JPH031307A - Production of magnetic head - Google Patents

Production of magnetic head

Info

Publication number
JPH031307A
JPH031307A JP13648589A JP13648589A JPH031307A JP H031307 A JPH031307 A JP H031307A JP 13648589 A JP13648589 A JP 13648589A JP 13648589 A JP13648589 A JP 13648589A JP H031307 A JPH031307 A JP H031307A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic head
thin film
magnetic core
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13648589A
Other languages
Japanese (ja)
Other versions
JPH0748246B2 (en
Inventor
Tatsushi Yamamoto
達志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13648589A priority Critical patent/JPH0748246B2/en
Priority to DE69016834T priority patent/DE69016834T2/en
Priority to EP90305833A priority patent/EP0400966B1/en
Priority to US07/529,872 priority patent/US5020212A/en
Publication of JPH031307A publication Critical patent/JPH031307A/en
Publication of JPH0748246B2 publication Critical patent/JPH0748246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To allow magnetic recording and reproducing of a high surface recording density with an azimuth recording system by setting the direction where grooves for coil windings are formed at a prescribed direction. CONSTITUTION:The grooves 11 for coil windings to be provided on core block half bodies 1 of the magnetic head are moved and worked in the direction to provide the disposition where the slopes of magnetic core layers 6 juxtaposed in the half bodies 1 are always inclined downward from the surface on the side forming the grooves 11 and the side opposite to the advancing side of a grinding wheel at all times and in the same direction27 as the direction of the rotating tangent component at the lowermost point of the rotary grinding wheel 7 when the above-mentioned grooves 11 are formed across the magnetic core layers 6 juxtaposed to the block half bodies 1. The formation of the boat- shaped grooves for the coil windings are, therefore, not formed by the difference in the azimuth. The shorting of the soft magnetic metallic thin films to each other beyond insulating thin films by the ductility of the metal is thus obviated. The magnetic recording and reproducing of a wide frequency range at the high surface recording density with the azimuth recording system are possible in this way.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は磁気ヘッドの製造方法に関する。さらに詳し
くは、数十メガヘルツに及ぶ広い帯域の記録再生が高い
効率で可能で、高保磁力媒体の性能を十分に利用するこ
とのできる、高飽和磁束密度金属軟磁性体の薄膜を絶縁
性薄膜で積層した構造の磁気コアをもつ、回転型磁気ヘ
ッドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method of manufacturing a magnetic head. More specifically, we are using an insulating thin film to create a thin film of high saturation magnetic flux density metal and soft magnetic material, which enables highly efficient recording and reproducing over a wide range of tens of megahertz and fully utilizes the performance of high coercive force media. The present invention relates to a method of manufacturing a rotary magnetic head having a magnetic core having a laminated structure.

(ロ)従来の発明 第3図に従来の軟磁性金属薄膜と絶縁性薄膜の積層体を
磁気コアとする磁気ヘッドの製造方法の一例を示す。こ
れは、非磁性基板10の表面に加工された複数本の平行
V字型溝11群の片側斜面に形成された軟磁性金属薄膜
と絶縁性薄膜の積層体6を磁気コア8とする磁気ヘッド
9の製造方法である。
(B) Conventional Invention FIG. 3 shows an example of a conventional method for manufacturing a magnetic head whose magnetic core is a laminate of a soft magnetic metal thin film and an insulating thin film. This is a magnetic head whose magnetic core 8 is a laminate 6 of a soft magnetic metal thin film and an insulating thin film formed on one slope of a plurality of parallel V-shaped grooves 11 processed on the surface of a non-magnetic substrate 10. This is the manufacturing method of No. 9.

