JPH0313363B2 - - Google Patents

Info

Publication number
JPH0313363B2
JPH0313363B2 JP58247592A JP24759283A JPH0313363B2 JP H0313363 B2 JPH0313363 B2 JP H0313363B2 JP 58247592 A JP58247592 A JP 58247592A JP 24759283 A JP24759283 A JP 24759283A JP H0313363 B2 JPH0313363 B2 JP H0313363B2
Authority
JP
Japan
Prior art keywords
ship
tensile
cable
tensile cable
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58247592A
Other languages
Japanese (ja)
Other versions
JPS60144408A (en
Inventor
Tadamune Aoki
Yasuhisa Tokuhara
Wataru Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP58247592A priority Critical patent/JPS60144408A/en
Publication of JPS60144408A publication Critical patent/JPS60144408A/en
Publication of JPH0313363B2 publication Critical patent/JPH0313363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/20Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/20Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
    • E02B3/26Fenders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は船舶侵入防護施設の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in ship intrusion protection facilities.

〔従来の技術〕[Conventional technology]

近年、船舶航行量の多い海域に長大橋等が建設
され、これに伴つて、その橋脚部等の水中構造物
に船舶が誤つて衝突する危険が多くなつてきた。
In recent years, long bridges and the like have been constructed in sea areas where there is a large amount of ship traffic, and as a result, the risk of ships accidentally colliding with underwater structures such as bridge piers has increased.

そこで水中構造物の周囲に防護施設を設置し
て、水中構造物に船舶が侵入した際、この防護施
設により船舶を受けとめ、船舶の衝突エネルギー
を吸収して船舶の水中構造物への衝突を防止し、
水中構造物および船舶の損傷を最小限に抑え得る
ようにしている。
Therefore, a protection facility is installed around the underwater structure, and when a ship enters the underwater structure, this protection facility will catch the ship and absorb the collision energy of the ship, preventing the ship from colliding with the underwater structure. death,
The aim is to minimize damage to underwater structures and ships.

しかしながら従来のこの種の防護施設は、第1
図に示すように、水中構造物Gの周囲の地盤Ga
に杭等の支柱aを立設し、この各支柱aにワイヤ
ーロープ等の抗張索材bを水中構造物Gの船舶の
侵入が予想される前面に適当な鉛直間隔をもつて
複数本を水平方向に平行に配設すると共に、抗張
索材bの両端末は互いにターンバツクル等の索材
緊張具cによつて緊張連絡することにより構成さ
れている。
However, conventional protection facilities of this type
As shown in the figure, the ground Ga around the underwater structure G
A plurality of tensile cables B such as wire ropes are attached to each of these supports A at appropriate vertical intervals in front of the underwater structure G where ships are expected to enter. Both ends of the tensile cable b are arranged in parallel in the horizontal direction and are tensioned and connected to each other by a cable tensioning device c such as a turnbuckle.

ところが、上述したような防護施設Aには次の
ような問題点がある。すなわち、 (1) この形式の防護施設Aは、結局抗張索材bの
弾性変形のみによつて船体Sの衝突エネルギー
を吸収せしめている。しかしながら抗張索材b
の変位量は比較的小さいため防護施設の吸収エ
ネルギーは少なく、また抗張索材bに張力を与
えると、この抗張索材bの弾性変形領域では歪
量に略比例して張力は増加し、船体の抗張索材
bとの接触部に生ずる抗張索材bからの反力が
高くなり、船体を破壊する危険性も高くなる。
However, the above-mentioned protective facility A has the following problems. That is, (1) This type of protection facility A absorbs the collision energy of the ship S only by elastic deformation of the tensile cable b. However, tensile cable b
Since the amount of displacement is relatively small, the energy absorbed by the protection facility is small, and when tension is applied to the tensile cable b, the tension increases approximately in proportion to the amount of strain in the elastic deformation region of the tensile cable b. , the reaction force from the tensile cable b generated at the contact portion of the hull with the tensile cable b increases, and the risk of destroying the hull also increases.

(2) またこの形式の防護施設Aは、想定した船体
強度以下の船体Sが接触した場合に、抗張索材
bからの反力によつて船体Sを損傷する恐れが
あり対象船舶は限定され、広範囲の衝突条件に
対応できない。
(2) In addition, this type of protection facility A is limited to applicable ships because if a ship S with less than the assumed hull strength comes into contact with the ship, the reaction force from the tensile cable b may damage the ship S. and cannot respond to a wide range of collision conditions.

