JPH03134130A - High damping material of aluminum alloy - Google Patents
High damping material of aluminum alloyInfo
- Publication number
- JPH03134130A JPH03134130A JP27085989A JP27085989A JPH03134130A JP H03134130 A JPH03134130 A JP H03134130A JP 27085989 A JP27085989 A JP 27085989A JP 27085989 A JP27085989 A JP 27085989A JP H03134130 A JPH03134130 A JP H03134130A
- Authority
- JP
- Japan
- Prior art keywords
- vibration damping
- vibration
- damping material
- graphite grains
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013016 damping Methods 0.000 title claims abstract description 36
- 239000000463 material Substances 0.000 title claims abstract description 26
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 20
- 239000010439 graphite Substances 0.000 claims abstract description 20
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims description 19
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 abstract description 7
- 239000011159 matrix material Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 7
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 229910016459 AlB2 Inorganic materials 0.000 abstract 1
- 101000693961 Trachemys scripta 68 kDa serum albumin Proteins 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229910007570 Zn-Al Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical class [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分膏〕
本発明は優れた振動減衰性を有し、音9機器、精密機器
、自動車などの振動を嫌う構造部材として使用されるア
ルミニウム合金制振材料に関するものである。[Detailed description of the invention] [Industrial application] The present invention is an aluminum alloy vibration damping material that has excellent vibration damping properties and is used as a structural member that dislikes vibrations in sound equipment, precision equipment, automobiles, etc. It's about materials.
一般に物体を振動させると、ある周波数(f r)で振
幅が急激に大きくなる(第1図)。この周波数を共振周
波数という、共振周波数における最大振幅をA、とする
と、このエネルギーに対し1/2となるのは振幅がAa
/J”i (aB表示では一3dB)となる周波数で
ある。この周波数幅(半値幅)をΔfとすると、損失係
数ηは次式で表される。Generally, when an object is vibrated, the amplitude suddenly increases at a certain frequency (fr) (Figure 1). This frequency is called the resonant frequency, and if the maximum amplitude at the resonant frequency is A, then the amplitude that is 1/2 of this energy is Aa.
/J"i (-3 dB in aB representation). If this frequency width (half width) is Δf, the loss coefficient η is expressed by the following equation.
η=Δr / f r
この損失係数ηの値が大きい材料はど振動減衰能に優れ
、外力が除去された場合には振動が2、速に減衰する0
通常の金属材料の損失係数ηは0.001以下である。η = Δr / f r A material with a large value of this loss coefficient η has excellent vibration damping ability, and when the external force is removed, the vibration is damped 2 times faster.
The loss coefficient η of ordinary metal materials is 0.001 or less.
従来、音響機器、精密機器、自動車などの振動を嫌う構
造部材の金属材料、いわゆる制振材料としては、Fe−
Cr系、Mn−Cu系、Zn−Al系、N i −T
i系などの合金が知られている。Conventionally, Fe-
Cr-based, Mn-Cu-based, Zn-Al-based, Ni-T
Alloys such as i-series are known.
またMg、Mg−Zr系の鋳造材も制振材として知られ
ている。Furthermore, Mg and Mg-Zr based cast materials are also known as vibration damping materials.
Fe−Cr系、Mn−Cu系、Zn−Al系、Ni−T
i系などの合金は振動減衰性が大きいが、比重が大きい
という共通の欠点を有し、機器の軽量化を計ろうとする
場合には不適当である。一方Mg、Mg−Zr系の鋳造
材も大きい振動減衰性を示し、しかも比重が小さいとい
う長所を有するが、冷間加工が全く出来ないという欠点
があった。Fe-Cr series, Mn-Cu series, Zn-Al series, Ni-T
Alloys such as the i-series have high vibration damping properties, but they have a common drawback of high specific gravity, making them unsuitable when attempting to reduce the weight of equipment. On the other hand, Mg and Mg-Zr based cast materials also exhibit great vibration damping properties and have the advantage of having a low specific gravity, but have the disadvantage that they cannot be cold worked at all.
本発明は、これらを鑑み種々検討の結果、比重が小さく
しかも冷間加工が容易なアルミ合金制振材料を開発した
ものであり、その第1発明はBを0.1〜20−1%含
有し、残部Alと不可避不純物とからなり、損失係数η
が0.006以上であることを特徴するアルミニウム合
金制振材料であり、また第2発明はグラファイト粒子0
.5〜2Qw t%金含有残部Alと不可避的不純物と
からなり損失係数ηが0.006以上であることを特徴
とするアルミニウム合金制振材料である。第2発明にお
いてグラファイト粒子の平均粒径が5−以上であること
が望ましい。In view of the above, as a result of various studies, the present invention has developed an aluminum alloy vibration damping material that has a low specific gravity and is easy to cold work. The remainder consists of Al and unavoidable impurities, and the loss coefficient η
is 0.006 or more, and the second invention is an aluminum alloy vibration damping material characterized in that the
.. This is an aluminum alloy vibration damping material comprising 5 to 2 Qw t% gold, balance Al, and unavoidable impurities, and having a loss coefficient η of 0.006 or more. In the second invention, it is desirable that the average particle size of the graphite particles is 5- or more.