非磁性基板10の表面に回転する砥石(図示省略)によ
って複数本の平行V字型溝11を形成しく同図(a))
、電子ビーム蒸着法などの蒸着に寄与する粒子の飛来方
向が一定した薄膜形成方法にてV溝頂点12の自己陰影
効果によって、■溝1!の斜面のうち片側の斜面だけに
軟磁性金属薄膜と絶縁性薄膜を交互に形成して積層体6
を形成する(同図(b))。ここで軟磁性金属としては
FeAlSi系合金(商標センダスト)、FeNi系合
金(パーマロイ)が挙げられ、絶縁性薄膜としてはS 
io 1. A lto 3等が挙げられる。また軟磁
性金属−層の厚さは、磁気ヘッドの動作する周波数帯域
、軟磁性金属の透磁率、抵抗率によって適性値が存在し
、絶縁性薄膜の厚さは、軟磁性金属薄膜間が短絡しない
ような厚さ(−膜内には0.1〜0.2μm)とする。
A plurality of parallel V-shaped grooves 11 are formed on the surface of the non-magnetic substrate 10 by a rotating grindstone (not shown) (Figure (a)).
■Groove 1! is formed by the self-shading effect of the V-groove apex 12 using a thin film forming method such as electron beam evaporation in which the flying direction of particles contributing to vapor deposition is constant. A laminated body 6 is formed by alternately forming a soft magnetic metal thin film and an insulating thin film only on one side of the slope.
((b) in the same figure). Here, examples of the soft magnetic metal include FeAlSi alloy (trademark Sendust) and FeNi alloy (Permalloy), and examples of the insulating thin film include S
io 1. Examples include Alto 3. In addition, the thickness of the soft magnetic metal layer has an appropriate value depending on the frequency band in which the magnetic head operates, the magnetic permeability and resistivity of the soft magnetic metal, and the thickness of the insulating thin film is determined by the thickness of the soft magnetic metal thin film. The thickness should be such that it does not occur (-0.1 to 0.2 μm within the film).

そして後にV溝Zを埋め込むためのガラス13から積層
体6を保護するためとガラス13との濡れを良くするた
めにCr、Taなどの金属の薄膜を0.1−1μmの厚
さで形成する(図示省略)。
Then, in order to protect the laminate 6 from the glass 13 for later filling the V-groove Z and to improve wetting with the glass 13, a thin film of metal such as Cr or Ta is formed with a thickness of 0.1-1 μm. (Illustration omitted).

この後V溝IIをガラス13で埋め込み、余分なガラス
13を除去して磁気へラドコア母材14を形成する(同
図(C乃。磁気ヘッドコア母材14はV溝と直交する方
向で切断されて一対の磁気ヘッドコア半体l、ドとなり
(同図(d)、なお説明を簡略にするため、磁気へラド
コア母材14から一対の磁気へラドコア半体l、ビを形
成するものとして説明する。実際には、さらに多数の磁
気へラドコア半体1が一つの磁気ヘッドコア母tt14
から形成される。)、この磁気へソドコア半体1ビのV
溝ilが形成された側3に砥石を用いてコイル巻線用舟
形溝2、反対側にコイル巻線用外側溝15を加工した後
(同図(e))、舟形溝2が加工された側の面3を精密
ボリッンユし、磁気ヘッドのギャップとなる非磁性材料
の薄膜をポリッシュされた而3に形成した後(図示省略
)、磁気へラドコア半体[、!’内の軟磁性金属薄膜と
絶縁性薄膜の積層体6同志か互いに相対するように位置
合わせをしたうえで固定し、加熱してV溝11に埋め込
まれたガラス13を溶融し一対の磁気ヘプトコア半体1
.1’を溶着して複数の磁気磁気ギャップ部分を含んだ
磁気ヘッドパー16を形成する(同図(r))。この後
、媒体摺動面となる側の面17を円筒状に研削加工し、
必要に応じて媒体摺動面の幅を規制する加工を施した上
で、ア′ジマスを考慮してそれぞれの磁気ヘッド9に分
断する(同図(g))。第4図は得られた磁気ヘッド9
の斜視図である。
After that, the V-groove II is filled with glass 13, and the excess glass 13 is removed to form a magnetic head core base material 14 (see figure (C). The magnetic head core base material 14 is cut in the direction perpendicular to the V-groove. Then, a pair of magnetic head core halves L and D are formed (FIG. 2(d); for the sake of simplicity, the explanation will be given assuming that a pair of magnetic head core halves L and B are formed from the magnetic head core base material 14. In reality, a larger number of magnetic head core halves 1 are combined into one magnetic head core mother tt14.
formed from. ), V of this magnetic core half 1 Bi
After forming a boat-shaped groove 2 for coil winding on the side 3 where the groove il was formed using a grindstone, and forming an outer groove 15 for coil winding on the opposite side ((e) in the same figure), the boat-shaped groove 2 was machined. After precision drilling the side surface 3 and forming a thin film of non-magnetic material that will form the gap of the magnetic head on the polished surface 3 (not shown), the magnetic head core half [,! The laminated body 6 of the soft magnetic metal thin film and the insulating thin film are aligned and fixed so that they face each other, and heated to melt the glass 13 embedded in the V-groove 11, forming a pair of magnetic hepto cores. half body 1
.. 1' is welded to form a magnetic head hole 16 including a plurality of magnetic gap portions (FIG. 2(r)). After this, the surface 17 on the side that will become the medium sliding surface is ground into a cylindrical shape,
After performing processing to regulate the width of the medium sliding surface as necessary, the magnetic head 9 is divided into respective magnetic heads 9 in consideration of the azimuth (FIG. 3(g)). Figure 4 shows the obtained magnetic head 9.
FIG.