(3) さらに抗張索材bを支持する支柱aは、船舶
衝突時の抗張索材bに作用する張力に基づく水
平外力に耐えるものとするには、支柱aの断面
積を大きくしたり、水底地盤Gaへの根入れ長
を大きくする必要があり、高耐力の杭支柱aを
配置しなければならない。
(3) Furthermore, in order for the strut a supporting the tensile rope b to withstand the horizontal external force based on the tension acting on the tensile rope b during a ship collision, the cross-sectional area of the strut a must be increased. , it is necessary to increase the penetration length into the underwater ground Ga, and it is necessary to arrange a high-bearing-strength pile support a.

また従来のこの種の防護施設の他の形式とし
て、第2図に示すように、抗張索材bを弾性のあ
る複数個のフロートdに中通しすると共に、その
両側にブイeを取り付けて浮遊せしめ、さらにこ
の各ブイeを係留索gを介して移動可能なアンカ
ー5により水底に係留して構成されており、橋脚
等水中構造物Gに船舶Sが誤つて侵入してきた
際、船舶Sは先ずフロートdを設けた抗張索材b
に衝突し、この時の衝撃力をフロートd及びブイ
eの浮力変化や移動可能なアンカー5で船舶の衝
突エネルギー吸収し、船舶を制動し得るようにな
つている。
In addition, as shown in Fig. 2, as another type of conventional protection facility of this type, a tensile cable b is passed through a plurality of elastic floats d, and buoys e are attached to both sides of the cable. Furthermore, each buoy e is moored to the bottom of the water by a movable anchor 5 via a mooring rope g, so that when the ship S accidentally enters an underwater structure G such as a pier, the ship S First, the tensile cable b provided with the float d
The impact force at this time is absorbed by the change in the buoyancy of the float d and the buoy e and the movable anchor 5, so that the ship can be braked.

ところが、このような防護施設Bには次のよう
な問題点がある。すなわち、 (1) 水中構造物Gに侵入する船舶Sは、まず抗張
索材bの外面を覆つたフロートdにて受衝さ
れ、ついでフロートdの列を侵入方向に移動
し、フロートd及びブイeを順次水没せしめ、
このフロートd及びブイeの浮力増加にともな
う抗張索材bの張力の漸増によつて反力を得、
さらには水底にある移動可能なアンカー5を移
動させる時の滑動抵抗により衝突エネルギーの
吸収力を得るようにしている。従つて、段階的
に緩衝できるので衝突船舶への反力も衝突エネ
ルギーに応じて比較的小さくすることができ
る。しかしながら水中構造物Gの手前で衝突船
舶を停止せしめるには、フロートdの列、ブイ
e、さらにはアンカー5の移動を必要とするの
で、防護施設Bを予め水中構造物Gより相当離
れた位置に設置しなければならず、防護施設の
専有面積が大きくなる。
However, such protection facility B has the following problems. That is, (1) A ship S intruding into an underwater structure G is first hit by a float d that covers the outer surface of a tensile cable b, then moves along a row of floats d in the intrusion direction, and then passes through a row of floats d and d. Submerge buoy e one by one,
A reaction force is obtained by gradually increasing the tension of the tensile cable b as the buoyancy of the float d and buoy e increases,
Furthermore, the ability to absorb collision energy is obtained by the sliding resistance when moving the movable anchor 5 on the bottom of the water. Therefore, since the damping can be performed in stages, the reaction force on the colliding vessel can also be made relatively small in accordance with the collision energy. However, in order to stop the colliding vessel in front of the underwater structure G, it is necessary to move the row of floats d, the buoy e, and even the anchor 5, so the protective facility B must be moved to a position considerably far from the underwater structure G. Therefore, the exclusive area of the protective facility becomes large.

(2) またフロートdの列に衝突船首が乗り上げる
と緩衝機能を発揮できない。
(2) Also, if the colliding bow runs aground on the row of floats d, the buffering function cannot be achieved.

(3) またアンカーfが移動した後、この防護施設
Bを再び使用する場合は、アンカーfを元の位
置に戻す必要がある。
(3) Furthermore, after anchor f has been moved, if this protective facility B is to be used again, it is necessary to return anchor f to its original position.

〔発明の目的〕[Purpose of the invention]

本発明は上述した問題点を解消すべく検討の結
果、導かれたものである。
The present invention was developed as a result of studies to solve the above-mentioned problems.

