JPH03132017A - Method of forming crystal - Google Patents

Method of forming crystal

Info

Publication number
JPH03132017A
JPH03132017A JP26911389A JP26911389A JPH03132017A JP H03132017 A JPH03132017 A JP H03132017A JP 26911389 A JP26911389 A JP 26911389A JP 26911389 A JP26911389 A JP 26911389A JP H03132017 A JPH03132017 A JP H03132017A
Authority
JP
Japan
Prior art keywords
crystal
forming
nucleation
iii
crystal according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26911389A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tokunaga
博之 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26911389A priority Critical patent/JPH03132017A/en
Publication of JPH03132017A publication Critical patent/JPH03132017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high quality III-V compound single crystal efficiently and with a high growth speed by a method wherein creation of seeds on a non-seed-forming surface is avoided and a single seed is created on a seed forming surface only in the initial stage of seed forming and a raw material density is increased in a growth stage. CONSTITUTION:A thin film 2 made of material whose crystal seed forming density is low (for instance non-single-crystalline SiO2) is built up on a quartz substrate 1 to form a non-seed- forming surface 3. Non-single-crystalline Al2O3 layers 4 which have a higher seed forming density than the surface 3 are formed. The area of the layer 4 is not larger than 2mum square, i.e., the area in which only one seed can be formed. II-V compound crystal seeds 9 are created by an MOCVD method. In an initial stage, a reaction pressure is selected to be 0.1Torr and a V-group/III-group mol ratio of raw gas is selected to be non less than 45 to avoid the defects caused by the lack of V-group atoms. In the growth stage of single crystals 10 after the crystal seeds 9 are made to grow, the reaction pressure is selected to be the atmospheric pressure and the V-group/III-group mol ratio is selected to be not less than 28 to avoid the waste consumption of the V-group raw material. After that, the crystals are made to grow horizontally onto the non-seed-forming surface 3. With this constitution, the high quality III-V compound single crystals can be obtained efficiently and with a high growth speed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はIII −V族化合物結晶およびその形成法に
関し、特に堆積面材料の種類による堆積材料の核形成密
度の差を利用して作成した■−V族化合物単結晶ないし
粒径が制御された■−v族化合物多結晶の形成方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a III-V group compound crystal and a method for forming the same, and in particular, a crystal formed by utilizing the difference in the nucleation density of the deposited material depending on the type of the deposition surface material. The present invention relates to a method for forming (1)-V group compound single crystals or (2)-V group compound polycrystals with controlled particle sizes.

本発明は、例えば半導体集積回路、光集積回路、光素子
等に使用される単結晶や多結晶等の結晶の形成に適用さ
れる。
The present invention is applied to the formation of crystals such as single crystals and polycrystals used for, for example, semiconductor integrated circuits, optical integrated circuits, optical devices, and the like.

[従来の技術] 従来、半導体電子素子や光素子等に用いられる単結晶薄
膜は、単結晶基板上にエピタキシャル成長させることで
形成されていた。例えば、Si単結晶基板(シリコンウ
ェハ)上には、Si、 Ge、 GaAs等を液相、気
相または固相からエピタキシャル成長することが知られ
ており、またGaAs単結晶基板上にはGaAs、 G
aAlAs等の単結晶がエピタキシャル成長することが
知られている。このようにして形成された半導体薄膜を
用いて、半導体素子および集積回路、半導体レーザーや
LED等の発光素子等が作製される。
[Prior Art] Conventionally, single-crystal thin films used in semiconductor electronic devices, optical devices, and the like have been formed by epitaxial growth on single-crystal substrates. For example, it is known that Si, Ge, GaAs, etc. are epitaxially grown on a Si single crystal substrate (silicon wafer) from a liquid phase, gas phase, or solid phase, and GaAs, Ge, etc. are grown on a GaAs single crystal substrate (silicon wafer).
It is known that single crystals such as aAlAs can be epitaxially grown. Using the semiconductor thin film thus formed, semiconductor elements, integrated circuits, light emitting elements such as semiconductor lasers and LEDs, etc. are manufactured.

また、最近、二次元電子ガスを用いた超高速トランジス
タや、量子井戸を利用した超格子素子等の研究開発が盛
んであるが、これらを可能にしたのは、例えば超高真空
を用いたMBE (分子線エピタキシー)やMOCVD
 (有機金属化学気相法)等の高精度エピタキシャル技
術である。
In addition, recently there has been much research and development into ultrahigh-speed transistors using two-dimensional electron gas and superlattice devices using quantum wells. (molecular beam epitaxy) and MOCVD
(organometallic chemical vapor phase method) and other high-precision epitaxial technologies.

このような単結晶基板上のエピタキシャル成長では、基
板の単結晶材料とエピタキシャル成長層との間に、格子
定数と熱膨張係数とを整合をとる必要がある。この整合
が不十分であると格子欠陥がエピタキシャル層に発達す
る。また基板を構成する元素がエピタキシャル層に拡散
することもある。
In such epitaxial growth on a single crystal substrate, it is necessary to match the lattice constant and thermal expansion coefficient between the single crystal material of the substrate and the epitaxial growth layer. If this alignment is insufficient, lattice defects will develop in the epitaxial layer. Additionally, elements constituting the substrate may diffuse into the epitaxial layer.

このように、エピタキシャル成長による従来の単結晶薄
膜の形成方法は、その基板材料に大きく依存することが
分る。Mathews等は、基板材料とエピタキシャル
成長層との組合せを調べている(EPITAXIAL 
GROWTH,Academic Press、 Ne
w York。
Thus, it can be seen that the conventional method of forming a single crystal thin film by epitaxial growth largely depends on the substrate material. Mathews et al. investigate combinations of substrate materials and epitaxially grown layers (EPITAXIAL
GROWTH, Academic Press, Ne
w York.

1975 ed、by J、W、Mathews)。1975 ed. by J.W. Mathews).