制振材料はその振動減衰メカニズムにより、転位型、複
合相型、強磁性型、双晶型に分類され、本発明になる制
振材料は複合相型に該当する。Damping materials are classified into dislocation type, composite phase type, ferromagnetic type, and twin type depending on their vibration damping mechanism, and the vibration damping material according to the present invention falls under the composite phase type.
BはAlに添加することにより、AlBzの微細でかつ
マトリックス中に均一に分布する化合物を形成する。こ
のような材料に振動を加えると、化合物とAlマトリン
クスとの界面における粘性流動により振動エネルギーが
速やかに吸収され、極めて高い振動減衰性が得られる。By adding B to Al, B forms a fine compound of AlBz that is uniformly distributed in the matrix. When vibration is applied to such a material, the vibration energy is quickly absorbed by viscous flow at the interface between the compound and the Al matrix, resulting in extremely high vibration damping properties.
上記の如くBは振動減衰性の向上に極めて有効な化合物
をAlマトリックス中に形成させるために添加するもの
で、その含有量を0.1〜20−t%と限定したのは0
.1 wt%t%ではA I B z化合物の形成量が
少なく振動減衰性が劣り、20−t%を超えると効果が
飽和するうえ、塑性加工が困難となる。As mentioned above, B is added to form a compound in the Al matrix that is extremely effective in improving vibration damping properties, and the reason for limiting its content to 0.1 to 20-t% is 0.
.. At 1 wt%, the amount of the A I B z compound formed is small and vibration damping properties are poor, and at more than 20-t%, the effect is saturated and plastic working becomes difficult.
グラファイトはAlに添加することにより、均一微細に
マトリックス中に分布する。このような材料に振動を加
えると、グラファイト粒子とAlマトリックスとの界面
における粘性流動により振動エネルギーが速やかに吸収
され、極めて高い振動減衰性が得られる。By adding graphite to Al, it is uniformly and finely distributed in the matrix. When vibration is applied to such a material, the vibration energy is quickly absorbed by viscous flow at the interface between the graphite particles and the Al matrix, resulting in extremely high vibration damping properties.
上記の如くグラファイト粒子は振動減衰性を向上させる
ために添加するもので、その含有量を0.1〜20−t
%と限定したのは、0.1 wt%t%ではグラファイ
ト粒子量が少なく振動減衰性が劣り、20wt%を超え
ると効果が飽和するうえ、グラファイト粒子が凝集、局
在化し塑性加工性、機械的性質が劣化するためである。As mentioned above, graphite particles are added to improve vibration damping properties, and the content is 0.1 to 20-t.
%, because at 0.1 wt%t%, the amount of graphite particles is small and the vibration damping property is poor, and when it exceeds 20wt%, the effect is saturated, and the graphite particles aggregate and localize, resulting in poor plastic workability and mechanical properties. This is because the physical properties deteriorate.
第1、第2発明とも鋳造組織の微細化剤として通常添加
されるTi、Bは0.05wt%以下の範囲で添加する
ことが好ましい。また、Si、Fe等通常のAl地金に
含まれる不純物は0.5 wt%t%ならば特に本発明
の効果を損なうことはない。In both the first and second inventions, it is preferable that Ti and B, which are usually added as refining agents for the casting structure, are added in an amount of 0.05 wt% or less. Further, if the impurities contained in the ordinary Al base metal such as Si and Fe are 0.5 wt%, the effects of the present invention will not be particularly impaired.
第2発明においてグラファイト粒子の平均粒径5−以上
としたのは、5fm未満では振動減衰性が小さいためで
、グラファイト粒子が大きいほど振動減衰性は高くなる
が1価以上になると塑性加工性、機械的性質が劣化する
ため、700−以下が好ましい。In the second invention, the reason why the average particle diameter of the graphite particles is 5- or more is because vibration damping properties are small when the particle diameter is less than 5 fm.The larger the graphite particles are, the higher the vibration damping properties are, but when the graphite particles are monovalent or more, the plastic workability is reduced. Since the mechanical properties deteriorate, it is preferably 700- or less.
