JPH03131511A - High-purity silica and production thereof - Google Patents

High-purity silica and production thereof

Info

Publication number
JPH03131511A
JPH03131511A JP30241589A JP30241589A JPH03131511A JP H03131511 A JPH03131511 A JP H03131511A JP 30241589 A JP30241589 A JP 30241589A JP 30241589 A JP30241589 A JP 30241589A JP H03131511 A JPH03131511 A JP H03131511A
Authority
JP
Japan
Prior art keywords
silica
concentration
production
reaction
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30241589A
Other languages
Japanese (ja)
Inventor
Tadashi Mochizuki
正 望月
Hideo Iwata
岩田 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to CA 2021229 priority Critical patent/CA2021229A1/en
Priority to EP19900113683 priority patent/EP0409167A3/en
Publication of JPH03131511A publication Critical patent/JPH03131511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To reduce metal impurities by reacting an alkali silicate in a specific concentration with a mineral acid at a prescribed temperature for a prescribed time. CONSTITUTION:An aqueous solution of an alkali silicate in <=5wt.% SiO2 concentration is added and mixed with a mineral acid such as sulfuric acid so as to provide >=15wt.% mineral acid concentration. Reaction is then carried out at a reaction temperature for a reaction time expressed by the formula [T( deg.C) is the temperature for producing SiO2; t (hr) is the time required for the production]. After completing the reaction, the reaction product is then filtered, washed with water and burned to afford high-purity SiO2 in >=90% yield. The formed high-purity SiO2 has respective impurity contents as follows. <=0.1wt.ppb U and Th and <=1wt.ppm Fe, Al, Ti, Na and K.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、珪酸アルカリから製造される高純度シリカ
、特にU、Th等の有害不純物をはじめ金属不純物の極
めて少ない高純度シリカの製造技術に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a technology for producing high-purity silica produced from alkali silicate, particularly high-purity silica with extremely low levels of metal impurities including harmful impurities such as U and Th. It is something.

[従来の技術] 高純度シリカは電子部品分野での需要が多く、且つ益々
純度の高いものが要求されてきている。
[Prior Art] High-purity silica is in high demand in the field of electronic components, and silica with higher purity is increasingly required.

不純物レベルの低減が特に要求される元素としてシリカ
に含まれているものにUやT hがあり、これらの元素
はα線を放射しメモリエラーを発生させることがその理
由である。したがって、集積度の高いICの封止剤に用
いられるシリカ等ではUやThを全くなくすことが望ま
t(、これらの含有率が0 、1 wtppb以下のも
のが要求されている。この高純度シリカには、大別して
、水晶や珪石等を直接原料とする天然シリカとハロゲン
化珪素、アルコキシシラン或は珪酸アルカリを原料とす
る合成シリカとがある。天然シリカは原料中に含まれる
UやThが多いため、精製後の製品中にもこれらがl 
vtppb前後残ってしまう0合成シリカの方がこれら
不純物の含有率を低下させるのに適している。ハロゲン
化珪素やアルコキシシランを原料として合成する場合、
これらのyKflを加水分解した後焼成するか、或は気
相分解してシリカを得る。しかし、ハロゲン化珪素やア
ルコキシシランは高価であると共に腐食性や可燃性を有
するなめ、取り扱いには特別な配慮を要し、そのため製
品価格が極めて高くなる。珪酸アルカリは原料価格は低
く、製造過程を工夫することによって安価な製品が期待
できるものである。この珪酸アルカリを原料とする製法
には、シリカの生成時にU  Thの混入を避けるため
、キレート剤等の試薬によってこれらの元素の析出を防
ぐ方法もある。しかしこの方法では用いる試薬が高価な
ため製造コストが上昇し、工業的には実用することが困
難である。実用面を考慮した製造法に、例えば、特開昭
62−283809号公報に見られる提案がある。この
提案では、5i02換算で30wt%濃度の珪酸ソーダ
を原料とし、これを酸性溶液中で紡糸して繊維状シリカ
ゲルとし、酸処理・水洗により不純物を除去して高純度
品を得る。
Elements contained in silica whose impurity levels are particularly required to be reduced include U and Th, and the reason for this is that these elements emit alpha rays and cause memory errors. Therefore, it is desirable to completely eliminate U and Th in silica used as a sealant for highly integrated ICs (it is required that the content of these elements be 0.1 wtppb or less. Silica can be roughly divided into natural silica made directly from crystals, silica, etc., and synthetic silica made from silicon halides, alkoxysilanes, or alkali silicate.Natural silica contains U and Th contained in the raw materials. Since there are many
Zero synthetic silica, which remains around vtppb, is more suitable for reducing the content of these impurities. When synthesizing using silicon halide or alkoxysilane as raw materials,
After hydrolyzing these yKfl, silica is obtained by calcining or by vapor phase decomposition. However, silicon halides and alkoxysilanes are expensive, corrosive and flammable, and require special care when handling, resulting in extremely high product prices. The cost of raw materials for alkali silicate is low, and by devising the manufacturing process, inexpensive products can be expected. In the manufacturing method using an alkali silicate as a raw material, there is also a method of preventing the precipitation of these elements using a reagent such as a chelating agent in order to avoid contamination of U Th during the production of silica. However, since the reagents used in this method are expensive, the manufacturing cost increases and it is difficult to put it into practical use industrially. For example, there is a proposal for a manufacturing method that takes practical aspects into consideration, as found in Japanese Patent Application Laid-Open No. 62-283809. In this proposal, sodium silicate with a concentration of 30 wt% in terms of 5i02 is used as a raw material, and this is spun in an acidic solution to form a fibrous silica gel, and impurities are removed by acid treatment and water washing to obtain a high-purity product.