また、基板の大きさは、現在Stウェハで6インチ程度
であり、GaAs+サファイア基板の大型化は更に遅れ
ている。加えて、単結晶基板は製造コストが高いために
、チップ当りのコストが高くなる。
Furthermore, the size of the substrate is currently about 6 inches for St wafers, and the increase in the size of GaAs+sapphire substrates has been delayed even further. In addition, single crystal substrates are expensive to manufacture, resulting in a high cost per chip.

このように、従来の方法によって、良質な素子が作製可
能な単結晶層を形成するには、基板材料の種類が極めて
狭い範囲に限定されるという問題点を有していた。
As described above, in order to form a single-crystal layer from which a high-quality device can be manufactured by the conventional method, there is a problem in that the types of substrate materials are limited to an extremely narrow range.

一方、半導体素子を基板の法線方向に積層形成し、高集
積化および多機能化を達成する三次元集積回路の研究開
発が近年盛んに行われており、また安価なガラス上に素
子をアレー状に配列する太陽電池や液晶画素のスイッチ
ングトランジスタ等の大面積半導体装置の研究開発も年
々盛んになりつつある。
On the other hand, research and development of three-dimensional integrated circuits, in which semiconductor elements are stacked in the normal direction of a substrate to achieve high integration and multi-functionality, has been actively conducted in recent years, and there has also been active research and development in three-dimensional integrated circuits, in which semiconductor elements are stacked in the normal direction of a substrate. Research and development of large-area semiconductor devices, such as solar cells arranged in a pattern and switching transistors for liquid crystal pixels, is becoming more active year by year.

これら両者に共通することは、半導体薄膜を非晶質絶縁
物上に形成し、そこにトランジスタ等の電子素子を形成
する技術を必要とすることである。その中でも特に、非
晶質絶縁物上に高品質の単結晶半導体を形成する技術が
望まれている。
What these two methods have in common is that they require a technique for forming a semiconductor thin film on an amorphous insulator and forming electronic elements such as transistors thereon. Among these, a technique for forming a high quality single crystal semiconductor on an amorphous insulator is particularly desired.

船釣に、SiO□等の非晶質絶縁物基板上に薄膜を堆積
させると、基板材料の長距離秩序の欠如によって、堆積
膜の結晶構造は非晶質または多結晶となる。ここで非晶
質膜とは、最近接原子程度の近距離秩序は保存されてい
るが、それ以上の長距離秩序はない状態のものであり、
多結晶膜とは、特定の結晶方位を持たない単結晶粒が粒
界で隔離されて集合したものである。
When a thin film is deposited on an amorphous insulating substrate such as SiO□ during boat fishing, the crystal structure of the deposited film becomes amorphous or polycrystalline due to the lack of long-range order in the substrate material. Here, an amorphous film is one in which short-range order at the level of the nearest neighbor atoms is preserved, but no longer-range order exists.
A polycrystalline film is a collection of single crystal grains that do not have a specific crystal orientation and are isolated by grain boundaries.

例えば、SiO□上にSLをCVD法によって形成する
場合、堆積温度が約600℃以下であれば非晶質シリコ
ンとなり、それ以上の温度であれば粒径が数百〜数千人
の間で分布した多結晶シリコンとなる。ただし、多結晶
シリコンの粒径およびその分布は形成方法によって大き
く変化する。
For example, when forming SL on SiO□ by the CVD method, if the deposition temperature is below about 600°C, it will become amorphous silicon, and if the temperature is higher than that, the grain size will be between several hundred and several thousand. This results in distributed polycrystalline silicon. However, the grain size and distribution of polycrystalline silicon vary greatly depending on the formation method.

更に、非晶質または多結晶膜をレーザや棒状ヒータ等の
エネルギビームによって溶融固化させることによって、
ミクロンあるいはミリメートル程度の大粒径の多結晶薄
膜が得られている(Single−crystal 5
ilicon on non−single−crys
talinsulators、JouIIIal of
 Crystal Growth vol。
Furthermore, by melting and solidifying the amorphous or polycrystalline film using an energy beam such as a laser or a rod-shaped heater,
Polycrystalline thin films with large grain sizes on the order of microns or millimeters have been obtained (Single-crystal 5
ilicon on non-single-crys
talinsulators, JouIIIal of
Crystal Growth vol.

63、 No、3. 0ctober 1983 ed
ited by G、  W。
63, No, 3. 0ctober 1983 ed
ited by G, W.

(:ullen)。(:ullen).

このようにして形成された各結晶構造の薄膜にトランジ
スタを形成し、その特性から電子易動度を測定すると、
非晶質シリコンでは〜0.1 cm” /V−see 
、数百人の粒径な有する多結晶シリコンでは1 xlO
cm”/V−sec 、溶融固化による大粒径の多結晶
シリコンでは単結晶シリコンの場合と同程度の易動度が
得られている。
When a transistor is formed in the thin film of each crystal structure formed in this way and the electron mobility is measured from its characteristics,
~0.1 cm”/V-see for amorphous silicon
For polycrystalline silicon with a grain size of several hundred, 1 x lO
cm''/V-sec, polycrystalline silicon with a large grain size obtained by melting and solidification has a mobility comparable to that of single crystal silicon.

この結果から、結晶粒内の単結晶領域に形成された素子
と、粒界にまたがって形成された素子とは、その電気的
特性に大きな差異のあることが分る。すなわち、従来法
で得られていた非晶質上の堆積膜は非晶質または粒径分
布をもった多結晶構造となり、そこに作製された素子は
、単結晶層に作製された素子に比べて、その性能が大き
く劣るものとなる。そのために、用途としては簡単なス
イッチング素子、太陽電池、光電変換素子等に限られる
This result shows that there is a large difference in electrical characteristics between an element formed in a single crystal region within a crystal grain and an element formed across a grain boundary. In other words, the deposited film on an amorphous layer obtained by the conventional method has an amorphous or polycrystalline structure with a grain size distribution, and the devices fabricated there have a higher level of performance than those fabricated on a single crystal layer. As a result, its performance will be greatly degraded. Therefore, its applications are limited to simple switching elements, solar cells, photoelectric conversion elements, etc.