第5図に従来の軟磁性金属薄膜と絶縁性薄膜の積層体6
を磁気コア8とする磁気ヘッド9の製造方法の他の例を
示す。これは、板状の非磁性基板10表面に形成された
軟磁性金属薄膜と絶縁性薄膜の積層体6を磁気コア8と
する磁気ヘッド9の製造方法である。
Figure 5 shows a conventional laminate 6 of a soft magnetic metal thin film and an insulating thin film.
Another example of the manufacturing method of the magnetic head 9 using the magnetic core 8 as shown in FIG. This is a method for manufacturing a magnetic head 9 in which a magnetic core 8 is a laminate 6 of a soft magnetic metal thin film and an insulating thin film formed on the surface of a plate-shaped nonmagnetic substrate 10.

板状の非道性基板10の表面に電子ビーム蒸着法、スパ
ッタリング法等の薄膜形成方法で軟磁性金属薄膜と絶縁
性薄膜を交互に形成して積層体6を形成する(同図(a
))。これらの材料構成、それぞれの厚さは前述の通り
である。さらに、積層体6を保護するためとガラスとの
濡れを良くするためのCr、 Ta等の金属薄膜を形成
して(図示省略)一つの単位となる蒸着ずみ基板18を
形成する。
A laminated body 6 is formed by alternately forming soft magnetic metal thin films and insulating thin films on the surface of the plate-shaped non-conductive substrate 10 using a thin film forming method such as electron beam evaporation or sputtering (see FIG.
)). The composition of these materials and their respective thicknesses are as described above. Furthermore, a metal thin film of Cr, Ta, etc. is formed (not shown) to protect the laminate 6 and to improve wetting with the glass, thereby forming a vapor-deposited substrate 18 serving as one unit.

次に、複数枚の蒸着ずみ基板18をガラスで積層溶着し
磁気へラドコア母材14を形成する(同図(b)、なお
簡単のため積層体6が3カ所に含まれるよう描いた。ま
た、ガラスは図示省略した)。
Next, a plurality of vapor-deposited substrates 18 are laminated and welded with glass to form a magnetic rad core base material 14 (FIG. 1(b), for simplicity, the laminate 6 is drawn in three locations. (glass not shown).

この際、ガラスはスパッタリング法、スクリーン印刷法
等によって被着する。
At this time, the glass is applied by sputtering, screen printing, or the like.

次に、磁気へラドコア母材14を、得られろ磁気ヘッド
9のアジマスを考慮した角度をもった面で切断して磁気
ヘッドコア半体1を形成する(同図(c)、なお説明の
簡略のため、磁気へラドコア母材14から二対の磁気へ
ラドコア半体■を形成するものとして描いた。)。
Next, the magnetic head core base material 14 is cut at a plane having an angle that takes into account the azimuth of the resulting magnetic head 9 to form the magnetic head core half body 1 (see FIG. Therefore, it is assumed that two pairs of magnetic rad core halves (2) are formed from the magnetic rad core base material 14.)

この後、コイル巻線用舟形溝2・外側溝15の加工、ギ
ャップ対向面となる舟形溝を形成した側の面3のポリッ
シュ、スペーサとなる非磁性薄膜の形成(図示省略)は
、前記第1の従来の製造方法に準する(同図(d))。
After that, processing of the coil winding boat-shaped groove 2 and outer groove 15, polishing of the surface 3 on the side where the boat-shaped groove was formed, which will be the surface facing the gap, and formation of a non-magnetic thin film that will become a spacer (not shown) are carried out as described above. The method is similar to the conventional manufacturing method No. 1 ((d) in the same figure).