[発明が解決しようとする課題] この方法では、特殊な試薬も使わず妥当な製造コストが
期待できる。しかしながら、得られる製品中のU、Th
の含有率が十分の数wtPPI)程度までしか低下せず
、要求を満たすだけの高純度が得られていない。
[Problems to be Solved by the Invention] This method does not require any special reagents and can be expected to have reasonable manufacturing costs. However, U, Th in the obtained product
The content of PPI is reduced to only a few tenths of wtPPI), and a purity high enough to meet the requirements cannot be obtained.

このような問題を解決するためにこの発明はなされたも
ので、特殊な薬品を用いず低い製造コストで、U、Th
等の不純物の極めて少ない高純度シリカを提供すること
を目的とするものである。
This invention was made to solve such problems, and it can produce U, Th at low manufacturing cost without using special chemicals.
The purpose of this invention is to provide high-purity silica containing extremely few impurities such as.

[課題を解決するための手段] この目的を達成するための手段は、ウラン及びトリウム
の不純物含有率が各々0 、 1 wLppb以下で、
且つ鉄、アルミニウム、チタン、ナトリウム及びカリウ
ムの不純物含有率が各々1 wtppII!以下である
高純度シリカとこのような高純度シリカの製造方法とで
ある。そして、この製造方法は、珪酸アルカリと鉱酸と
の反応によってシリカを生成させて高純度シリカを製造
するときに、原料となる珪酸アルカリの濃度が8102
濃度で5wt%以下となり、反応させる鉱酸濃度が15
wt%以上となるように両者を混合してシリカを生成さ
せる高純度シリカの製造方法であり、更に、シリカを生
成させるとき、生成温度をT (’C) 、生成に要す
る時間をt(時間)として、 tT”’≧1150 ・・・[1] なる条件で生成させることが一層望ましい。
[Means for Solving the Problem] The means for achieving this object is to reduce the impurity content of uranium and thorium to 0 and 1 wLppb or less, respectively,
Moreover, the impurity content of iron, aluminum, titanium, sodium, and potassium is each 1 wtppII! The following are high-purity silica and a method for producing such high-purity silica. In this production method, when producing high-purity silica by producing silica through a reaction between an alkali silicate and a mineral acid, the concentration of the alkali silicate used as a raw material is 8102.
The concentration is 5wt% or less, and the mineral acid concentration to be reacted is 15%.
This is a method for producing high-purity silica, in which silica is produced by mixing both of them so that the amount is at least % wt%.Furthermore, when producing silica, the production temperature is T ('C), and the time required for production is t (hours). ), it is more desirable to generate it under the following conditions: tT"'≧1150...[1]