また、溶融固化によって大粒径の多結晶薄膜を形成する
方法は、ウェハごとに非晶質または単結晶薄膜をエネル
ギビームで走査するために、大粒径化に多大な時間を要
し、量産性に乏しく、また大面積化に向かないという問
題点を有していた。
In addition, the method of forming polycrystalline thin films with large grain sizes by melting and solidifying requires a large amount of time to increase the grain size because the amorphous or single crystal thin film is scanned with an energy beam on each wafer. It has the problem that it has poor performance and is not suitable for large-area applications.

一方、ff1−V族化合物半導体は、超高速デバイス、
光素子などの、Siでは実現できない新しいデバイスを
実現し得る材料として期待されているが、■−v族化合
物結晶は、これまでSi単結晶上あるいはn’+−v族
化合物単結晶上にしか成長させることができず、デバイ
ス作製上の大きな障害となっていた。
On the other hand, ff1-V group compound semiconductors can be used for ultra-high-speed devices,
Although it is expected to be a material that can realize new devices such as optical devices that cannot be realized with Si, ■-V group compound crystals have so far been produced only on Si single crystals or n'+-V group compound single crystals. This has been a major obstacle in device production.

上記従来の問題点を解決するものとして、本発明者は核
形成密度の小さい非核形成面に該非核形成面材料より核
形成密度が十分に太き(、かつ単一の核だけが成長する
程度に十分微細な核形成面が設けられ、該核形成面に成
長した単一の核を中心として成長を続けさせることによ
って結晶を形成する形成方法を提案し、非単結晶基体上
にもIII −V族化合物単結晶形成が可能なことを示
した。
In order to solve the above-mentioned conventional problems, the present inventor has developed a material that has a sufficiently thicker nucleation density than the non-nucleation surface material (and to the extent that only a single nucleus grows) on a non-nucleation surface with a low nucleation density. We have proposed a formation method in which a sufficiently fine nucleation surface is provided on the nucleation surface, and a crystal is formed by continuing growth centering on a single nucleus grown on the nucleation surface, and it is possible to form a crystal even on a non-single crystal substrate. It was shown that it is possible to form single crystals of group V compounds.

この形成方法は、結晶成長して単結晶となる核を所望の
距離まで人工的に離別させて、選択的に形成させ、必要
な大きさの結晶領域に成長させるまで結晶粒の接触・衝
突を回避するものである。
This formation method involves artificially separating the nuclei that will grow into a single crystal to a desired distance, allowing them to form selectively, and then contacting and colliding the crystal grains until they grow into a crystal region of the required size. It is something to avoid.

結晶成長の方法としては、成長速度が速く量産性に優れ
、結晶性が良好な有機金属化学輸送法(MOCVD法)
が主に用いられる。
As a crystal growth method, the metal organic chemical transport method (MOCVD method) has a fast growth rate, excellent mass productivity, and good crystallinity.
is mainly used.

[発明が解決しようとしている課題] しかしながら、上記の発明はMOCVD法により微細な
核形成面上の核発生を制御するのには不十分な点もあり
、非核形成面上に核発生が起きたり、核形成面上に核発
生が起きなかったりするなどの課題が生ずることがあっ
た。
[Problems to be Solved by the Invention] However, the above invention is insufficient to control nucleation on fine nucleation surfaces by MOCVD, and nucleation may occur on non-nucleation surfaces. , problems such as nucleation not occurring on the nucleation surface sometimes occurred.

従って、本発明の目的は、核形成初期段階と結晶成長段
階にそれぞれ適応した成長条件を設定することによって
、非核形成面上の制御されない核の発生を抑え、良質の
III −V族化合物単結晶を選択性よく成長する方法
を提供することにある。
Therefore, an object of the present invention is to suppress the uncontrolled generation of nuclei on non-nucleation surfaces by setting growth conditions suitable for the initial stage of nucleation and the stage of crystal growth, thereby producing high-quality III-V compound single crystals. The goal is to provide a method to grow selectively.

[課題を解決するための手段] 上記問題点を解決するものとして、有様金属化学輸送法
によるm−v族化合物の結晶の形成方法において、核形
成密度の小さい非核形成面と、該非核形成面の核形成密
度より大きい核形成密度を有し、結晶成長して単結晶に
なる核が唯一形成され得るに十分小さい面積を有する核
形成面とが隣接して配された自由表面を有する基体に、
核形成初期段階では原料ガスの濃度を低(し、かつ結晶
成長段階では原料ガスの濃度を核形成初期段階より高(
する結晶成長処理を施すことを特徴とする結晶の形成方
法が提供される。
[Means for Solving the Problems] In order to solve the above problems, in a method for forming a crystal of an m-v group compound by a modified metal chemical transport method, a non-nucleation surface with a low nucleation density and a non-nucleation surface of the non-nucleation A substrate having a free surface adjacent to a nucleation surface having a nucleation density greater than that of a surface and having an area small enough to form a unique nucleus that grows into a single crystal. To,
At the initial stage of nucleation, the concentration of the raw material gas is lowered (and at the crystal growth stage, the concentration of the raw material gas is set higher than the initial stage of nucleation).
A method for forming a crystal is provided, which comprises performing a crystal growth treatment.

本発明の結晶の形成方法は、非核形成面、核形成面、結
晶表面のそれぞれの面における結晶材料の原子の付着係
数x、y、zがz>y>xなる関係があることから、非
核形成面に設けられた核形成面に単一の核が形成される
核形成初期段階においては、核形成の選択性を高くする
ために、供給ガス中の■族とIII族の原料ガス濃度を
低くして核発生確率を低くする。そして、核形成面上へ
の核形成が完了し、非核形成面上への横方向成長が始ま
った段階(結晶成長段階)になったら、原料ガス濃度を
核形成初期段階よりも高(して結晶成長を促進させるも
のである。
The method for forming a crystal of the present invention is based on the fact that the adhesion coefficients x, y, and z of atoms of the crystal material on each of the non-nucleation surface, nucleation surface, and crystal surface have a relationship such that z>y>x. In the initial stage of nucleation, in which a single nucleus is formed on the nucleation surface provided on the nucleation surface, in order to increase the selectivity of nucleation, the concentration of group (III) and group III source gases in the supplied gas is adjusted. Lower the probability of nuclear generation. Then, when nucleation on the nucleation surface is completed and lateral growth on the non-nucleation surface has begun (crystal growth stage), the raw material gas concentration is raised to a higher concentration than in the initial stage of nucleation. It promotes crystal growth.

