JPH0313313B2 - - Google Patents

Info

Publication number
JPH0313313B2
JPH0313313B2 JP63053565A JP5356588A JPH0313313B2 JP H0313313 B2 JPH0313313 B2 JP H0313313B2 JP 63053565 A JP63053565 A JP 63053565A JP 5356588 A JP5356588 A JP 5356588A JP H0313313 B2 JPH0313313 B2 JP H0313313B2
Authority
JP
Japan
Prior art keywords
anode
conductive medium
medium particles
plate
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63053565A
Other languages
Japanese (ja)
Other versions
JPH01230791A (en
Inventor
Akihiro Myake
Yoshinori Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63053565A priority Critical patent/JPH01230791A/en
Publication of JPH01230791A publication Critical patent/JPH01230791A/en
Publication of JPH0313313B2 publication Critical patent/JPH0313313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は有価金属又は有害金属を含有する溶液
から、これら金属を採取する電解採取装置に関す
る。 〔従来の技術〕 メツキ廃水等に含まれる有価金属の回収や有害
金属の除去に用いられる装置として、第1図に示
すような充填床式の電解採取装置が知られてい
る。この装置は垂直に設けられた板状アノード2
と、該アノードに対置された板状カソード3を備
え、アノードとカソードとの間に導電性媒体粒子
5として、例えばグラフアイト粒子等を充填した
もので、処理すべき溶液を両電極間を流すことに
より含まれている金属を電解により前記グラフア
イト粒子等の表面に析出させ、回収するものであ
る。該装置においては、導電性媒体粒子はカソー
ドと接触して稼動時にはカソードの一部として機
能するものであるため、アノードとは接触により
短絡が起きないように間隙を保つておく必要があ
る。そのため、アノードの近傍に、通常、格子
状、スパイラル状等のスペーサ6を介してアノー
ド表面から離隔して隔膜4が設けられ、該隔膜に
よつて導電性媒体粒子がアノードと接触すること
を防止している。しかしながら上記装置では、導
電性媒体粒子のアノードに近い側ほど金属の析出
が著しく、該導電性媒体粒子の内部層や板状カソ
ードに近い部分では、まだ金属析出能力が十分に
残つているにもかかわらず、有効な電解析出状態
を維持できず、充填されている導電性媒体粒子を
早いサイクルで新品と交換したり、再生に行う必
要があるなどの不都合があつた。特に処理すべき
溶液の電気伝導度が低い場合に一層、上記不都合
が顕著であつた。 〔発明が解決しようとする課題〕 そこで、本発明の目的は、上記問題点を解消
し、処理すべき溶液の電気伝導度が低い場合にお
いても初期の電解採取効率を長期間維持させるこ
とができる金属電解採取装置を提供することにあ
る。 〔課題を解決するための手段〕 上記問題点を解消するために板状アノードと該
アノードに対向して設置された板状アノードと、
前記アノードの表面近傍にかつ該表面から離隔し
て設けられた透液性隔膜と、前記カソードと前記
透液性隔膜との間に設けられた導電性媒体粒子充
填床とを備えた充填床式電解採取装置において、
前記導電性媒体粒子として嵩密度0.01〜0.035
g/cm3の炭素繊維を用い、前記充填床へ充填密度
0.02〜0.05g/cm3で充填した点に特徴がある。 〔作用〕 該炭素繊維の形態はフエルト、マツト、チヨ
プ、ミルド、ヤーン等が挙げられ、フエルト、マ
ツトが好適である。このような繊維を一種類又は
二種類以上を混合して使用することができる。該
炭素繊維の嵩密度は0.01〜0.035g/cm3が良く、
更に望ましくは0.020〜0.031g/cm3である。もし
も0.01g/cm3未満であると、該炭素繊維の電極と
しての有効面積が少くなり、逆に0.035g/cm3
越えると、電解時に発生する水素ガスのガス抜け
が不良となりそのため有効な電解が進行しなくな
り不都合である。該炭素繊維を該充填床へ充填す
るに当り、充填密度が0.02〜0.05g/cm3、更に望
ましくは0.026〜0.047g/cm3とすることが重要で
ある。もしも、0.02g/cm3未満であると有効な電
解面積が小さくなり、逆に0.05g/cm3を越えると
該ガス抜けが不良となり良くない。 〔実施例〕 横幅6cm、奥行4cm、高さ10cm(内寸)の塩化
ビニール製の電解槽で、板状アノードと隔膜との
面間距離を0.3cmとし、板状カソードと隔膜との
面間距離を3cmとなるようにし、板状アノードと
しては5.5×12.0×0.2cmの酸化ルテニウム(TDK
製)を用い、板状カソードとしては6×12.0×5
cmのグラフアイト板(東洋カーボン製)を使用し
た。充填床に直径12〜13μm体積固有抵抗率1.5〜
1.6×10-2Ω・cm、嵩密度0.020、0.026、0.031g/
cm3のフエルト状炭素繊維(大阪ガス製)を高さ8
cmのところまで、充填密度0.042g/cm3で順番に
充填し、試験に用いた。処理水溶液としてはCu、
500g/のピロリン酸銅溶液を電気伝導度が
7.8mS/cmとなるように調整し、上記電解装置に
0.29/Hで供給し、陰極板に対する電流密度
2.0A/dm2、室温20℃で電解を行つた。金属の
回収率目標を95%として、処理時間を求めた。こ
の結果を第1表に示す。 実施例 2 嵩密度0.020g/cm3のフエルト状炭素繊維を充
填密度0.026、0.039、0.047g/cm3とした以外は実
施例1と同じ処理水溶液および電解条件で実験を
した。この結果を第1表に示す。 〔比較例〕 フエルト状炭素繊維を嵩密度0.015および、
0.047g/cm3、充填密度0.042g/cm3とした場合、
フエルト状炭素繊維を嵩密度0.020g/cm3、充填
密度0.020および0.057g/cm3とした場合、更に−
7〜+9メツシユ(JIS規格)のグラフアイト粒
子を、それぞれ導電性媒体粒子として用いた以外
は実施例1と同じ処理水溶液および電解条件で実
験した。これらの結果を第1表に示す。 第1表から明らかなように、本発明による実施
例では、処理時間が約33時間となり、充填床の寿
命が延びていることがわかる。
[Industrial Application Field] The present invention relates to an electrowinning apparatus for extracting valuable metals or toxic metals from a solution containing these metals. [Prior Art] A packed bed type electrowinning apparatus as shown in FIG. 1 is known as an apparatus used for recovering valuable metals and removing harmful metals contained in waste water and the like. This device consists of a plate-shaped anode 2 installed vertically.