次に、一対の磁気へラドコア半体[、■°を軟磁性金属
薄膜と絶縁性薄膜の積層体6同志が互いに相対するよう
に位置合わせをしたうえで固定し、舟形溝2によって形
造られた窓部分にガラスロッド19を挿入して図中20
で示す面が下方になるようにして加熱、ガラスロッド1
9を溶融して一対の磁気ヘッドコア半体l、1゛を溶着
し複数の磁気ギャップを含んだ磁気ヘッドバー16を形
成する(同図(e乃。
Next, the pair of magnetic helad core halves [, ■° are aligned and fixed so that the laminated bodies 6 of the soft magnetic metal thin film and the insulating thin film face each other, and Insert the glass rod 19 into the window section shown at 20 in the figure.
Heat the glass rod 1 with the side indicated by facing downward.
9 is melted and a pair of magnetic head core halves 1 and 1 are welded to form a magnetic head bar 16 including a plurality of magnetic gaps.

この後は前述の製造方法に準じ、磁気ヘッドパー16を
切断して複数の磁気ヘッド9を得ろ(同図(f))。第
6図は得られた磁気ヘッド9の斜視図である。
Thereafter, according to the manufacturing method described above, the magnetic head par 16 is cut to obtain a plurality of magnetic heads 9 (FIG. 4(f)). FIG. 6 is a perspective view of the obtained magnetic head 9.

(ハ)発明が解決しようとする課題 前記、従来の製造方法によれば、外観上は意図した形状
で磁気ヘッド9か得られたが、次ぎに述べる性能上の問
題点を有していた。
(c) Problems to be Solved by the Invention According to the conventional manufacturing method described above, the magnetic head 9 was obtained in the intended shape in terms of appearance, but it had the following performance problems.

即ち、面記録密度を上げろために互いに異なるアジマス
を持たけた磁気ヘッドで隣接するトラックを記録再生す
るに当たって、その互いに異なるアジマスをもつ磁気ヘ
ッドの特性に相違があるという間層である。
That is, when recording and reproducing adjacent tracks using magnetic heads having different azimuths in order to increase the areal recording density, there are differences in the characteristics of the magnetic heads having different azimuths.

この特性差とは、具体的には磁気コアの静特性と言うべ
きインピーダンスの周波数特性と、動特性と言うべき再
生出力の周波数特性とでの差である。これらの差の典型
的な例を第7図に示す。読図は、磁気ヘッダのインダク
タンスの周波数特性を示している。ここで、第8図に磁
気ヘッド9を記録媒体摺動面!7から見たときのアジマ
ス+(同図(a)、 (c))と−(同図(b)、(d
))の方向の違いを示した。上記第7図から分かるよう
にインダクタンスの周波数の増加に伴う減衰がアジマス
十の方が−よりも大きい。また再生出力ら同条にアジマ
ス十の方が−よりも減衰が大きかった。
Specifically, this characteristic difference is the difference between the frequency characteristic of impedance, which can be called the static characteristic of the magnetic core, and the frequency characteristic of the reproduced output, which can be called dynamic characteristic. A typical example of these differences is shown in FIG. The diagram shows the frequency characteristics of the inductance of the magnetic header. Here, FIG. 8 shows the magnetic head 9 on the recording medium sliding surface! Azimuth + (same figure (a), (c)) and - (same figure (b), (d) when viewed from 7)
)) showed the difference in direction. As can be seen from FIG. 7 above, the attenuation associated with an increase in the frequency of the inductance is larger in the azimuth range of 10 than in the - range. In addition, the attenuation was larger when the azimuth was set to 10 than when the playback output was set to -.

前述のように、アジマスの異なる意思外は外観の上では
差はないのでこれらの差は、磁気コア8の周波数特性差
と考えられた。
As mentioned above, since there is no difference in appearance except for the different azimuths, these differences were considered to be differences in the frequency characteristics of the magnetic cores 8.