次に、結晶核の発生と原料ガスの濃度の関係について説
明する。
Next, the relationship between the generation of crystal nuclei and the concentration of the source gas will be explained.

第4図に、各種の膜上におけるGaAs結晶核の発生密
度と原料ガス濃度の関係を示す。
FIG. 4 shows the relationship between the density of GaAs crystal nuclei generated on various films and the concentration of the source gas.

成長条件ニ トリメチルガリウム(TMG) ターシャルブチルヒ素(TBAs) V/I11    10 希釈ガス   Hz  IOA/min反応圧力   
80torr 基板温度   670℃ 成長時間   5分 第4図から明らかなように、核形成密度の高い材料(例
えばAl20m、 Ta20a)は供給ガス中の原料ガ
スの濃度を大きく変化させても核形成密度の変化は小さ
いが、核形成密度の低い材料(例えば5in2.5iJ
4)は原料ガス濃度と核形成密度に強い相関を持ってい
る。特に原料ガス濃度が低い領域ではAliam、Ta
、OsとSing、 5isNaの間の核形r密度の差
はかなり大きくなり、結晶成長の際に1好な選択性が得
られる。しかし、原料ガス濃度ノ低(なるに従い結晶成
長速度は遅くなる。従−て、実際の結晶成長ではこれら
の要素のバラン。
Growth conditions Nitrimethylgallium (TMG) Tertiary butyl arsenic (TBAs) V/I11 10 Diluent gas Hz IOA/min Reaction pressure
80 torr Substrate temperature: 670°C Growth time: 5 minutes As is clear from Figure 4, materials with high nucleation density (e.g. Al20m, Ta20a) do not change the nucleation density even if the concentration of the raw material gas in the supplied gas changes greatly. is small, but materials with low nucleation density (e.g. 5in2.5iJ
4) has a strong correlation between the raw material gas concentration and the nucleation density. Especially in the region where the raw material gas concentration is low, Aliam, Ta
The difference in nuclear density between , Os and Sing, 5isNa is considerably large, resulting in favorable selectivity during crystal growth. However, as the raw material gas concentration decreases, the crystal growth rate slows down. Therefore, in actual crystal growth, these factors must be balanced.

が取れる条件を選択することが望ましい。It is desirable to select conditions that allow for

次に、本発明の実施態様を図面により説明:る。Next, embodiments of the present invention will be explained with reference to the drawings.

第1図(A)〜(E)は本発明の方法によりi択的核形
成を行ない■−v族化合物の単結晶をb長させる概略工
程図である。
FIGS. 1(A) to 1(E) are schematic process diagrams showing the process of i-selective nucleation to produce a single crystal of a group 1-v compound with length b by the method of the present invention.

(A):下地材料l (たとえばA1.0.、AIN、
 BNなどのセラミック、石英、高融点ガラスやW、M
などの高融点金属)上に結晶核形成密度の低い事料から
なる薄膜2(例えば非晶質、多結晶質等り非単結晶質の
5iOz、 5isN4など)を堆積し非核月成面3と
する。この薄膜の形成にはC■0法、;バッター法、蒸
着法、分散媒を使った塗布法なとの方法を用いる。また
、第1図(F)のように]地材料1を用いず前記核形成
密度の低い材料かぐなる支持体5を用いてもよい((第
1図(A))(B);非核形成面より核形成密度の高い
材料(非単結晶質のAliam、 AIN、 Ta2e
s、 Tio2.wo3など)を結晶成長して単結晶と
なる核を唯一形成され得るに十分な程小さい面積(好ま
しくは10μm四方以下5最適には2μm四方以下)を
形成し核形成面4とする。また、このように薄膜を微細
にパターニングする他、第1図(G)のように下地に核
形成密度の高い材料からなる薄膜6を堆積し、その上に
核形成密度の低い材料からなる薄膜2を積み重ね非核形
成面3とし、エツチングにより微細な窓を開けて核形成
面4を露出させてもよく、第1図(H)のように核形成
密度の低い材料からなる薄膜2に凹部を形成し、その凹
部の底面に微細な窓を開けて核形成面4を露出させても
よい(この場合前記凹部内に結晶を形成させる)。
(A): Base material l (for example, A1.0., AIN,
Ceramics such as BN, quartz, high melting point glasses, W, M
A thin film 2 made of a material with a low crystal nucleation density (for example, 5iOz, 5isN4, etc., which is non-single crystal such as amorphous or polycrystalline) is deposited on a non-nucleated lunar surface 3. do. To form this thin film, methods such as the C20 method, the batter method, the vapor deposition method, and the coating method using a dispersion medium are used. Alternatively, as shown in FIG. 1(F)], the base material 1 may not be used, and the material support 5 having a low nucleation density may be used (((A))(B); Non-nucleation Materials with higher nucleation density than surfaces (non-single crystal Aliam, AIN, Ta2e
s, Tio2. wo3, etc.) to form a sufficiently small area (preferably 10 μm square or less, optimally 2 μm square or less) to form a single single-crystal nucleus, and use it as the nucleation surface 4. In addition to finely patterning the thin film in this way, as shown in FIG. 2 may be stacked to form a non-nucleation surface 3, and a fine window may be opened by etching to expose the nucleation surface 4. As shown in FIG. The nucleation surface 4 may be exposed by opening a fine window at the bottom of the recess (in this case, crystals are formed within the recess).

さらに、第1図(1)〜(J)のように微細な領域を残
し他をレジスト7でカバーし、イオン(As 、P、 
Ga 、AI 、Inなど)を核形成密度の低い材料か
らなる薄膜2に打込んで、核形成密度の高いイオン打込
領域8を形成してもよい。(第1図(B)) (C):こうして得られた基板上に、MOCVD法によ
って11− V族化合物(例えばGaAs、 GaAl
As。
Furthermore, as shown in FIG. 1 (1) to (J), leaving a fine area and covering the rest with resist 7, ions (As, P,
The ion implantation region 8 with a high nucleation density may be formed by implanting ions (Ga, AI, In, etc.) into the thin film 2 made of a material with a low nucleation density. (Figure 1 (B)) (C): On the substrate thus obtained, a 11-V group compound (e.g. GaAs, GaAl
As.