[作用コ 鉱酸中に珪酸アルカリを添加すると、珪酸イオンは縮合
により脱水されシリカを生成して沈殿を生ずる。この過
程において、除去することが最も望まれるU及びThの
挙動を調べると、アルカリ溶液中では[U 02(C0
s)s ] ’−1及び[Th (Co31s ] ’
−などの可溶な炭酸塩錯イオンとして存在し、酸溶液中
ではUO22+、及びTh’+などの可溶性イオンとし
て存在している。
[Working] When an alkali silicate is added to a mineral acid, the silicate ions are dehydrated by condensation to form silica and precipitate. In this process, when we investigate the behavior of U and Th, which are most desired to be removed, we find that [U 02 (C0
s)s]'-1 and [Th(Co31s]'
It exists as soluble carbonate complex ions such as -, and in acid solutions as soluble ions such as UO22+ and Th'+.

しかしながら、アルカリから酸に変わる過渡的な中性領
域では、−旦、水酸化物などの不溶性化合物となる。こ
の不溶性化合物の大部分は、強酸性下では、前記の可溶
性イオンとなるが、極く一部が不溶のままシリカのネッ
トワークに取り込まれ、これが濾別分離されずに残り、
不純物混入の主たる原因になっている。このような考え
に基づいてこの発明はなされた乙のである。即ち、シリ
カ生成時の珪酸濃度(以下、5i02濃度を指す)が低
い程取り込むU、Thの率は小さい筈である。このこと
を定量的に確かめてみると、第1図に示す結果が得られ
た。硫酸と硝酸の1:1混酸の濃度を20wL%と一定
にして、原料の珪酸ソーダ濃度を変え、生成されたシリ
カ中のU。
However, in the transitional neutral region where the alkali changes to the acid, it becomes an insoluble compound such as hydroxide. Most of these insoluble compounds become the above-mentioned soluble ions under strong acidity, but a small portion remains insoluble and is incorporated into the silica network, which remains without being filtered out.
It is the main cause of impurity contamination. This invention was made based on this idea. That is, the lower the silicic acid concentration (hereinafter referred to as 5i02 concentration) at the time of silica production, the lower the rate of U and Th incorporated. When this was confirmed quantitatively, the results shown in FIG. 1 were obtained. U in the silica produced by keeping the concentration of a 1:1 mixed acid of sulfuric acid and nitric acid constant at 20 wL% and changing the concentration of sodium silicate as a raw material.

Thの含有率の変化を調べた結果である1図で、縦軸は
U、Thの含有率、横軸は珪酸ソーダ濃度、・で表した
のがTh、○で表したのがUのグラフである。Uよりも
Thの方が除去し難いが、珪酸濃度が小さくなるとU、
Th共に含有率が下がり、珪酸ソーダ濃度が5wt%位
になるとTh濃度も0 、1 vtppbに下がる。更
に珪酸アルカリ濃度を下げて1wt%以下としても、そ
の効果は段々小さくなる0次に、鉱酸濃度についても、
高濃度であるほどU、Thの不純物は減る筈であり、実
際にも確認された。この結果を第2図に示す6図で、縦
軸はtJ、Thの含有率、横軸は鉱酸濃度、・で表した
のがTh、○で表したのがUのグラフであるである。酸
濃度が15wt%程度になると、除去し難いThの含有
率も0.1vtppbよりも低くなる。更に酸濃度を上
げて40wt%以上にしても、その効果は余り変わらな
い。
Figure 1 shows the results of examining changes in the Th content, where the vertical axis is U, the Th content, and the horizontal axis is the sodium silicate concentration.The graph represents Th and the circle represents U. It is. Th is more difficult to remove than U, but as the silicic acid concentration decreases, U,
The content rate of both Th decreases, and when the sodium silicate concentration reaches about 5 wt%, the Th concentration also decreases to 0.1 vtppb. Furthermore, even if the alkali silicate concentration is lowered to 1 wt% or less, the effect gradually decreases.As for the mineral acid concentration,
The higher the concentration, the lower the U and Th impurities should be, and this was actually confirmed. This result is shown in Figure 2, where the vertical axis is tJ, the content of Th, the horizontal axis is the mineral acid concentration, the graph represents Th, and the circle represents U. . When the acid concentration becomes about 15 wt%, the content of Th, which is difficult to remove, also becomes lower than 0.1 vtppb. Even if the acid concentration is further increased to 40 wt% or more, the effect does not change much.