従つて本発明の目的は、防護施設の設置面積を
極力小さくできると共に、船体への反力を小さく
できて、船体破壊の危険性を低減し、かつ船体強
度の異なる種々の船舶の衝突に適用できる優れた
船舶侵入防護施設を提供することにある。
Therefore, an object of the present invention is to minimize the installation area of a protection facility, reduce the reaction force to the hull, reduce the risk of hull destruction, and be applicable to collisions between various ships with different hull strengths. Our goal is to provide excellent ship intrusion protection facilities.

〔発明の構成〕[Structure of the invention]

すなわち本発明は、水中構造物の少なくとも船
舶侵入側に複数本の支柱を間隔をおいて立設し、
この各支柱の吃水線付近に摺動部材を介して抗張
索材を張設し、さらにこの抗張索材の少なくとも
一端を重錘に連結して抗張索材に常時引張力を附
与したことを特徴とする船舶侵入防護施設を、そ
の要旨とするものである。
That is, the present invention provides a structure in which a plurality of supports are erected at intervals at least on the ship intrusion side of an underwater structure,
A tensile cable is strung through a sliding member near the water line of each strut, and at least one end of the tensile cable is connected to a weight to constantly apply tension to the tensile cable. The gist of this article is a ship intrusion protection facility that is characterized by:

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例により図面を参照して具体
的に説明する。
Hereinafter, the present invention will be specifically described by way of examples with reference to the drawings.

第3図及び第5図は本発明の各実施例からなる
船舶侵入防護施設を示し、第3図は第1実施例の
斜視説明図、第5図は第2実施例の斜視説明図で
あり、さらに第4図は船舶突入長さと抗張索材の
張力との関係を示す図である。
3 and 5 show ship intrusion protection facilities comprising each embodiment of the present invention, FIG. 3 is a perspective explanatory view of the first embodiment, and FIG. 5 is a perspective explanatory view of the second embodiment. Furthermore, FIG. 4 is a diagram showing the relationship between the vessel plunge length and the tension of the tensile cable material.

図においてEは本考案の各実施例からなる船舶
侵入防護施設で、水中構造物Gの少なくとも船舶
侵入側に複数本の支柱10を間隔をおいて立設
し、この各支柱10の吃水線W付近に摺動部材1
1を介して抗張索材20を張設し、さらにこの抗
張索材20の少なくとも一端を重錘30に連結し
て、抗張索材20に常時引張力を附与し得るよう
に構成されている。
In the figure, E denotes a ship intrusion protection facility consisting of each embodiment of the present invention, in which a plurality of columns 10 are erected at intervals at least on the ship intrusion side of the underwater structure G, and a water line W of each column 10 is provided. Sliding member 1 nearby
1, and at least one end of the tensile rope 20 is connected to a weight 30, so that a tensile force can be applied to the tensile rope 20 at all times. has been done.

さらにこの構造を説明すると、第3図に示す第
1実施例において、前記各支柱10は、水中構造
物Gの船舶侵入側を囲むよう地盤Gaに間隔をお
いて立設されており、この各支柱10の吃水線W
付近に摺動部材11を介して複数本の抗張索材2
0を水平に張設し、さらにこの各抗張索材20の
両端を重錘30に連結してある。
To further explain this structure, in the first embodiment shown in FIG. Water line W of pillar 10
A plurality of tensile cables 2 are connected nearby via a sliding member 11.
0 is stretched horizontally, and both ends of each tensile cable material 20 are connected to a weight 30.

前記支柱10は、本実施例のように鋼管杭や鉄
筋コンクリート杭からなる支柱を、水底の地盤
Gaに直接立設しても良く、または水中構造物G
の船舶侵入側にアーム(図示しない)を設け、こ
のアームに前記支柱10を立設しても良い。
The pillars 10 are made of steel pipe piles or reinforced concrete piles, as in this embodiment, and are attached to the ground at the bottom of the water.
It may be erected directly on Ga, or underwater structure G.
An arm (not shown) may be provided on the ship entry side, and the support 10 may be erected on this arm.

前者は、水中構造物G付近の水深が比較的浅い
場合や、杭打ちの容易な施工条件の場合に採用
し、後者は、水中構造物G付近の水深が深い場合
や、岩盤等杭打ち作業が困難な場合に採用すると
良い。
The former is used when the water depth near underwater structure G is relatively shallow or the construction conditions are such that pile driving is easy.The latter is used when the water depth near underwater structure G is deep or when pile driving work such as rock etc. It is recommended to use this method when it is difficult to do so.