以上のような組成のA1合金は、通常の方法で溶解、鋳
造し、必要に応じて均質化処理した後鋳物として使用さ
れる。さらに、塑性加工、すなわち圧延、押出、引き抜
き、鍛造等を施して使用してもよい。このような塑性加
工を施した場合には、材料中に転位が導入され、AlB
、化合物、グラファイト粒子およびAl−Fe系等の金
属間化合物と転位との相互作用による転位型としての振
動減衰メカニズムが付与され、さらに振動減衰性が向上
する。この塑性加工は、熱間・冷間いずれの方法でもよ
い。なお、塑性加工を行う場合で、通例行われる焼鈍処
理は、本発明の複合相型としての効果を損なうことはな
い。The A1 alloy having the composition described above is melted and cast using a conventional method, and after being homogenized if necessary, it is used as a casting. Furthermore, it may be used after being subjected to plastic working, that is, rolling, extrusion, drawing, forging, etc. When such plastic working is performed, dislocations are introduced into the material and AlB
A dislocation-type vibration damping mechanism is provided by the interaction between dislocations and intermetallic compounds such as compounds, graphite particles, and Al-Fe systems, and vibration damping properties are further improved. This plastic working may be performed by either hot or cold methods. In addition, when performing plastic working, the annealing treatment that is usually performed does not impair the effect of the composite phase type of the present invention.
第2発明のアルミニウム制振材料は、アルミニウムの溶
融物あるいは部分的に凝固した半溶融物にグラファイト
粒子を分散させる方法やA1粉末とグラファイト粒子を
混合成形した後焼結させる方法などによって製造できる
。The aluminum vibration damping material of the second invention can be manufactured by a method in which graphite particles are dispersed in a molten aluminum material or a partially solidified semi-molten material, or a method in which A1 powder and graphite particles are mixed and molded, followed by sintering.
以下本発明を実施例によりさらに詳細に説明する。 The present invention will be explained in more detail below with reference to Examples.
実施例1
第1表に示す組成の合金を溶解、鋳造し、厚さ500鴫
、幅L200mm、長さ3000mの鋳塊とした。これ
を固剤後、500’Cで10時間の均質化処理を施し、
厚さ5mに熱間圧延し更に冷間圧延により厚さ2■の板
材とした。Example 1 An alloy having the composition shown in Table 1 was melted and cast to form an ingot having a thickness of 500 mm, a width L of 200 mm, and a length of 3000 m. After solidifying this, homogenization treatment was performed at 500'C for 10 hours,
It was hot rolled to a thickness of 5 m and further cold rolled to a plate material of 2 cm in thickness.
これより、厚さ2祁、幅10mm、長さ250柵の試験
片を切り出し、片持振動法により振動減衰性(損失係数
η)を評価した。即ち試験片の片端部をチャッキングし
て発振器で強制的に振動を与え、共振周波数frでの損
失係数ηを(1)式により求めた。その結果は第1表に
併記した。From this, a test piece with a thickness of 2 mm, a width of 10 mm, and a length of 250 mm was cut out, and the vibration damping property (loss coefficient η) was evaluated by the cantilever vibration method. That is, one end of the test piece was chucked to forcibly vibrate it with an oscillator, and the loss coefficient η at the resonance frequency fr was determined by equation (1). The results are also listed in Table 1.
η=Δr / f r
但しΔfは3dB値幅
第 1 表
第1表から明らかなように、第1発明合金組成によるA
1合金制振材(N(Ll〜5)はいずれも0゜006以
上の損失係数ηを示し、優れた振動減衰性を有すること
が判る。一方、第1発明合金組成を外れる比較合金Nα
6.7は損失係数が低く、Nα8は冷間圧延時に割れが
生じ、板材を製造できなかった。η=Δr/f r However, Δf has a value range of 3 dB.Table 1 As is clear from Table 1, A due to the first invention alloy composition
It can be seen that all of the No. 1 alloy vibration damping materials (N (Ll~5) exhibit a loss coefficient η of 0°006 or more, and have excellent vibration damping properties. On the other hand, the comparative alloy Nα, which deviates from the No. 1 invention alloy composition,
6.7 had a low loss coefficient, and Nα8 cracked during cold rolling, making it impossible to manufacture a plate.
実施例2
AAl100合金を溶解した溶湯中に第2表に示す量の
グラファイト粒子を添加し、機械的な撹拌を行いながら
鋳造し厚さ5011III+、幅120+nQl、長さ
300 mmの鋳塊とした。これを500’Cで10時
間の均質化処理を行い、厚さ2■、幅IQmm、長さ2
50論の試験片を切り出し、実施例1と同様な方法によ
り損失係数ηを求めた。その結果を第2表に併記した。Example 2 Graphite particles in the amount shown in Table 2 were added to a molten metal containing AAl100 alloy, and cast while mechanically stirring to obtain an ingot with a thickness of 5011III+, a width of 120+nQl, and a length of 300 mm. This was homogenized at 500'C for 10 hours, and the thickness was 2mm, width IQmm, and length 2mm.