このように、珪酸アルカリと鉱酸とを反応させるときに
珪酸アルカリの濃度と5wt%以下とし、且つ、反応さ
せる鉱酸濃度を15W七%以上とすると、U、Thの含
有率が0 、 1 wtppb以下となる。そして、珪
酸アルカリ濃度が5wt%以上であるとTh含有率がQ
 、  l wtppbを超えるおそれがあり、又、鉱
酸濃度が15wt%未溝であっても、やはりT h i
a度がO、L wtppbを超えるおそれがある。更に
、酸濃度が15wt%以上と高いので同時にFe、AJ
、Ti、Na、に等の不純物も十分に溶解し、シリカの
沈殿と濾別分離されるので、これらの不純物もl vt
ppm以下となる。
In this way, when the alkali silicate and mineral acid are reacted, if the concentration of the alkali silicate is 5 wt% or less, and the concentration of the mineral acid to be reacted is 15W 7% or more, the content of U and Th is 0, 1. wtppb or less. When the alkali silicate concentration is 5 wt% or more, the Th content is Q
, lwtppb, and even if the mineral acid concentration is 15wt%, it is still
There is a risk that the a degree may exceed O, L wtppb. Furthermore, since the acid concentration is as high as 15 wt% or more, Fe, AJ
, Ti, Na, etc. are also sufficiently dissolved and separated by filtration from the silica precipitate, so these impurities are also l vt
ppm or less.

濃度と同様にシリカ生成時の温度についても、高温程鉱
酸の不純物を溶出する能力は高まり、又、生成に時間を
掛ける程不純物の除去は十分に行われる。第4図は生成
温度と生成時間を変えて、Uの含有率を調べた結果であ
る。生成温度がg o ’cの場合と40℃の場合につ
いて比較したものであるが、温度が高い程不純物は早く
除去される。更に、生成時間はシリカの収率に影響し、
高純度シリカの収率を上げるには生成温度が低いほど長
時間と要す、第5図は生成温度と生成時間を変えて、収
率を調べた結果である。生成温度が80℃の場合は2時
間での収率は90%を超えるが、生成温度が20℃の場
合は収率90%を得ようとすると15時間を要する。
Regarding the temperature at the time of silica production as well as the concentration, the higher the temperature, the higher the ability of the mineral acid to elute impurities, and the longer the production time, the more impurities are removed. FIG. 4 shows the results of examining the U content by varying the formation temperature and time. A comparison is made between a case where the production temperature is go'c and a case where the production temperature is 40°C, and the higher the temperature, the faster the impurities are removed. Furthermore, the generation time affects the yield of silica;
In order to increase the yield of high-purity silica, the lower the production temperature, the longer the time required. Figure 5 shows the results of investigating the yield by varying the production temperature and production time. When the production temperature is 80°C, the yield in 2 hours exceeds 90%, but when the production temperature is 20°C, it takes 15 hours to obtain a 90% yield.

即ち、収率を高めようとすると、生成の温度を高め生成
時間を長くする必要がある。90%以上の収率を確保す
るための条件範囲を第3図に示す。図は縦軸に生成温度
、横軸に生成時間をとり、収率が90%以上の場合を○
印で、90%未満の場合3Δ印で表示したものである。
That is, in order to increase the yield, it is necessary to increase the production temperature and prolong the production time. FIG. 3 shows the range of conditions for ensuring a yield of 90% or more. The figure shows the production temperature on the vertical axis and the production time on the horizontal axis, with ○ indicating a yield of 90% or more.
If it is less than 90%, it is indicated by a 3Δ mark.

○印の分布する領域の境界はほぼ曲線Aで表示され、こ
の曲線Aを数式で近似しこの領域を示すと、生成温度を
T(’C)、生成に要する時間をt(時間)として、 tTO7≧ 130  ・・・ [1]となる、即ち、
この条件範囲では収率90%以上で高純度シリカを生成
することができる。
The boundary of the area where the ○ marks are distributed is approximately represented by a curve A, and when this curve A is approximated by a mathematical formula to indicate this area, the formation temperature is T ('C), the time required for formation is t (hour), tTO7≧130...[1], that is,
In this range of conditions, high purity silica can be produced with a yield of 90% or more.