GaP、 GaAsP、 InP、 GaInAsP)
結晶核9を発生させる。この核形成初期段階(発生した
核の底面積が核形成面よりも小さい間)では、原料濃度
は低くして(希釈用水素ガスに対する周期律表第■■族
原子を含有する原料のモル比が好ましくは1.5×10
1以下、より好ましくは1.OX 10−’以下、最適
には8 X to−’程度、下限としてはlXl0−’
程度)核形成面上の制御されない核の発生を抑える。
GaP, GaAsP, InP, GaInAsP)
A crystal nucleus 9 is generated. At this initial stage of nucleation (while the base area of the generated nucleus is smaller than the nucleation surface), the concentration of the raw material is kept low (the molar ratio of the raw material containing atoms of group ■■ of the periodic table to the hydrogen gas for dilution). is preferably 1.5×10
1 or less, more preferably 1. OX 10-' or less, optimally about 8 X to-', lower limit is lXl0-'
degree) suppresses the uncontrolled generation of nuclei on the nucleation surface.

V / IHモル比はV族原料が気体の場合30〜50
程度、V族原料が液体の場合20〜30程度で任意の値
に設定して成長を行なう。圧力は80〜1ootorr
が望ましい、(第1図(C)) (D):III−V族化合物結晶核9が成長したm−v
族化合物単結晶10が核形成面4の面積より広がって成
長する段階(結晶成長段階)になったら、原料濃度は前
記核形成初期段階よりも高く(希釈用水素ガスに対する
周期律表第III族原子を含有する原料のモル比が、好
ましくは3 X 10−’以下、より好ましくは2.5
X 10−’以下、最適には2×104程度、下限とし
ては2 X 10−’程度)設定を変更し結晶の成長速
度を増加させる。(第1図(D)) (E):核を中心にIIT−V族化合物結晶の成長を進
め、非核形成面上へ横方向に結晶を成長させていく。
The V/IH molar ratio is 30 to 50 when the V group raw material is a gas.
When the group V raw material is a liquid, the growth is performed by setting an arbitrary value of about 20 to 30. Pressure is 80~1ootorr
(Fig. 1(C)) (D): m-v in which the III-V group compound crystal nucleus 9 has grown.
When the group compound single crystal 10 grows larger than the area of the nucleation surface 4 (crystal growth stage), the raw material concentration is higher than the initial stage of nucleation (group III of the periodic table for diluting hydrogen gas). The molar ratio of raw materials containing atoms is preferably 3 x 10-' or less, more preferably 2.5
X 10-' or less, optimally about 2 x 104, lower limit about 2 x 10-') to increase the crystal growth rate. (FIG. 1(D)) (E): The IIT-V group compound crystal grows around the nucleus, and the crystal grows laterally on the non-nucleation surface.

前述のしたように、結晶表面、核形成面、非核形成面の
それぞれの面における結晶材料の原子の付着係数をそれ
ぞれx、y、zとお(と次のような関係となる。
As described above, the adhesion coefficients of atoms of the crystal material on each of the crystal surface, nucleation surface, and non-nucleation surface are expressed as x, y, and z, respectively, as follows.

x>y>z 核形成初期段階においては、結晶材料の原子に対する表
出面は、非核形成面及び核形成面だけである。そのため
、核は選択的に核形成面上で形成される。続いて、核が
成長し核形成面を覆いっ(してしまうと、そこには結晶
表面と非核形成面のみが存在するようになるので核発生
の選択性はさらに高(なる。さらに結晶が成長しその表
面積が大きくなるに従い、さらに選択性は高くなるので
、非核形成面上の制御されない核発生はほとんど起らな
くなる。つまり、選択性を維持する条件は、結晶の成長
につれて徐々に変化する。
x>y>z At the initial stage of nucleation, the only exposed surfaces for the atoms of the crystalline material are the non-nucleation surface and the nucleation surface. Therefore, nuclei are selectively formed on the nucleation surface. Next, when the nuclei grow and cover the nucleation surface, only the crystal surface and non-nucleation surface exist, so the selectivity of nucleation becomes even higher. As the crystal grows and its surface area increases, it becomes more selective, so that uncontrolled nucleation on non-nucleating surfaces becomes less likely, meaning that the conditions that maintain selectivity gradually change as the crystal grows. .

従って、選択性を制御する製造条件であるV/IIIも
連続的に変化させることも好ましい。
Therefore, it is also preferable to continuously change V/III, which is a manufacturing condition that controls selectivity.

また最適の堆積条件は、非核形成面上への核形成面の配
置の形態や、密度によっても異ってくる。(第1図(E
)) [実施例] 以下、本発明を実施例により説明する。
Optimal deposition conditions also vary depending on the arrangement and density of the nucleation surface on the non-nucleation surface. (Figure 1 (E
)) [Examples] The present invention will be explained below using Examples.

実施例1 第2図(A)〜(F)に、本発明の方法によりGaAs
結晶を形成する概略工程図を示す。
Example 1 FIGS. 2(A) to 2(F) show that GaAs was produced by the method of the present invention.
A schematic process diagram for forming crystals is shown.