and a plate-shaped cathode 3 placed opposite to the anode, and conductive medium particles 5 such as graphite particles are filled between the anode and the cathode, and the solution to be treated is caused to flow between the two electrodes. The metal contained therein is deposited on the surface of the graphite particles etc. by electrolysis and recovered. In this device, since the conductive medium particles come into contact with the cathode and function as part of the cathode during operation, it is necessary to maintain a gap from the anode to prevent a short circuit from occurring due to contact. Therefore, a diaphragm 4 is provided near the anode and separated from the anode surface via a spacer 6 in the form of a grid, spiral, etc., and the diaphragm prevents conductive medium particles from coming into contact with the anode. are doing. However, in the above-mentioned apparatus, metal precipitation is more pronounced on the side of the conductive medium particles closer to the anode, and even though the inner layer of the conductive medium particles and the portion closer to the plate-like cathode still have sufficient metal deposition ability. However, there are disadvantages in that an effective electrolytic deposition state cannot be maintained and the filled conductive medium particles must be replaced with new ones or regenerated at an early cycle. The above-mentioned disadvantages were particularly noticeable when the electrical conductivity of the solution to be treated was low. [Problems to be Solved by the Invention] Therefore, an object of the present invention is to solve the above problems and to maintain the initial electrowinning efficiency for a long period of time even when the electrical conductivity of the solution to be treated is low. An object of the present invention is to provide a metal electrowinning device. [Means for solving the problem] In order to solve the above problems, a plate-shaped anode and a plate-shaped anode installed opposite to the anode,
A packed bed type comprising a liquid permeable diaphragm provided near the surface of the anode and spaced apart from the surface, and a bed packed with conductive medium particles provided between the cathode and the liquid permeable diaphragm. In electrowinning equipment,
The bulk density of the conductive medium particles is 0.01~0.035
g/cm 3 of carbon fiber, and the packing density was increased to the packed bed.
It is characterized by being filled with 0.02 to 0.05 g/cm 3 . [Function] Examples of the form of the carbon fibers include felt, mat, yarn, milled, yarn, etc., with felt and mat being preferred. One type of such fibers or a mixture of two or more types can be used. The bulk density of the carbon fiber is preferably 0.01 to 0.035 g/ cm3 ,
More preferably, it is 0.020 to 0.031 g/cm 3 . If it is less than 0.01 g/cm 3 , the effective area of the carbon fiber as an electrode will be reduced, and if it exceeds 0.035 g/cm 3 , hydrogen gas generated during electrolysis will not be able to escape properly, so it will not be effective. This is inconvenient because electrolysis does not proceed. When filling the packed bed with the carbon fibers, it is important that the packing density is 0.02 to 0.05 g/cm 3 , more preferably 0.026 to 0.047 g/cm 3 . If it is less than 0.02 g/cm 3 , the effective electrolyzing area will be small, and if it exceeds 0.05 g/cm 3 , the gas release will be poor, which is not good. [Example] In a vinyl chloride electrolytic cell with a width of 6 cm, a depth of 4 cm, and a height of 10 cm (inner dimensions), the distance between the plate anode and the diaphragm was 0.3 cm, and the distance between the plate cathode and the diaphragm was 0.3 cm. The distance was set to 3 cm, and the plate anode was made of 5.5 x 12.0 x 0.2 cm of ruthenium oxide (TDK
6 x 12.0 x 5 as a plate cathode.
cm graphite plate (manufactured by Toyo Carbon) was used. Filled bed with a diameter of 12~13μm and a volume resistivity of 1.5~