支柱10の強度としては、船舶衝突時の抗張索
材20を通して加わる外力に抗するだけは必要と
なる。また支柱10の立設位置は、船舶衝突時の
抗張索材20の移動量から計算される船体侵入長
以上水中構造物Gの防護面を抗張索材20で囲え
るように、防護面の大小、形状および支柱強度等
に応じ適当なピツチで配置する。さらに支柱10
の断面形状は、コーナー部に位置する支柱で抗張
索材20を水中構造物Gの形状に応じて水平面内
で曲げたり、船体衝突時に抗張索材20の滑動や
変形を円滑に行ない、抗張索材20に局部的に集
中反力を生ぜしめぬよう、円形断面等適当な曲率
を有した断面形状が良い。
The strength of the strut 10 is only required to withstand the external force applied through the tensile cable material 20 at the time of a ship collision. In addition, the position of the strut 10 is set so that the protective surface of the underwater structure G can be surrounded by the tensile rope 20 at a depth that is longer than the hull penetration length calculated from the amount of movement of the tensile rope 20 at the time of a ship collision. Arrange them at an appropriate pitch depending on the size, shape, strength of the support, etc. Furthermore, 10 pillars
The cross-sectional shape of is such that the struts located at the corners bend the tension cable 20 in a horizontal plane according to the shape of the underwater structure G, and smoothly slide and deform the tension cable 20 in the event of a ship collision. A cross-sectional shape with an appropriate curvature, such as a circular cross-section, is preferable so that a locally concentrated reaction force is not generated on the tensile cable material 20.

前記抗張索材20としては、ワイヤーロープ、
ストランドケーブル、合繊索、チエーン等があ
り、張力条件に応じて選定する。曲げやすく、抗
張力が強い点でワイヤーロープが優れているが、
腐食しやすいスプラツシユゾーンに長期間展張さ
れるので、防食性のよいワイヤーロープ例えばワ
イヤーロープをゴムホース等可撓性中空円筒体に
通してワイヤーロープと中空円筒体の間隙に弾性
のあるウレタン等の防食注入材を充填したり、ワ
イヤーロープの外面をナイロン等で被覆したもの
が良い。
As the tensile cable material 20, wire rope,
There are strand cables, synthetic fiber ropes, chains, etc., which are selected according to the tension conditions. Wire rope is superior in that it is easy to bend and has strong tensile strength, but
Since it will be stretched over a long period of time in a splash zone that is prone to corrosion, a wire rope with good corrosion resistance, such as a wire rope, is passed through a flexible hollow cylindrical body such as a rubber hose, and an elastic material such as urethane is used in the gap between the wire rope and the hollow cylindrical body. It is best to use a wire rope filled with anti-corrosion injection material or coated with nylon or the like on the outer surface of the wire rope.

そしてこの抗張索材20の配置は前記支柱10
を支点として、単数又は適当な一定間隔で配した
複数本の抗張索材20を水面近くで水平に配置
し、侵入船舶を確実に捕捉できるようにするとよ
い。
The arrangement of the tensile cable material 20 is
It is preferable to arrange one or a plurality of tensile cables 20 horizontally near the water surface using the water as a fulcrum, so that intruding vessels can be reliably caught.

特に、潮位変動等で船舶侵入位置が上下方向に
変動する場合は複数の抗張索材20にて、上下方
向に多段に配置しておくべきである。各段の水平
に配した抗張索材相互は鉛直方向に数mピツチで
配した短索等で連結し格子状にしておくと侵入船
舶の捕捉効果をさらに向上でき望ましい。
In particular, when the ship entry position changes in the vertical direction due to changes in the tide level, etc., a plurality of tensile cables 20 should be arranged in multiple stages in the vertical direction. It is desirable to connect the horizontally arranged tensile cables of each stage with short cables arranged vertically at intervals of several meters to form a lattice shape, as this will further improve the effectiveness of catching intruding vessels.

前記摺動部材11は、本実施例において筒状に
形成され、支柱10の外周曲率に合せて曲げて前
述したように抗張索材を中通ししてある。11a
も摺動部材であるが抗張索材20を鉛直下向きに
誘導すべく適当な曲率で鉛直下向きに曲げてあ
る。尚本実施例の場合重錐30は連結索33で相
互に連結した2個の重錐31及び32から構成さ
れており、共に水底に静置してあり、原形に於い
て抗張索材には張力や弛みはないものとする。
In this embodiment, the sliding member 11 is formed into a cylindrical shape, bent to match the curvature of the outer circumference of the support column 10, and has a tensile cable passed through it as described above. 11a
Although it is a sliding member, it is bent vertically downward at an appropriate curvature in order to guide the tensile cable 20 vertically downward. In the case of this embodiment, the heavy cone 30 is composed of two conical cones 31 and 32 that are connected to each other by a connecting cable 33, both of which are placed on the bottom of the water, and in their original form, they cannot be used as tensile cables. Assume that there is no tension or slack.