(A)二石英基板11の上に真空蒸着法によってTaJ
s膜12全1200人堆積した。蒸着条件は、基板温度
は室温、蒸着源はTaxes 、 0□ガスを4×10
−’torrまで導入し、堆積速度1人/seeであっ
た。(第2図(A)) (B)二次にプラズマCVD法で非晶質SiNx膜13
を300人堆積した。堆積条件は基板温度350℃、反
応圧力0.2torr、原料ガスは5i84100cc
、NHs 200ccであった。(第2図(B))(C
):フォトリソグラフィー技術を使ってパターニングし
、リアクティブイオンエツチングによってSiNx膜1
3を部分的に取り去って、40μmの間隔で2μm四方
の微細な窓14を作りTa2O。
(A) TaJ was deposited on the diquartz substrate 11 by vacuum evaporation method.
A total of 1,200 S films were deposited. The evaporation conditions were: the substrate temperature was room temperature, the evaporation source was Taxes, and the 0□ gas was 4×10
-'torr was introduced, and the deposition rate was 1 person/see. (Fig. 2 (A)) (B) Amorphous SiNx film 13 is secondarily formed by plasma CVD method.
300 people deposited. The deposition conditions were a substrate temperature of 350°C, a reaction pressure of 0.2 torr, and a raw material gas of 5i84100cc.
, NHs 200cc. (Figure 2 (B)) (C
): The SiNx film 1 is patterned using photolithography and reactive ion etching.
3 was partially removed to create fine windows 14 of 2 μm square at intervals of 40 μm, and Ta2O was formed.

を露出させた。この部分がGaAsの核形成面4となる
。(第2図(C)) (D):H,雰囲気で850℃、10分間の熱処理を行
い、次にMOCVD法によってGaAs結晶核15をT
aaO@上に発生させた。
exposed. This portion becomes the nucleation surface 4 of GaAs. (Fig. 2 (C)) (D): Heat treatment is performed at 850°C for 10 minutes in an H atmosphere, and then the GaAs crystal nuclei 15 are removed by the MOCVD method.
Generated on aaO@.

原料にはトリメチルガリウム(TMG)とターシャルブ
チルヒ素(TBAs)、希釈ガスにはH2を用いた。
Trimethyl gallium (TMG) and tertiary butyl arsenic (TBAs) were used as raw materials, and H2 was used as a diluent gas.

V/IIIモル比TBAs : TMGは25で、希釈
用H2に対するTMGのモル比は8 X 10−’、反
応圧力80torr、基板温度670℃であった。(第
2図(D))(E):成長開始後約30分でGaAsの
結晶核15が成長したGaAs単結晶16がTa2O,
の窓14の領域を埋めたところで、H2に対するTMG
のモル比を2 X 10−’に設定変更した。(第2図
(E))(F);さらにGaAsの単結晶16が成長を
続は他のGaAs単結晶との粒界17を形成し、結晶径
が40μmになったところで成長を止めた。(第2図(
F))ついで表面を研磨により平坦化した後でInSn
の電極を蒸着により付け、Ar中で500℃でアニール
した。これを用いてホール測定をしたところ、ホール移
動度3200cm”/V−s  (300K ) 、キ
ャリア濃度2 X 10”7cm”のn型の結晶が得ら
れていることが分った。
V/III molar ratio TBAs: TMG was 25, the molar ratio of TMG to H2 for dilution was 8 x 10-', the reaction pressure was 80 torr, and the substrate temperature was 670°C. (Fig. 2 (D)) (E): About 30 minutes after the start of growth, the GaAs single crystal 16 in which the GaAs crystal nucleus 15 has grown is Ta2O,
After filling the area of window 14, TMG for H2
The molar ratio of was changed to 2 x 10-'. (FIG. 2 (E)) (F); Furthermore, the GaAs single crystal 16 continued to grow, forming grain boundaries 17 with other GaAs single crystals, and stopped growing when the crystal diameter reached 40 μm. (Figure 2 (
F)) After flattening the surface by polishing, InSn
Electrodes were attached by vapor deposition and annealed at 500° C. in Ar. When Hall measurements were carried out using this, it was found that an n-type crystal with a Hall mobility of 3200 cm"/V-s (300 K) and a carrier concentration of 2.times.10"7 cm was obtained.

実施例2 第3図(A)〜(F)に、本発明の方法によりGaAl
As結晶を形成する概略工程図を示す。
Example 2 FIGS. 3(A) to 3(F) show that GaAl
A schematic process diagram for forming an As crystal is shown.

(A):シリコンウエハ21上にSiH4と02を用い
たCVD法によって非晶質SiO□膜22を1500人
堆積した。(第3図(A)) (B):次にフォトレジスト23で開口部24を有する
所望のパターンに5iOz膜上をマスクして、イオンイ
ンブランターを用いてAtイオン25を打ち込んだ。打
込み量はI X 10”7cm”であった。(第3図(
B)) イオン打込み部分の大きさは2μm四方、打ち込み部分
の間隔は30μmであった。
(A): 1500 amorphous SiO□ films 22 were deposited on a silicon wafer 21 by the CVD method using SiH4 and 02. (FIG. 3(A)) (B): Next, the 5iOz film was masked with a photoresist 23 in a desired pattern having openings 24, and At ions 25 were implanted using an ion implanter. The implantation amount was I x 10"7 cm". (Figure 3 (
B)) The size of the ion implanted portion was 2 μm square, and the interval between the implanted portions was 30 μm.

(C):Alイオンの打込まれていないStow表面2
6では結晶の核発生確率は低(、Alイオン打込み領域
27では結晶の発生確率が高(、該領域27に結晶成長
して単結晶になる核が発生する。
(C): Stow surface 2 where Al ions are not implanted
6, the probability of crystal nucleation is low (and the probability of crystal nucleation is high in the Al ion implanted region 27), a nucleus is generated in the region 27 where the crystal grows and becomes a single crystal.

(第3図(C)) (D):)1.雰囲気の中で850℃、10分間の熱処
理行って、次にMOCVD法によって、Atがイオン打
込領域27の上にGaAlAs結晶核28を発生させた
(Figure 3 (C)) (D):)1. Heat treatment was performed at 850° C. for 10 minutes in an atmosphere, and then GaAlAs crystal nuclei 28 were generated on the At ion implantation region 27 by MOCVD.

