simple and can be formed at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例による共焦点走査型顕微鏡
を示す概略側面図、 第2図は、上記共焦点走査型顕微鏡に用いられた導光部
材を示す斜視図、 第3図は、上記共焦点走査型顕微鏡における光検出器の
出力信号波形を示すグラフ、 第4図は、本発明の共焦点走査型顕微鏡に用いられる導
光部材の他の例を示す斜視図である。 10・・・レーザ光1111X    11・・・照明
光11’ ・・・反射光    13・・・ハーフミラ
−14・・・AOD       15.17.24・
・・リレーレンズ1G・・・振動ミラー   18・・
・対物レンズ19・・・試料台     20・・・試
料25・・・集光レンズ   26.30・・・導光部
材26A、30A・・・マスク 26B、30B・・・
光通過部分28C・・・導光部材の端面 28D、30D・・・導光部材の周表面27・・・光検
出器    27A・・・受光面28・・・信号処理回
FIG. 1 is a schematic side view showing a confocal scanning microscope according to an embodiment of the present invention, FIG. 2 is a perspective view showing a light guide member used in the confocal scanning microscope, and FIG. , a graph showing the output signal waveform of the photodetector in the confocal scanning microscope; FIG. 4 is a perspective view showing another example of the light guide member used in the confocal scanning microscope of the present invention. 10... Laser light 1111X 11... Illumination light 11'... Reflected light 13... Half mirror 14... AOD 15.17.24.
・・Relay lens 1G・・Vibration mirror 18・・
・Objective lens 19...Sample stage 20...Sample 25...Condensing lens 26.30...Light guiding member 26A, 30A...Mask 26B, 30B...
Light passing portion 28C... End faces 28D, 30D of light guide member... Circumferential surface 27 of light guide member... Photodetector 27A... Light receiving surface 28... Signal processing circuit

Claims (1)

【特許請求の範囲】 試料が載置される試料台と、 照明光を発する光源と、 この照明光を試料上において微小な光点として収束させ
る送光光学系と、 前記光点を試料上において主、副走査させる走査機構と
、 前記試料からの光束を集光して点像に結像させる受光光
学系と、 この光束を前記副走査と同期を取って偏向させて、この
副走査方向に移動しない状態とする偏向手段と、 前記点像の1次元走査を受ける位置に配され、この走査
を受ける表面部分に、該走査の方向に複数のマスク部分
と複数の微小な光通過部分とが交互に配列された透明な
導光部材と、 この導光部材の端面に光学的に接続されて、該導光部材
内に入射した光を検出する光検出器とからなる共焦点走
査型顕微鏡。
[Scope of Claims] A sample stage on which a sample is placed; a light source that emits illumination light; a light transmission optical system that converges the illumination light as a minute light spot on the sample; a scanning mechanism for main and sub-scanning; a light-receiving optical system for condensing the light beam from the sample and forming a point image; and a light receiving optical system for deflecting the light beam in synchronization with the sub-scanning direction. a deflection means that does not move; and a deflection means arranged at a position that receives the one-dimensional scanning of the point image, and a plurality of mask portions and a plurality of minute light passage portions on the surface portion receiving the scanning in the direction of the scanning. A confocal scanning microscope comprising: transparent light guide members arranged alternately; and a photodetector that is optically connected to the end face of the light guide member and detects light incident on the light guide member.
JP27295289A 1989-10-20 1989-10-20 Confocal scanning type microscope Pending JPH03134607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27295289A JPH03134607A (en) 1989-10-20 1989-10-20 Confocal scanning type microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27295289A JPH03134607A (en) 1989-10-20 1989-10-20 Confocal scanning type microscope

Publications (1)

Publication Number Publication Date
JPH03134607A true JPH03134607A (en) 1991-06-07

Family

ID=17521069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27295289A Pending JPH03134607A (en) 1989-10-20 1989-10-20 Confocal scanning type microscope

Country Status (1)

Country Link
JP (1) JPH03134607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300618B1 (en) * 1997-12-12 2001-10-09 Yokogawa Electric Corporation High speed 3-dimensional confocal microscopic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300618B1 (en) * 1997-12-12 2001-10-09 Yokogawa Electric Corporation High speed 3-dimensional confocal microscopic equipment

Similar Documents

Publication Publication Date Title
US5035476A (en) Confocal laser scanning transmission microscope
US4893008A (en) Scanning optical microscope
JP3330617B2 (en) Optical scanning device
US5691839A (en) Laser scanning optical microscope
US6236454B1 (en) Multiple beam scanner for an inspection system
US5355252A (en) Scanning laser microscope
US5084612A (en) Imaging method for scanning microscopes, and confocal scanning microscope
US4930896A (en) Surface structure measuring apparatus
GB2321517A (en) Confocal microscopic equipment for measuring solid shapes
JPS63765B2 (en)
JPH03148616A (en) Scanning type microscope
JP2955017B2 (en) Simultaneous and confocal imaging devices
JP5495740B2 (en) Confocal scanning microscope
JP2003004654A (en) Optical scanner and defect detector
JPS6180215A (en) Image pickup device
EP0244102B1 (en) Inspection apparatus
JPH03134608A (en) Scanning type microscope
JPH03134607A (en) Confocal scanning type microscope
JPS607764B2 (en) Scanning photodetector
JPH09325278A (en) Confocal type optical microscope
JPH03131811A (en) Confocal scanning type transmission microscope
JPH0355510A (en) Cofocal type optical microscope
JP2613130B2 (en) Confocal scanning phase contrast microscope
JPH03132612A (en) Confocal scanning type transmission microscope
JPH0827431B2 (en) Scanning optical microscope