ここで、磁気コア8として軟磁性金属薄膜4と絶縁性薄
膜5の積層体6を用いる意味について触れると、同じ磁
気コア8の厚さの磁気ヘッド9を形成するのに絶縁性薄
膜5を挟み込んで積層構造にしなければ、磁気ヘッド9
を高周波で駆動した場合、渦電流のために磁気コア8の
厚さ全体が有効に動作しない、即ち磁気コア8の周波数
特性が損なわれるという問題を解決するための手段であ
った。
Here, we will touch on the meaning of using the laminate 6 of the soft magnetic metal thin film 4 and the insulating thin film 5 as the magnetic core 8. To form a magnetic head 9 with the same thickness as the magnetic core 8, the insulating thin film 5 is sandwiched. If the layered structure is not used, the magnetic head 9
This is a means to solve the problem that when the magnetic core 8 is driven at a high frequency, the entire thickness of the magnetic core 8 does not operate effectively due to eddy currents, that is, the frequency characteristics of the magnetic core 8 are impaired.

この点から、アジマスの差に伴う特性の差は磁気コア8
を積層構造にした効果を阻害する要因によるものと考え
られた。
From this point, the difference in characteristics due to the difference in azimuth is the difference between the magnetic core 8
This is thought to be due to factors that inhibit the effectiveness of the layered structure.

一方、アジマス−ではインダクタンス、再生出力の減衰
は小さいことと、蒸着された積層体6の基板のどの位置
から取った材料を用いて磁気ヘッド9を形成しても同様
の傾向を示すことから、薄膜作製手段によって形成され
た積層体6内でのそれぞれの軟磁性金属薄膜4間の分離
は達成されていると見て良い。
On the other hand, in the azimuth direction, the inductance and reproduction output attenuation are small, and the same tendency is exhibited no matter where the material is taken from the substrate of the deposited laminate 6 to form the magnetic head 9. It can be seen that the separation between the respective soft magnetic metal thin films 4 within the stacked body 6 formed by the thin film manufacturing means has been achieved.

そこで、磁気ヘッド9を破壊して積層された軟磁性金属
薄M4間の分離が不十分と認められる部分を検索した所
、コイル巻線のために設けられた窓21の内周部分にお
いてアジマス+と−の磁気ヘッド間に明確な相違が認め
られた。即ち、アジマス+では金属の延性によって絶縁
性薄膜を乗り越えて軟磁性金属薄膜同志が電気的、磁気
的に短絡してしまっていた。
Therefore, when we destroyed the magnetic head 9 and searched for the part where the separation between the laminated soft magnetic metal thin M4 was found to be insufficient, we found that the azimuth + A clear difference was observed between the magnetic heads. That is, in azimuth +, the soft magnetic metal thin films were electrically and magnetically short-circuited by overcoming the insulating thin film due to the ductility of the metal.

前述のようにコイル巻線のために設けられた窓21は、
磁気コア半体lの単位で舟形溝2を加工することで形成
されるが、この加工の際にアジマスの差によって磁気へ
ラドコア半体!内での積層体6の配置が異なるために、
金属の延性のために絶縁性薄膜を乗り越えて軟磁性金属
薄膜同志が短絡するかどうかの差が現れるものと考えら
れた。
As mentioned above, the window 21 provided for the coil winding is
It is formed by machining the boat-shaped groove 2 in units of magnetic core halves 1, but during this machining, due to the difference in azimuth, the magnetic helad core halves! Because the arrangement of the laminate 6 is different within the
It was thought that the ductility of the metal makes the difference in whether or not the soft magnetic metal thin films cross over the insulating thin film and short-circuit with each other.

この差としてはコイル巻線用舟形溝2を形成する際の作
業上、第9図に示すごとく砥石7の加工装置への設置方
向を一定にした上で、加工される磁気へラドコア半体1
の基準となる辺(図中28で示す)と磁気ヘッドコア半
体lの加工時の送り方向との平行を確保し、所定の位置
にコイル巻線用舟形溝2を形成していたことによる。こ
の上うな作業方法によれば、磁気ヘッド9のアジマスの
差によって第10図(a)、 (b)又は(c)、 (
d)に示すような差が生じ得る。
This difference is due to the fact that when forming the coil winding boat-shaped groove 2, the grinding wheel 7 must be placed in the same direction in the processing device as shown in FIG.
This is because the parallelism between the reference side (indicated by 28 in the figure) and the feeding direction during processing of the magnetic head core half 1 was ensured, and the boat-shaped groove 2 for coil winding was formed at a predetermined position. According to this working method, depending on the azimuth difference of the magnetic head 9, FIGS.
Differences as shown in d) may occur.