1.6×10 -2 Ω・cm, bulk density 0.020, 0.026, 0.031g/
cm 3 felt-like carbon fiber (manufactured by Osaka Gas) with a height of 8
It was filled in order at a filling density of 0.042 g/cm 3 up to a point of 0.3 cm, and used for the test. Cu as a treatment aqueous solution,
Electric conductivity of 500g/copper pyrophosphate solution
Adjust it to 7.8mS/cm and apply it to the above electrolyzer.
Current density to the cathode plate is supplied at 0.29/H.
Electrolysis was carried out at 2.0 A/dm 2 and a room temperature of 20°C. The processing time was determined with a metal recovery target of 95%. The results are shown in Table 1. Example 2 An experiment was conducted using the same treated aqueous solution and electrolytic conditions as in Example 1 , except that felt carbon fibers with a bulk density of 0.020 g/cm 3 were used at packing densities of 0.026, 0.039, and 0.047 g/cm 3 . The results are shown in Table 1. [Comparative example] Felt-like carbon fibers with a bulk density of 0.015 and
When the filling density is 0.047g/cm 3 and 0.042g/cm 3 ,
When the felt carbon fiber has a bulk density of 0.020 g/cm 3 and a packing density of 0.020 and 0.057 g/cm 3 , -
Experiments were conducted using the same treated aqueous solution and electrolytic conditions as in Example 1, except that graphite particles of 7 to +9 mesh (JIS standard) were used as conductive medium particles. These results are shown in Table 1. As is clear from Table 1, in the example according to the present invention, the processing time was approximately 33 hours, indicating that the life of the packed bed was extended.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低電気伝導度、希薄濃度の処
理液から金属を高回収率で回収し、充填床の寿命
を延ばすことができ、工業排水の処理に貢献する
ところ極めて大である。
According to the present invention, it is possible to recover metals at a high recovery rate from a treatment liquid with low electrical conductivity and dilute concentration, and the life of the packed bed can be extended, which greatly contributes to the treatment of industrial wastewater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は充填床式電解採取装置の縦断面を示
す。 1……電解槽、4……隔膜、5……導電性媒体
粒子、7……処理水入口、8……処理水出口。
FIG. 1 shows a longitudinal section of a packed bed type electrowinning device. 1... Electrolytic cell, 4... Diaphragm, 5... Conductive medium particles, 7... Treated water inlet, 8... Treated water outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 板状アノードと該アノードに対向して設置さ
れた板状カソードと、前記アノードの表面近傍に
かつ該表面から離隔して設けられた透液性隔膜
と、前記カソードと前記透液性隔膜との間に設け
られた導電性媒体粒子充填床とを備えた充填床式
電解採取装置において、前記導電性媒体粒子とし
て嵩密度0.01〜0.035g/cm3の炭素繊維を用い、
前記充填床へ充填密度0.02〜0.05g/cm3で充填し
た金属電解採取装置。
1. A plate-shaped anode, a plate-shaped cathode installed opposite to the anode, a liquid-permeable diaphragm provided near the surface of the anode and spaced apart from the surface, and the cathode and the liquid-permeable diaphragm. In a packed bed type electrowinning apparatus equipped with a packed bed of conductive medium particles provided between the conductive medium particles, carbon fibers having a bulk density of 0.01 to 0.035 g/cm 3 are used as the conductive medium particles,
A metal electrowinning device in which the packed bed is filled with a packing density of 0.02 to 0.05 g/cm 3 .
JP63053565A 1988-03-09 1988-03-09 Apparatus for electrowinning metal and electrowinning method using same Granted JPH01230791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053565A JPH01230791A (en) 1988-03-09 1988-03-09 Apparatus for electrowinning metal and electrowinning method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053565A JPH01230791A (en) 1988-03-09 1988-03-09 Apparatus for electrowinning metal and electrowinning method using same