[実施例] (実施例1) 攪拌器を備えた反応容器に20wt%の硫酸25jを入
れ、これに、JIS−に−1408に規定する3号の珪
酸ソーダを蒸留水で希釈してSiO□濃度で15wt%
としたもの51を攪拌しながら添加した。添加後、反応
容器を60°C乃至70°Cに保持し反応が十分に終わ
るのを侍ってシソ力の沈殿を濾別分離し、蒸留水で洗浄
後1200°Cで1時間焼成した。こうして得られたシ
リカについて不純物を分析した。なお、不純物分析につ
いては、U、ThはICP質量分析法により、Fe。
[Example] (Example 1) 20wt% sulfuric acid 25j was placed in a reaction vessel equipped with a stirrer, and No. 3 sodium silicate specified in JIS-1408 was diluted with distilled water to form SiO□. Concentration: 15wt%
51 was added with stirring. After the addition, the reaction vessel was maintained at 60°C to 70°C to ensure the reaction was fully completed, and the perilla precipitate was separated by filtration, washed with distilled water, and then calcined at 1200°C for 1 hour. The silica thus obtained was analyzed for impurities. Regarding impurity analysis, U and Th were determined to be Fe by ICP mass spectrometry.

Aρ、TiはTCP発光法によりそしてNa、には原子
吸光法により各々測定した。
Aρ and Ti were measured by TCP luminescence method, and Na was measured by atomic absorption method.

測定結果を、酸及び珪酸アルカリの条件と変えた他の実
施例及び比較例の結果と共に、第1表に示す。
The measurement results are shown in Table 1 together with the results of other Examples and Comparative Examples in which the acid and alkali silicate conditions were changed.

実施例N[L2から実施例慮6までは酸濃度及び珪酸ア
ルカリ種類及び濃度を変えて、実施例1と同様の手法に
よって製造した例であり、実施例Nα7から実施例Na
 12までは、更に別の鉱酸を用いて実施例NILl乃
至実施例逓6と同様の手法によって製造した例である。
Example N [L2 to Example No. 6 are examples manufactured by the same method as Example 1 by changing the acid concentration and the type and concentration of alkali silicate, and Example Nα7 to Example Na
Examples up to No. 12 are examples manufactured in the same manner as Example NIL1 to Example No. 6 using still another mineral acid.

比較例は鉱酸濃度或は珪酸アルカリ濃度について、この
発明の条件範囲から外れた条件下で製造された例である
Comparative examples are examples manufactured under conditions outside the range of conditions of the present invention with regard to mineral acid concentration or alkali silicate concentration.

第 1 表 実施例では何れの例でも、U、Th共に0.1wtpp
b以下の含有率のシリカが得られ、また、Fe、A!J
、Ti 、Na、に等の他の不純物についても、1冒t
pp諷以下の含有率となっている。然るに、比較例では
、Thの含有率が0 、1 wtppb以上のシリカと
なったり、他の不純物がl wtppm以上となったり
している。又、実施例で得られた不純物の含有率は、珪
酸アルカリに酸を作用させて得ていた従来のシリカの不
純物含有率即ちU。
In all examples in Table 1, both U and Th are 0.1wtpp.
Silica with a content of less than b is obtained, and Fe, A! J
Regarding other impurities such as , Ti, Na, etc.
The content is less than pp. However, in the comparative examples, the silica has a Th content of 0.1 wtppb or more, and other impurities have a content of 1 wtppm or more. Further, the impurity content obtained in the examples is the impurity content U, that is, the impurity content of conventional silica obtained by allowing acid to act on alkali silicate.

Thが十分の数wtppb−他の不純物が数vtppm
に較べ1画期的に低くなっている。
Th is a tenth of a number wtppb - other impurities are a few vtppm
This is an epoch-making decrease compared to the previous year.