第4図は本実施例の防護施設Eに船舶が突入し
たときの船舶の突入長と抗張索材張力の関係を図
示したものである。
FIG. 4 illustrates the relationship between the plunge length of the ship and the tension of the tensile cable when the ship rushes into the protection facility E of this embodiment.

上記防護施設Eに船舶Sが第3図の矢印の方向
から突入するとき摺動部材11,11aと抗張索
材20の摩擦抵抗を無視すると水平に展張した抗
張索材20に船体Sが接触し、抗張索材20の張
力が重錐31の水中重量W1になるまで抗張索材
20を弾性変形(伸び)させる(第4図O〜A
間)。ついで各重錐31,32を連結した連結索
33を緊張させるまで重錐31を吊り上げる(A
〜B)。そして抗張索材20の張力が重錐31,
32の水中重量の和W1+W2になり、連結索33
の張力が重錐32の水中重量W2になるまで抗張
索材20及び連結索33を弾性変形(伸び)させ
る。(B〜C間)更に船舶の衝突エネルギーを吸
収するまで重錐32をも吊り上げる。(C〜D間) 停止した船舶は抗張索材20からの反力により
押し戻され防護施設Eから離脱し、重錐30は水
底に戻り、抗張索材20も船舶突入前の原形に回
復する。
When the ship S rushes into the protection facility E from the direction of the arrow in FIG. contact and elastically deform (stretch) the tensile cable 20 until the tension of the tensile cable 20 reaches the underwater weight W1 of the heavy pyramid 31 (Fig. 4 O to A
while). Next, the heavy cone 31 is lifted until the connecting rope 33 connecting each of the conical cones 31 and 32 is tensed (A
~B). Then, the tension of the tensile cable material 20 is increased by the heavy cone 31,
The sum of the underwater weights of 32 is W1 + W2, and the connecting cable 33
The tensile cable material 20 and the connecting cable 33 are elastically deformed (stretched) until the tension reaches the underwater weight W2 of the heavy pyramid 32. (Between B and C) The heavy cone 32 is also lifted until it absorbs the ship's collision energy. (Between C and D) The stopped ship is pushed back by the reaction force from the tensile line 20 and leaves the protection facility E, the heavy cone 30 returns to the bottom of the water, and the tensile line 20 also returns to its original shape before the ship entered. do.

すなわち本防護施設Eは、船舶の衝突エネルギ
ーを、主として重錐の位置エネルギーに置換して
吸収せしめるものであるから、重錐の移動量や重
量を増減することにより緩衝能力を適宜設計で
き、船舶衝突条件、及船舶の許容突入長(水中構
造物と防護施設の間隔の許容長)に応じた最適な
防護施設を容易に設計できる。また船体強度の大
小、衝突エネルギーの大小等比較的広範囲の船舶
衝突にも適用できる防護施設を重量の異なる重錐
を組み合せる等により容易に設計できる。しかも
構造も単純であり維持管理も簡単である。
In other words, since this protection facility E mainly absorbs the collision energy of the ship by replacing it with the potential energy of the heavy cone, the buffering capacity can be designed as appropriate by increasing or decreasing the movement amount and weight of the heavy cone, and the ship Optimal protection facilities can be easily designed according to collision conditions and the allowable plunge length of the vessel (allowable length of distance between underwater structure and protection facility). In addition, a protection facility that can be applied to a relatively wide range of ship collisions due to the size of the hull strength and the size of the collision energy can be easily designed by combining heavy cones of different weights. Furthermore, the structure is simple and maintenance is easy.

また本発明による防護施設Eは索材、柱等潮
流、波浪等気海象外力の影響を受けにくい小断面
部材にて構成されているので、自然条件の厳しい
水域に設置される防護施設として、長期耐久性の
上で特に有利である。
In addition, the protection facility E according to the present invention is composed of small cross-section members such as cables and columns that are not easily affected by external weather and sea forces such as tidal currents and waves, so it can be used for a long period of time as a protection facility installed in water areas with severe natural conditions. This is particularly advantageous in terms of durability.