A 50-meter test piece was cut out, and the loss coefficient η was determined in the same manner as in Example 1. The results are also listed in Table 2.
第2表
を有することが判る。一方、第2発明合金組成を外れる
比較合金(N(114)および、グラファイト粒子の平
均粒径が小さいNα15は損失係数ηが低い。It can be seen that it has Table 2. On the other hand, the comparative alloy (N(114)) which deviates from the second invention alloy composition and Nα15 whose average grain size of graphite particles is small have a low loss coefficient η.
以上述べたように本発明によればアルミをベースとする
ため、軽量で塑性加工性に優れ、しかも優れた振動減衰
性を有するアルミニウム合金制振材料を得ることができ
るもので、工業上顕著な効果を奏するものである。As described above, since the present invention is based on aluminum, it is possible to obtain an aluminum alloy vibration damping material that is lightweight, has excellent plastic workability, and has excellent vibration damping properties, and is industrially outstanding. It is effective.
第1図は振動の共鳴曲線。 Figure 1 shows the resonance curve of vibration.
Claims (3)
避的不純物とからなり損失係数ηが0.006以上であ
ることを特徴とするアルミニウム合金制振材料。(1) An aluminum alloy vibration damping material containing 0.1 to 20 wt% of B, the balance being Al and unavoidable impurities, and having a loss coefficient η of 0.006 or more.
部Alと不可避的不純物とからなり損失係数ηが0.0
06以上であることを特徴とするアルミニウム合金制振
材料。(2) Contains 0.5 to 20 wt% of graphite particles, with the balance consisting of Al and unavoidable impurities, and has a loss coefficient η of 0.0
1. An aluminum alloy vibration damping material characterized in that the vibration damping material is 0.06 or higher.
ことを特徴とする請求項2記載のアルミニウム合金制振
材料。(3) The aluminum alloy vibration damping material according to claim 2, wherein the graphite particles have an average particle size of 5 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27085989A JPH03134130A (en) | 1989-10-18 | 1989-10-18 | High damping material of aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27085989A JPH03134130A (en) | 1989-10-18 | 1989-10-18 | High damping material of aluminum alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03134130A true JPH03134130A (en) | 1991-06-07 |
Family
ID=17491969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27085989A Pending JPH03134130A (en) | 1989-10-18 | 1989-10-18 | High damping material of aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03134130A (en) |
-
1989
- 1989-10-18 JP JP27085989A patent/JPH03134130A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0675209B1 (en) | High strength aluminum-based alloy | |
JP2020158788A (en) | Aluminum alloy | |
US5523050A (en) | Method of preparing improved eutectic or hyper-eutectic alloys and composites based thereon | |
JPH1030145A (en) | High strength aluminum base alloy | |
JPH06235040A (en) | High strength and heat resistant aluminum alloy, its integrated and solidified material and production thereof | |
JP3492681B2 (en) | Method for producing improved hypereutectic alloy and composite material based thereon | |
JPH0551683A (en) | Hypereutectic al-si powder metallurgical alloy with high strength | |
JPH05239583A (en) | High strength heat resistant aluminum alloy, its compacted and caked material and its production | |
JP3479204B2 (en) | Aluminum alloy casting for non-heat treatment and method for producing the same | |
JPS63312901A (en) | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder | |
JPH04120237A (en) | Aluminum base high damping material and its manufacture | |
JPH03134130A (en) | High damping material of aluminum alloy | |
JPH0218374B2 (en) | ||
JP3485961B2 (en) | High strength aluminum base alloy | |
JPH01255654A (en) | Manufacture of high damping aluminum alloy member | |
JPH042747A (en) | Manufacture of aluminum alloy high damping material | |
JPH03232949A (en) | Manufacture of aluminum alloy high damping material | |
JPH05171327A (en) | Aluminum alloy for high pressure casting | |
JPH0379738A (en) | High strength al alloy material | |
JP2921114B2 (en) | Method for manufacturing hypereutectic Al-Si alloy member having high strength and high toughness | |
JPH06212320A (en) | High perfrmance al alloy material and its prduction | |
JPS59150051A (en) | Wear-resistant aluminum alloy with high strength and its manufacture | |
JPS59166661A (en) | Preparation of aluminum alloy material excellent in abrasion resistance | |
JPH04345A (en) | Aluminum alloy high damping material | |
JPH03223446A (en) | Manufacture of aluminum alloy high damping material |