このようにして製造されたシリカの純度は極めて高く、
特にUもThも共に0 、1 wtppb以下であるの
で、α線の悪影響を無くすことができ、又、Fe、Aj
l、Ti、Na、に等信の不純物も極めて少ないので、
熱歪、熱伝導性、電気電導度等の物理特性も良好である
The purity of the silica produced in this way is extremely high;
In particular, since both U and Th are below 0.1 wtppb, the adverse effects of α rays can be eliminated, and Fe, Aj
Since there are very few impurities such as L, Ti, and Na,
It also has good physical properties such as thermal strain, thermal conductivity, and electrical conductivity.

(実施例2) 実施例1と同様に高純度シリカを製造し不純物を測定し
たが、生成に際して生成温度と生成時間を変えて収率を
調べた。なお、生成時間には珪酸アルカリの添加に要し
た時間とその後攪拌のみを続けながら一定温度に保持し
た時間、言わば熟成時間を含む、この結果を第2表に比
較例と共に示す。
(Example 2) High purity silica was produced in the same manner as in Example 1 and impurities were measured, but the yield was examined by changing the production temperature and production time. Note that the generation time includes the time required for adding the alkali silicate and the time for maintaining the temperature at a constant temperature while stirring only after that, so to speak, the aging time. The results are shown in Table 2 together with comparative examples.

第2表 実施例では何れも収率は90%以上であるが、比較例で
は90%に満たない、又、不純物含有率も、実施例では
Uが平均0.04wtppb 、 Thが007と少な
いが、比較例では各々0,06.1 、 Owtppb
と若干増えている。
The yield is 90% or more in all of the Examples in Table 2, but it is less than 90% in the Comparative Examples.Also, the impurity content is low in the Examples with an average of 0.04wtppb of U and 0.07% of Th. , 0,06.1 and Owtppb in the comparative example, respectively.
It has increased slightly.

なお、生成温度が20°C未満で90%以上の収率を確
保しようとすると、15時間を超えて生成時間を長くし
なければならない、生成温度は高いほど短時間で不純物
を減少させ且つ収率を高めることが出来るが、実操業に
際しては80℃を超える温度では、酸ヒユームの発生、
水の蒸発による濃度の変化などが増大し操業しにくかっ
た。
In addition, in order to secure a yield of 90% or more when the production temperature is less than 20°C, the production time must be extended beyond 15 hours.The higher the production temperature, the faster the impurities can be reduced and the yield increased. However, in actual operation, at temperatures exceeding 80°C, acid fume generation,
Changes in concentration due to water evaporation increased, making operation difficult.

[発明の効果] 以上のように、この発明によれば原料の珪酸アルカリ濃
度を規制し酸濃度が高い状態でシリカの生成反応を行わ
せているので、特殊な試薬や手法を用いなくても不純物
の不溶解舒が極めて少ない、したがってU、Thでは0
 、1 wLppb以下、他の不純物ではl wLpp
m以下の高純度シリカが高収率低コストで得られる。電
子部品分野では益々高純度のシリカが要望されており、
このように実用性の高いこの発明の効果は非常に大きい
[Effects of the Invention] As described above, according to the present invention, the alkali silicate concentration of the raw material is regulated and the silica production reaction is performed in a state of high acid concentration, so the silica production reaction can be performed without using special reagents or methods. The amount of undissolved impurities is extremely small, so U and Th are 0.
, 1 wLppb or less, for other impurities l wLpp
High purity silica with a purity of less than m can be obtained in high yield and at low cost. In the field of electronic components, there is an increasing demand for high-purity silica.
The effects of this highly practical invention are very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発明の詳細な説明するための原料濃度と不純物
含有率との関係を示す図、第2図は酸濃度と不純物との
関係を示す図、第3図は生成条件と収率との関係を示す
図、第4図は生成時間とU含有率との関係を示す図、第
5図は生成時間と収率との関係を示す図である。
Figure 1 is a diagram showing the relationship between raw material concentration and impurity content for detailed explanation of the invention, Figure 2 is a diagram showing the relationship between acid concentration and impurities, and Figure 3 is a diagram showing the relationship between production conditions and yield. FIG. 4 is a diagram showing the relationship between production time and U content, and FIG. 5 is a diagram showing the relationship between production time and yield.