Publications (2)

Publication Number Publication Date
JPH01230791A JPH01230791A (en) 1989-09-14
JPH0313313B2 true JPH0313313B2 (en) 1991-02-22

Family

ID=12946345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053565A Granted JPH01230791A (en) 1988-03-09 1988-03-09 Apparatus for electrowinning metal and electrowinning method using same

Country Status (1)

Country Link
JP (1) JPH01230791A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305987A (en) * 1989-05-22 1990-12-19 Kamioka Kogyo Kk Single-electrode electrolytic cell and electrolytic method using the cell
JPH0387400A (en) * 1989-08-30 1991-04-12 Kamioka Kogyo Kk Single-electrode electrolytic cell and electrolyzing method
CN111675284A (en) * 2020-04-17 2020-09-18 生态环境部华南环境科学研究所 Three-dimensional electrolysis device for treating waste copper waste liquid

Also Published As

Publication number Publication date
JPH01230791A (en) 1989-09-14

Similar Documents

Publication Publication Date Title
US2273795A (en) Electrolytic process
US4004994A (en) Electrochemical removal of contaminants
JPS6347778B2 (en)
EP0171478B1 (en) Electrolyzing process and electrolytic cell employing fluidized bed
US3650925A (en) Recovery of metals from solution
CA1257222A (en) Removal of arsenic from acids
CN111321428B (en) Method for waste mercuric chloride catalyst molten salt electrolysis regeneration and mercury recovery
CA1087131A (en) Electrolytic removal of heavy metal ions from aqueous solutions
JPH0313313B2 (en)
JP2520674B2 (en) Method and device for recovering metal supported on carrier
JP4501726B2 (en) Electrowinning of iron from acidic chloride aqueous solution
JP2005036245A (en) Process for electrochemical decomposition of precursors in powder form and electrolysis cell suitable therefor
JPH01501951A (en) drum electrolysis
US3017336A (en) Preparation of fluorocarbon nitriles
US4208258A (en) Method for the recovery of mercury and other heavy metal ions from a liquid stream
EP0172847B1 (en) Metal recovery process
KR20010049521A (en) Electrolysis process
JPH0633288A (en) Electrolytic metal collecting method
EP0267704A1 (en) Electrochemical removal of chromium from chlorate solutions
US2144119A (en) Recovery of iodine from charcoal
US3647653A (en) Purification of brine
JPH032959B2 (en)
KR20140054031A (en) Effect of operating parameters on the performance of electrochemical cell in copper-chlorine cycle
JP5362365B2 (en) Recycling method of iron chloride waste liquid and iron chloride waste liquid recycling apparatus
US1186306A (en) Process of extracting metals from their ores.