即ち、砥石7は時計回りに回転し、舟形溝2の形成され
る磁気へラドコア半体1は図中右から左へ移動するもの
として、アジマス十では、軟磁性金属薄膜と絶縁性薄膜
の積層体6は、左下がりの面24に位置しているのに対
しく同図(a)、 (C))、アジマス−では軟磁性金
属薄膜と絶縁性薄膜の積層体6は、図中右下がりの斜面
23に位置している(同図(b)、 (d))。換言す
れば、アジマス十では軟磁性金属薄膜と絶縁性薄膜との
積層体6は磁気へラドコア半体l内でギャップ対向面3
から砥石7の進入する側に傾斜しているのに対し、アジ
マス−ではギャップ対向面3から砥石7の進入する側と
は反対側に傾斜している。
That is, assuming that the grinding wheel 7 rotates clockwise and the magnetic held core half 1 in which the boat-shaped groove 2 is formed moves from right to left in the figure, at an azimuth of 10, a lamination of a soft magnetic metal thin film and an insulating thin film is formed. The body 6 is located on the left-sloping surface 24, whereas in the azimuth (a) and (c) of the figure, the laminated body 6 of the soft magnetic metal thin film and the insulating thin film is located on the right-sloping surface 24 in the figure. It is located on the slope 23 ((b), (d) of the same figure). In other words, when the azimuth is ten, the laminated body 6 of the soft magnetic metal thin film and the insulating thin film is located on the gap facing surface 3 within the magnetic helad core half l.
On the other hand, in the azimuth direction, the gap is inclined from the gap facing surface 3 to the side opposite to the side where the grindstone 7 enters.

この配置の差と、砥石7の回転方向、磁気へラドコア半
体lの移動方向との兼合いによって、金属の延性のため
に絶縁性薄膜を乗り越えて軟磁性金属薄膜同志が短絡す
るかどうかの差が現れるものと考えられた。
This difference in arrangement, combined with the rotating direction of the grinding wheel 7 and the moving direction of the magnetic rad core half 1, determines whether or not the soft magnetic metal thin films will short-circuit together over the insulating thin film due to the ductility of the metal. It was thought that there would be a difference.

この発明は上記事情に鑑みてなされたものであり、コイ
ル巻線用溝の形成方向を所定の方向に設定することによ
り、アノマス記録方式で高い面記録密度の磁気記録再生
が可能な磁気ヘッドの製造方法を提供しようとするもの
である。
This invention has been made in view of the above circumstances, and provides a magnetic head that is capable of magnetic recording and reproducing at a high areal recording density using an anomous recording method by setting the direction in which the coil winding grooves are formed in a predetermined direction. The purpose is to provide a manufacturing method.

(ニ)課題を解決するための手段 かくしてこの発明によれば、非磁性基板内に、軟磁性金
属薄膜と絶縁性薄膜の積層体からなる磁性コア層が多数
、所定間隔で傾斜して列設され、かつこの基板の側面に
これらの磁気コア層の傾斜断面を有する磁気ヘッドコア
ブロック半体を、コイル巻線用溝を形成した後、該ブロ
ック半体2つを各ブロック半体の側面の磁気コア層の傾
斜断面が直線状につながるように接合した後、上記直線
状の磁気コア層毎に分断して磁気ヘッドチップを得る磁
気ヘッドの製造方法において、上記コイル巻線用溝の形
成工程が、回転砥石の下に磁気ヘッドコアブロック半体
を、該回転砥石の最下点での回転接線成分の方向と上記
ブロック半体の移動方向とか同じ向きとなるように進入
移動して加工することからなり、波溝が上記ブロック半
体に列設される磁気コア層を部所して形成される場合、
上記半体内に列設された磁気コア層の傾斜面が、溝を形
成する側の面から砥石進入側とは反対側でかつ下向きに
傾斜した配置となる向きで、上記ブロック半体を移動さ
せることを特徴とする磁気ヘッドの製造方法が提供され
る。
(d) Means for Solving the Problems Thus, according to the present invention, a large number of magnetic core layers each made of a laminate of a soft magnetic metal thin film and an insulating thin film are arranged in inclined rows at predetermined intervals in a nonmagnetic substrate. After forming grooves for coil winding on the magnetic head core block halves having sloped cross sections of the magnetic core layers on the side surfaces of the substrate, the two block halves are placed on the side surfaces of each block half. In the method for manufacturing a magnetic head in which a magnetic head chip is obtained by joining the magnetic core layers so that the inclined cross sections thereof are linearly connected and then dividing the magnetic core layers into each linear magnetic core layer, the step of forming the coil winding grooves. However, the magnetic head core block half is moved under the rotary whetstone so that the direction of the rotational tangential component at the lowest point of the rotary whetstone is the same as the moving direction of the block half. Therefore, when the wave grooves are formed in some places in the magnetic core layer arranged in the block half,
The block half is moved in such a direction that the inclined surfaces of the magnetic core layers arranged in a row in the half are arranged to be on the side opposite to the grinding wheel entry side from the surface on which the grooves are formed and are inclined downward. A method of manufacturing a magnetic head is provided.