第5図は本発明の第2実施例である。本実施例
においては、水中構造物Gの船舶侵入面の全面に
3本の支柱10を図示のように平面視三角形状に
建て、この各支柱10に抗張索材20を三角形状
に展張し、各抗張索材20の両端末は斜め下方に
引き込み水中にてそれぞれ索状の重錐34に連結
し、この索状の重錐34は鉄塊状の重錐31に集
束してある。索状の重錐34としてはこの場合チ
エーンを用いている。
FIG. 5 shows a second embodiment of the invention. In this embodiment, three struts 10 are built on the entire surface of the ship entry surface of the underwater structure G in a triangular shape in plan view as shown in the figure, and tensile cables 20 are stretched around each strut 10 in a triangular shape. Both ends of each tensile cable 20 are drawn diagonally downward and connected to cable-shaped heavy pyramids 34 under water, and the cable-shaped heavy pyramids 34 are converged to a steel block-shaped heavy pyramid 31. In this case, a chain is used as the rope-like cone 34.

また前記重錐31は水中構造物G側にある2本
の支柱間のほぼ中央の水底に静置されており、索
状の重錐であるチエーン34は水底近傍の水中で
カテナリーカーブを描いて抗張索材20をある程
度緊張させている。
Further, the heavy cone 31 is placed stationary on the water bottom approximately in the center between the two columns on the side of the underwater structure G, and the chain 34, which is a cable-like heavy cone, draws a catenary curve in the water near the bottom. The tensile cable material 20 is tensed to some extent.

上記防護施設Eに船舶Sが第5図の矢印の方向
から突入するとき、水平に展張した抗張索材20
に船体Sが接触し、抗張索材20を船舶の進行方
向に引き込む。このとき水中にあるチエーン34
のカテナリーカーブの形状は直線に近づいていき
抗張索材20の張力を漸増させていく。さらに船
舶Sの防護施設E内への侵入が進み重錐31連結
部の各チエーン34の鉛直成分の総和が重錐31
の水中重量以上になると重錐31を水底より持ち
上げて抗張索材20の張力をさらに増加させ、船
舶の衝突エネルギーを吸収する。停止した船舶は
抗張索材20からの反力により押し戻され防護施
設Eから離脱し、重錐31も水底のほぼ元の位置
に戻り、チエーン34もほぼ元のカテナリーカー
ブに戻り、抗張索材20も船舶衝突前の原形に回
復する。
When the ship S enters the protection facility E from the direction of the arrow in Fig. 5, the tensile cable 20 stretched horizontally
The hull S comes into contact with and pulls the tensile cable 20 in the direction of travel of the ship. Chain 34 in the water at this time
The shape of the catenary curve approaches a straight line, and the tension of the tensile cable material 20 is gradually increased. Furthermore, as the ship S intrudes into the protection facility E, the sum of the vertical components of each chain 34 of the connection part of the heavy cone 31 increases.
When the underwater weight exceeds , the heavy cone 31 is lifted from the water bottom to further increase the tension of the tensile cable 20 and absorb the collision energy of the ship. The stopped ship is pushed back by the reaction force from the tensile cable material 20 and leaves the protection facility E, the heavy cone 31 returns to its original position on the water bottom, the chain 34 also returns to its original catenary curve, and the tensile cable The material 20 also recovers to its original shape before the ship collision.

本実施例の場合、船舶衝突時の第1次の緩衝と
してカテナリーカーブを描いた索状の重錐、すな
わちチエーン34のカーブを船舶侵入に応じて直
線に近づかせ抗張索材20の張力を漸増させて船
体Sへの反力を得るものであり、衝突初期に船体
に衝撃を与えないという利点がある。また索状重
錐34、塊状重錐31の長さ、重量、組み合せ方
等により、緩衝能力を適宜設計できる。特に索状
重錐としてチエーンの廃材を利用でき資源の有効
活用も計れる。
In the case of this embodiment, the tension of the tensile rope material 20 is reduced by making the curve of the chain 34, which is a cable-like cone with a catenary curve, as the primary buffer in the event of a ship collision, approach a straight line as the ship enters. This is to obtain a reaction force to the hull S by gradually increasing it, and has the advantage of not applying a shock to the hull at the initial stage of a collision. Further, the buffering capacity can be appropriately designed by adjusting the length, weight, combination, etc. of the cable-like heavy pyramid 34 and the block-like heavy pyramid 31. In particular, waste wood from chains can be used as a rope-like cone, allowing for effective use of resources.