原料にはトリメチルガリウム(TMG)とトリメチルア
ルミニウム(TMA) 、アルシン(AsH−)を使い
、希釈ガスには■2を用いた。それぞれのモル比TMG
 : TMA : AsH,は3 : 2 : 250
  (V/III =50)で、H2に対する■族原料
のモル比は7 X 10−’、反応圧力は80torr
、基板温度は700℃であった。
Trimethyl gallium (TMG), trimethyl aluminum (TMA), and arsine (AsH-) were used as raw materials, and 2 was used as a diluent gas. Each molar ratio TMG
: TMA : AsH, is 3 : 2 : 250
(V/III = 50), the molar ratio of group II raw material to H2 is 7 x 10-', and the reaction pressure is 80 torr.
, the substrate temperature was 700°C.

(第3図(D)) (E):成長開始後30分でGaAlAs結晶核28が
成長したGaAlAs単結晶29が、Al打ち込み領域
15を覆いつ(したところで、■族とV族の比率は保っ
たままで、H2に対する■族原料のモル比を2 X 1
0−’に設定変更した。(第3図(E))(F):さら
に成長を続けGaAlAsの結晶がぶつかり合うまで成
長させた。30は粒界である。
(Fig. 3 (D)) (E): Thirty minutes after the start of growth, the GaAlAs single crystal 29, in which the GaAlAs crystal nuclei 28 have grown, covers the Al implanted region 15. While keeping the same, the molar ratio of Group II raw material to H2 is 2 X 1
The setting was changed to 0-'. (Figure 3 (E)) (F): Growth continued until the GaAlAs crystals collided with each other. 30 is a grain boundary.

(第3図(F)) [発明の効果] 本発明の結晶成長法によれば、核形成初期段階では非核
形成面上の核発生を防ぎ、核形成面上にのみ単一の核を
発生し、結晶成長段階ではより原料濃度を上げて、より
高い成長速度で効率良く良質なIII −V族化合物の
単結晶を得ることが可能になる。
(Figure 3 (F)) [Effects of the Invention] According to the crystal growth method of the present invention, nucleation on non-nucleation surfaces is prevented in the initial stage of nucleation, and single nuclei are generated only on nucleation surfaces. However, in the crystal growth stage, it becomes possible to increase the raw material concentration and efficiently obtain a high-quality single crystal of the III-V group compound at a higher growth rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の結晶の形成方法を示す概略工程図、第
2図は本発明の方法をGaAs結晶の形成に用いた場合
の概略工程図、第3図は本発明の方法をGaAlAs結
晶の形成に用いた場合の概略工程図、第4図は核発生密
度と原料ガス濃度との関係図である。 l・・・下地材料 2・・・核形成密度の低い材料からなる薄膜3・・・非
核形成面   4・・・核形成面5・・・核形成密度の
低い材料からなる支持体6・・・核形成密度の高い材料
からなる薄膜7・・・フォトレジスト 8・・・イオン
打込領域9・・・m−v族化合物結晶核 lO・・・m−v族化合物単結晶 11・・・石英基板    12・・・Ta−0s膜1
3・・・SiNx膜     1461.窓15・・・
GaAs結晶核   16・・・GaAs単結晶17・
・・粒界      21・・・シリコンウェハ22・
・・非晶質SiO□膜  23・・・フォトレジスト2
4・・・開口部     25・・・Atイオン26・
・・Alイオンの打込まれていない領域27・・・A1
イオン打込領域 28−−− GaAlAs結晶核  29− GaAl
As単結晶30・・・粒界
Fig. 1 is a schematic process diagram showing the method of forming a crystal of the present invention, Fig. 2 is a schematic process diagram when the method of the present invention is used to form a GaAs crystal, and Fig. 3 is a schematic process diagram showing the method of the present invention for forming a GaAlAs crystal. FIG. 4 is a diagram showing the relationship between the nucleation density and the raw material gas concentration. l... Base material 2... Thin film made of a material with low nucleation density 3... Non-nucleation surface 4... Nucleation surface 5... Support body 6 made of material with low nucleation density... - Thin film made of material with high nucleation density 7... Photoresist 8... Ion implantation region 9... m-v group compound crystal nucleus lO... m-v group compound single crystal 11... Quartz substrate 12...Ta-0s film 1
3...SiNx film 1461. Window 15...
GaAs crystal nucleus 16...GaAs single crystal 17.
...Grain boundary 21...Silicon wafer 22.
...Amorphous SiO□ film 23...Photoresist 2
4... Opening 25... At ion 26.
...Region 27 where Al ions are not implanted...A1
Ion implantation region 28 --- GaAlAs crystal nucleus 29- GaAl
As single crystal 30...grain boundary

Claims (1)