(ホ)作用 この発明によれば、磁気ヘッドコアブロック半体に設け
られるコイル巻線用溝が、該ブロック半体に列設される
磁気コア層を鵠断して形成される場合、常に、上記半体
内に列設された磁気コア層の傾斜面が、溝を形成する側
の面から砥石進入側とは反対側でかつ下向きに傾斜した
配置となる向きで、回転砥石の最下点での回転接線成分
の方向と同方向に移動されて加工されることとなる。
(E) Effect According to the present invention, when the coil winding groove provided in the magnetic head core block half is formed by cutting out the magnetic core layer arranged in rows in the block half, always The inclined surfaces of the magnetic core layers arranged in a row in the half body are arranged in such a way that they are located on the opposite side of the grinding wheel entry side from the side where the grooves are formed and are inclined downward, and at the lowest point of the rotating grinding wheel. It will be moved and processed in the same direction as the direction of the rotational tangential component.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1図(a)、 (b)にこの発明の一実施例を示す。(f) Example An embodiment of the present invention is shown in FIGS. 1(a) and 1(b).

これは、非磁性基板10の表面に加工された複数本の平
行V字型溝11群の片側斜面に形成された軟磁性金属薄
膜と絶縁性薄膜の積層体6を磁気コア8とする磁気へラ
ド9の製造方法の場合である。
This is a magnetism that uses a laminate 6 of a soft magnetic metal thin film and an insulating thin film as a magnetic core 8, which is formed on one slope of a plurality of parallel V-shaped grooves 11 processed on the surface of a non-magnetic substrate 10. This is the case with the manufacturing method of Rad9.

第1図(a)はアジマス+の場合を示している。FIG. 1(a) shows the case of azimuth +.

舟形溝2を形成するための砥石7は、時計回りに回転す
る(この後の実施例においても総て同じ向きとする)。
The grindstone 7 for forming the boat-shaped groove 2 rotates clockwise (this direction is the same in all subsequent examples).

砥石7は、傾斜部分25(磁気ヘッドのコイル巻線窓の
アペックス部分に相当)を図中26の方向にして加工装
置に設置されている。
The grindstone 7 is installed in the processing device with the inclined portion 25 (corresponding to the apex portion of the coil winding window of the magnetic head) in the direction 26 in the figure.

ギャップ対向面となる面3を上にして磁気ヘッドコアブ
ロック半体lは加工装置に固定され、この固定された磁
気へラドコアブロック半体1は、加工装置の送り機構に
よって図中27の方向に送られて砥石7に接し、舟形溝
2が加工される。この際、磁気ヘッドコアブロック半体
りの磁気ヘッド9のフロントギャップとなるべき側のエ
ツジ28は図に示す向きになっており、軟磁性金属薄膜
と絶縁性薄膜との積層体6(すなわち磁気コア層)は、
V溝!■の斜面のうち砥石進入側とは反対側の面23に
位置している。即ち、軟磁性金属薄膜と絶縁性薄膜の積
層体6は磁気ヘッドコアブロック半体1内でギャップ対
向面3から砥石進入側とは反対側へ傾斜している。
The magnetic head core block half 1 is fixed to a processing device with the surface 3 facing the gap facing upward, and the fixed magnetic head core block half 1 is moved in the direction 27 in the figure by the feeding mechanism of the processing device. It is sent to contact the grindstone 7, and the boat-shaped groove 2 is machined. At this time, the edge 28 on the side that should become the front gap of the magnetic head 9, which is half of the magnetic head core block, is oriented as shown in the figure, and the laminate 6 of the soft magnetic metal thin film and the insulating thin film (i.e., the magnetic core layer) is
V groove! It is located on the surface 23 of the slope (2) opposite to the grindstone entrance side. That is, the laminated body 6 of the soft magnetic metal thin film and the insulating thin film is inclined within the magnetic head core block half 1 from the gap facing surface 3 toward the side opposite to the grindstone entrance side.