なお潮流に流されて侵入してくる漂流船や、航
路と平行に侵入してくる居眠り運転による航行船
等、特定の方向からの船舶侵入が多く考えられる
水中構造物Gへの設置には、上述した本実施例の
ように抗張索材20を三角形状に展張し、抗張索
材20を船舶20の主たる侵入方向に対しある角
度をもつて展張し、侵入船舶を抗張索材20から
の反力にて進路変更を促進し得るようにすること
が好ましい。このように侵入船舶の進路変更を行
なわしめれば、防護施設によつて侵入船舶の衝突
エネルギーの全てを吸収しなくてもよく、防護施
設の規模縮少が可能となり有効である。
In addition, when installing on underwater structures G where there are many cases of ship intrusion from specific directions, such as drifting ships that are carried by the tide and ships that are drowsy driving that enter parallel to the navigation route, As in the present embodiment described above, the tensile line material 20 is stretched in a triangular shape, and the tensile line material 20 is stretched at a certain angle with respect to the main intrusion direction of the ship 20, so that the intruding ship is protected from the tensile line material 20. Preferably, the course change can be facilitated by a reaction force from the vehicle. If the course of the intruding vessel is changed in this way, it is not necessary for the protection facility to absorb all of the collision energy of the intruding vessel, and it is possible to reduce the scale of the protection facility, which is effective.

〔発明の効果〕〔Effect of the invention〕

本発明は上述したように、水中構造物の少なく
とも船舶侵入側に複数本の支柱を間隔をおいて立
設し、この各支柱の吃水線付近に摺動部材を介し
て抗張索材を張設し、さらにこの抗張索材の少な
くとも一端を重錘に連結して抗張索材に常時引張
力を附与したから、次のような効果を奏する。す
なわち、 (1) 船舶の衝突エネルギーを主として重錘の位置
エネルギーに置換して吸収せしめることができ
るので、重錐の移動量や重量を増減することに
より、緩衝能力を適宜設計でき設計の自由度を
向上することができる。
As described above, the present invention includes a plurality of struts erected at intervals at least on the ship intrusion side of an underwater structure, and tensile cables are stretched around the water line of each strut via sliding members. In addition, at least one end of this tensile cable material is connected to a weight to constantly apply a tensile force to the tensile cable material, so that the following effects are achieved. In other words, (1) Since the collision energy of the ship can be absorbed mainly by replacing it with the potential energy of the weight, the buffering capacity can be designed as appropriate by increasing or decreasing the movement amount and weight of the weight, increasing the degree of freedom in design. can be improved.

(2) 重量の異なる重錐を組み合せたり、重錐相互
の連結状態を調整することにより、船体強度の
大小あるいは衝突エネルギーの大小等比較的広
範囲の船舶衝突に対応せしめることができる。
(2) By combining heavy cones with different weights or adjusting the mutual connection state of the conical cones, it is possible to respond to a relatively wide range of ship collisions depending on the strength of the hull or the magnitude of collision energy.

(3) 船舶の衝突エネルギーを吸収し終つた後は、
船舶を抗張索材の反力により自動的に押し戻し
防護施設から離脱せしめることができ、しかも
重錐は水底及び水中の初期位置に自動的に戻
り、抗張索材も船舶突入前の原形に回復し得る
ので、衝突のたびに防護施設を設置し直す手間
を省略できる。
(3) After absorbing the ship's collision energy,
The ship can be automatically pushed back and removed from the protective facility by the reaction force of the tensile line, and the heavy cone automatically returns to the bottom and initial position underwater, and the tensile line also returns to its original shape before the ship enters. Since it can be recovered, it eliminates the need to reinstall protective facilities every time there is a collision.

(4) 抗張索材、支柱、重錐等を、水域に於ける使
用実積の多い土木材料を主体にして構成できる
ので、信頼性及び耐久性を向上することがで
き、また比較的簡単な構造なので部材の交換や
維持管理も容易に行なえる。
(4) Since tensile cables, struts, heavy cone, etc. can be constructed mainly from civil engineering materials that are often used in water bodies, reliability and durability can be improved, and it can be constructed relatively easily. The structure allows for easy replacement and maintenance of parts.