Claims (3)

【特許請求の範囲】[Claims] (1)ウラン及びトリウムの不純物含有率が各々0.1
wtppb以下で、且つ、鉄、アルミニウム、チタン、
ナトリウム及びカリウムの不純物含有率が各々1wtp
pm以下であることを特徴とする高純度シリカ。
(1) Impurity content of uranium and thorium is each 0.1
wtppb or less, and iron, aluminum, titanium,
Impurity content of sodium and potassium is 1wtp each
High purity silica characterized by having a content of pm or less.
(2)珪酸アルカリと鉱酸との反応によって、シリカを
生成させる高純度シリカの製造方法において、珪酸アル
カリの濃度をSiO_2濃度で5wt%以下とし、且つ
鉱酸濃度を15wt%以上としてシリカを生成させるこ
とを特徴とする高純度シリカの製造方法。
(2) In a method for producing high-purity silica in which silica is produced by a reaction between an alkali silicate and a mineral acid, silica is produced by setting the alkali silicate concentration to 5 wt% or less in SiO_2 concentration and the mineral acid concentration to 15 wt% or more. A method for producing high-purity silica, characterized by:
(3)シリカを生成させるとき、生成温度をT(℃)、
生成に要する時間をt(時間)として、tT^1^.^
4^5≧1150・・・[1]なる条件で生成させる請
求項2記載の高純度シリカの製造方法。
(3) When generating silica, the generation temperature is T (℃),
Letting the time required for generation be t (time), tT^1^. ^
The method for producing high-purity silica according to claim 2, wherein the production is performed under the following conditions: 4^5≧1150...[1].
JP30241589A 1989-07-18 1989-11-21 High-purity silica and production thereof Pending JPH03131511A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA 2021229 CA2021229A1 (en) 1989-07-18 1990-07-16 High purity silica and method for producing high purity silica
EP19900113683 EP0409167A3 (en) 1989-07-18 1990-07-17 High purity silica and method for producing high purity silica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18576489 1989-07-18
JP1-185764 1989-07-18

Publications (1)

Publication Number Publication Date
JPH03131511A true JPH03131511A (en) 1991-06-05

Family

ID=16176468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30241589A Pending JPH03131511A (en) 1989-07-18 1989-11-21 High-purity silica and production thereof

Country Status (1)

Country Link
JP (1) JPH03131511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208585A (en) * 2013-03-29 2014-11-06 株式会社アドマテックス Silica particles, method for manufacturing silica particles, and method for manufacturing surface-modified silica particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208585A (en) * 2013-03-29 2014-11-06 株式会社アドマテックス Silica particles, method for manufacturing silica particles, and method for manufacturing surface-modified silica particles

Similar Documents

Publication Publication Date Title
Abe et al. Synthetic inorganic ion-exchange materials. X. Preparation and properties of so-called antimonic (V) acid
JPH05503066A (en) Method for producing alkali metal silicate
JPS62223019A (en) Crystalline tin-antimony oxide sol and production thereof
JPS60161324A (en) Manufacture of crystalline layered alkali metal silicate
JPS6212608A (en) Silica of high purity and production thereof
SU1118284A3 (en) Method of obtaining zeolite type lsm-5
EP0938452A1 (en) Value improvement of clays
JPH08508003A (en) Method for producing fine-grained zeolite-type alkali metal aluminum silicate
JP2542797B2 (en) Method for producing high-purity silica
JPS6316329B2 (en)
JPH03131511A (en) High-purity silica and production thereof
US3870532A (en) Process for the production of alkali metal silicates
JP7187652B2 (en) niobic acid aqueous solution
EP1314696B1 (en) Method for preparing aluminum sulfate
JPS6090811A (en) Manufacture of high purity silica
KR20020011820A (en) The manufacturing method of silica sol
JPH05339B2 (en)
EP0409167A2 (en) High purity silica and method for producing high purity silica
JPH075289B2 (en) Method for producing low-thorium high-purity silica
US681993A (en) Process of producing titanium compounds.
JPH01230422A (en) High-purity silica and production thereof
JPH055766B2 (en)
KR950004768B1 (en) Poly aluminum chloride, process for its manufacturing and its use
JPH0118006B2 (en)
JPS6117416A (en) High-purity silica and its preparation