【特許請求の範囲】 1、有機金属化学輸送法によるIII−V族化合物の結晶
の形成方法において、核形成密度の小さい非核形成面と
、該非核形成面の核形成密度より大きい核形成密度を有
し、結晶成長して単結晶になる核が唯一形成され得るに
十分小さい面積を有する核形成面とが隣接して配された
自由表面を有する基体に、核形成初期段階では原料ガス
の濃度を低くし、かつ結晶成長段階では原料ガスの濃度
を核形成初期段階より高くする結晶成長処理を施すこと
を特徴とする結晶の形成方法。 2、前記核形成初期段階における希釈用水素ガスに対す
る周期律表第III族原子を含有する原料のモル比が1.
5×10^−^5以下である請求項1記載の結晶の形成
方法。 3、前記結晶成長段階における希釈用水素ガスに対する
周期律表第III族原子を含有する原料のモル比が3×1
0^−^5以下である請求項1記載の結晶の形成方法。 4、前記原料ガス中の周期律表第V族原子を含有する原
料と周期律表第III族原子を含有する原料との第V族原
子と第III族原子のモル比(V/III)が20以上50以
下である請求項1記載の結晶の形成方法。 5、前記核形成面を前記非核形成面の内部に形成する請
求項1記載の結晶の形成方法。 6、前記核形成面を前記非核形成面の面上に形成する請
求項1記載の結晶の形成方法。 7、前記核形成面を区画化して複数形成する請求項1記
載の結晶の形成方法。 8、前記核形成面を規則的に区画化して複数形成する請
求項1記載の結晶の形成方法。 9、前記核形成面を不規則に区画化して複数形成する請
求項1記載の結晶の形成方法。 10、前記核形成面を格子状に形成する請求項1記載の
結晶の形成方法。 11、前記核形成面を区画化して複数設け、該核形成面
のそれぞれより、単結晶を成長させる請求項1記載の結
晶の形成方法。 12、各核形成面より成長する単結晶を、隣り合う核形
成面間で隣接する大きさまで成長させる請求項1記載の
結晶の形成方法。 13、前記核形成面を、イオン打込み法によって形成す
る請求項1記載の結晶の形成方法。 14、前記基体の表面を非単結晶質で構成する請求項1
記載の結晶の形成方法。 15、前記非核形成面を形成する材料が非晶質SiO_
2である請求項1記載の結晶の形成方法。 16、前記III−V族化合物が二元系III−V族化合物で
ある請求項1記載の結晶の形成方法。 17、前記III−V族化合物が混晶III−V族化合物であ
る請求項1記載の結晶の形成方法。 18、前記結晶形成処理がMOCVD法である請求項1
記載の結晶の形成方法。
[Claims] 1. A method for forming a crystal of a III-V compound using an organometallic chemical transport method, which includes a non-nucleation surface with a low nucleation density and a nucleation density higher than the nucleation density of the non-nucleation surface. At the initial stage of nucleation, the concentration of the raw material gas is reduced to 1. A method for forming a crystal, characterized by performing a crystal growth process in which the concentration of a source gas is lowered and the concentration of a source gas is higher in the crystal growth stage than in the initial stage of nucleation. 2. The molar ratio of the raw material containing Group III atoms of the periodic table to the diluting hydrogen gas at the initial stage of nucleation is 1.
The method for forming a crystal according to claim 1, wherein the crystal size is 5×10^-^5 or less. 3. The molar ratio of the raw material containing Group III atoms of the periodic table to the hydrogen gas for dilution in the crystal growth stage is 3×1.
2. The method for forming a crystal according to claim 1, wherein the crystal diameter is 0^-^5 or less. 4. The molar ratio (V/III) of Group V atoms to Group III atoms of the raw material containing Group V atoms of the periodic table and the raw material containing Group III atoms of the periodic table in the raw material gas is The method for forming a crystal according to claim 1, wherein the crystal size is 20 or more and 50 or less. 5. The method for forming a crystal according to claim 1, wherein the nucleation surface is formed inside the non-nucleation surface. 6. The method for forming a crystal according to claim 1, wherein the nucleation surface is formed on the non-nucleation surface. 7. The method for forming a crystal according to claim 1, wherein the nucleation surface is divided into a plurality of sections. 8. The method for forming a crystal according to claim 1, wherein the nucleation surface is regularly partitioned to form a plurality of them. 9. The method for forming a crystal according to claim 1, wherein the nucleation surface is irregularly partitioned to form a plurality of them. 10. The method for forming a crystal according to claim 1, wherein the nucleation surface is formed in a lattice shape. 11. The method for forming a crystal according to claim 1, wherein a plurality of the nucleation surfaces are divided and provided, and a single crystal is grown from each of the nucleation surfaces. 12. The method for forming a crystal according to claim 1, wherein the single crystals grown from each nucleation surface are grown to adjacent sizes between adjacent nucleation surfaces. 13. The method for forming a crystal according to claim 1, wherein the nucleation surface is formed by an ion implantation method. 14. Claim 1, wherein the surface of the substrate is made of non-single crystal material.
Method of forming the described crystals. 15. The material forming the non-nucleation surface is amorphous SiO_
2. The method for forming a crystal according to claim 1. 16. The method for forming a crystal according to claim 1, wherein the III-V group compound is a binary III-V group compound. 17. The method for forming a crystal according to claim 1, wherein the III-V group compound is a mixed crystal III-V group compound. 18. Claim 1, wherein the crystal formation treatment is an MOCVD method.
Method of forming the described crystals.
JP26911389A 1989-10-18 1989-10-18 Method of forming crystal Pending JPH03132017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26911389A JPH03132017A (en) 1989-10-18 1989-10-18 Method of forming crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26911389A JPH03132017A (en) 1989-10-18 1989-10-18 Method of forming crystal

Publications (1)

Publication Number Publication Date
JPH03132017A true JPH03132017A (en) 1991-06-05

Family

ID=17467854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26911389A Pending JPH03132017A (en) 1989-10-18 1989-10-18 Method of forming crystal

Country Status (1)

Country Link
JP (1) JPH03132017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065703A (en) * 2011-09-16 2013-04-11 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065703A (en) * 2011-09-16 2013-04-11 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US5281283A (en) Group III-V compound crystal article using selective epitaxial growth
US5399522A (en) Method of growing compound semiconductor
JPH01225114A (en) Manufacture of semiconductor thin-film
US5107317A (en) Semiconductor device with first and second buffer layers
US6255004B1 (en) III-V nitride semiconductor devices and process for the production thereof
US5363793A (en) Method for forming crystals
JPH03132016A (en) Method of forming crystal
EP0241204B1 (en) Method for forming crystalline deposited film
JP2670453B2 (en) Crystal formation method
JP2000247798A (en) Formation of single crystal thin layer
US8529699B2 (en) Method of growing zinc-oxide-based semiconductor and method of manufacturing semiconductor light emitting device
KR101041659B1 (en) A Method Of Manfacturing GaN Epitaxial Layer Using ZnO Buffer Layer
US5438951A (en) Method of growing compound semiconductor on silicon wafer
JPH03132017A (en) Method of forming crystal
US5118365A (en) Ii-iv group compound crystal article and process for producing same
US5254211A (en) Method for forming crystals
JP2659745B2 (en) III-Group V compound crystal article and method of forming the same
EP0284437A2 (en) III - V Group compound crystal article and process for producing the same
JPH03132015A (en) Method of forming crystal
US5364815A (en) Crystal articles and method for forming the same
JP2651146B2 (en) Crystal manufacturing method
JPH01132116A (en) Crystal product, preparation thereof, and semiconductor device prepared thereby
US5183778A (en) Method of producing a semiconductor device
JP2003171200A (en) Crystal growth method for compound semiconductor and compound semiconductor device
JPH01149483A (en) Solar cell