(5) 潮流、波浪等気海象外力の影響を受けにくい
小断面部材により構成されているので自然条件
の厳しい水域に設置する防護施設として適して
いる。
(5) It is made of small cross-section members that are less susceptible to external weather and sea forces such as tidal currents and waves, making it suitable as a protective facility installed in water areas with severe natural conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ従来のこの種の船
舶侵入防護施設を示す斜視説明図、第3図及び第
5図は本発明の各実施例からなる船舶侵入防護施
設を示し、第3図は第1実施例の斜視説明図、第
5図は第2実施例の斜視説明図であり、さらに第
4図は船舶突入長さと抗張索材の張力との関係を
示す図である。 10……支柱、10w……支柱の吃水線、11
……摺動部材、20……抗張索材、30……重
錘、G……水中構造物。
1 and 2 are perspective explanatory views showing conventional ship intrusion protection facilities of this type, FIGS. 3 and 5 show ship intrusion protection facilities according to embodiments of the present invention, and FIG. 5 is a perspective explanatory view of the first embodiment, FIG. 5 is a perspective explanatory view of the second embodiment, and FIG. 4 is a diagram showing the relationship between the vessel plunge length and the tension of the tensile cable material. 10... Strut, 10w... Strut water line, 11
... Sliding member, 20 ... Tensile cable material, 30 ... Weight, G ... Underwater structure.

Claims (1)

【特許請求の範囲】[Claims] 1 水中構造物の少なくとも船舶侵入側に複数本
の支柱を間隔をおいて立設し、この各支柱の吃水
線付近に摺動部材を介して抗張索材を張設し、さ
らにこの抗張索材の少なくとも一端を重錘に連結
して抗張索材に常時引張力を附与したことを特徴
とする船舶侵入防護施設。
1 A plurality of struts are erected at intervals on at least the ship entry side of the underwater structure, tensile cables are strung through sliding members near the waterline of each strut, and the tensile cables are A ship intrusion protection facility characterized in that at least one end of the cable is connected to a weight to constantly apply tension to the tensile cable.
JP58247592A 1983-12-29 1983-12-29 Buffer facility for underwater structure Granted JPS60144408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58247592A JPS60144408A (en) 1983-12-29 1983-12-29 Buffer facility for underwater structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58247592A JPS60144408A (en) 1983-12-29 1983-12-29 Buffer facility for underwater structure

Publications (2)

Publication Number Publication Date
JPS60144408A JPS60144408A (en) 1985-07-30
JPH0313363B2 true JPH0313363B2 (en) 1991-02-22

Family

ID=17165796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58247592A Granted JPS60144408A (en) 1983-12-29 1983-12-29 Buffer facility for underwater structure

Country Status (1)

Country Link
JP (1) JPS60144408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142090A (en) * 2015-02-04 2016-08-08 Jfe建材株式会社 Tsunami barrier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2009132C2 (en) 2012-07-05 2014-01-07 Mrconsult B V BRAKING.
CN105696524B (en) * 2016-01-22 2017-08-25 宁波大学 A kind of ship method for arresting of high frictional resistance
JP6739271B2 (en) * 2016-07-28 2020-08-12 Jfe建材株式会社 Tsunami barrier
CN113748244A (en) * 2020-10-10 2021-12-03 嘉兴金喜莱科技有限公司 Energy releasing structure of pier sliding block and calculation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142090A (en) * 2015-02-04 2016-08-08 Jfe建材株式会社 Tsunami barrier

Also Published As

Publication number Publication date
JPS60144408A (en) 1985-07-30

Similar Documents

Publication Publication Date Title
US7744313B2 (en) Fixed security barrier
CN2895522Y (en) Anti-collision inteception facility
US3357192A (en) Breakwaters
US4813815A (en) Buoyant, elastically tethered articulated marine platform
CN112591015B (en) Protective device for intercepting large-scale moving object on water surface
US3969901A (en) Floating breakwaters
JP5345727B1 (en) Wave absorber
US20120076590A1 (en) Protective device of the floating barrier type
US4373837A (en) Pier with prestressed resiliant integral deck to absorb docking forces of ships
KR101671260B1 (en) Liquid repellent material according to the sea level
US4098086A (en) Breakwater
GB2024292A (en) Barriers for preventing marine collisions
US5224800A (en) Protective system against icebergs or floating objects
JPH0313363B2 (en)
US4342277A (en) Anchoring system for floating moorage
RU2572563C1 (en) Mobile floating wave breaker
US4135467A (en) Means of protection against the shocks of ships coming alongside, particularly for platforms of the off-shore type
CN210597208U (en) Distributed overhead anchor-walking energy-dissipating ship intercepting facility
EP2870295A1 (en) Fender
JPS6319377Y2 (en)
GB1602512A (en) Apparatus for arresting a floating vessel
RU156729U1 (en) ANTI-BOAT BON BOOT
CA1232768A (en) Device for protecting marine installations against icebergs
US5517936A (en) Tautline boat mooring system
JPH0415778Y2 (en)