第1図(b)はアジマス−の場合を示している。FIG. 1(b) shows the case of azimuth.

この場合には砥石7は同図(a)とは逆向きに加工装置
に設置されている。またこのときの磁気ヘッドコアブロ
ック半体1のフロントギャップとなるべき側のエツジ2
8は図に示す向きになっており、アジマス+の場合とは
逆になっている。したがって、アジマス+の時と同様に
軟磁性金属薄膜と絶縁性薄膜との積層積層体6は、V溝
11の斜面のうち砥石進入側とは反対側の面23に位置
している。
In this case, the grindstone 7 is installed in the processing device in the opposite direction to that shown in FIG. Also, at this time, the edge 2 on the side that should become the front gap of the magnetic head core block half 1
8 is oriented as shown in the figure, which is opposite to the case of azimuth +. Therefore, as in the case of azimuth +, the laminated body 6 of the soft magnetic metal thin film and the insulating thin film is located on the surface 23 of the slope of the V-groove 11 on the side opposite to the grinding wheel entrance side.

第2図にこの発明の製造方法で作製した磁気ヘッドのイ
ンダクタンスの周波数特性を示す。アノマスによらず同
様の周波数特性となっていることがわかる。再生出力の
周波数特性ら同様になった。
FIG. 2 shows the frequency characteristics of the inductance of a magnetic head manufactured by the manufacturing method of the present invention. It can be seen that the frequency characteristics are similar regardless of the anomas. The frequency characteristics of the playback output are now the same.

第1図(c)、 (d)にこの発明のもう一つの実施例
を示す。これは、板状の非磁性基ito’表面に形成さ
れた軟磁性金属薄膜と絶縁性薄膜の積層体6を磁気コア
8とする磁気ヘッド9の製造方法の場合である。この場
合し前述の製造方法と同じように、アジマスの士によら
ず軟磁性金属薄膜と絶縁性薄膜の積層体6は磁気ヘプト
コアブロック半体1内でギャップ対向面3から砥石進入
側とは反対側へ傾斜した面23に位置しており、得られ
た磁気ヘッドの特性もアジマスの±によらなかった。
Another embodiment of the present invention is shown in FIGS. 1(c) and 1(d). This is the case in the method of manufacturing a magnetic head 9 in which the magnetic core 8 is a laminate 6 of a soft magnetic metal thin film and an insulating thin film formed on the surface of a plate-shaped non-magnetic substrate ITO'. In this case, in the same way as in the manufacturing method described above, regardless of the azimuth, the laminated body 6 of the soft magnetic metal thin film and the insulating thin film is placed in the magnetic hepto core block half 1 from the gap facing surface 3 to the grinding wheel entry side. It was located on the surface 23 inclined to the opposite side, and the characteristics of the obtained magnetic head were not dependent on the ± of the azimuth.

(ト)発明の効果 この発明の方法によれば、コイル巻線用舟形溝2を形成
する際にアジマスの違いによらず金属の延性のために絶
縁性薄膜5を乗り越えて軟磁性金属薄膜同志が短絡する
ことがないので、士のアジマスの双方で磁気へラドコア
を軟磁性金1+薄膜と絶縁性薄膜との積層体とした効果
が十分に得られる。これによりアノマスの記録方式で高
い面記録密度で広帯域の磁気記録再生が可能となる。
(G) Effects of the Invention According to the method of the present invention, when forming the boat-shaped groove 2 for coil winding, the soft magnetic metal thin film 5 is crossed over the insulating thin film 5 due to the ductility of the metal regardless of the difference in azimuth. Since there is no short circuit between the two azimuths, it is possible to sufficiently obtain the effect of making the magnetic helad core a laminate of a soft magnetic gold 1+ thin film and an insulating thin film in both azimuths. This enables wide-band magnetic recording and reproduction with high areal recording density using the anomalous recording method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法におけるコイル巻線用舟形溝を
形成する際の砥石、磁気ヘッドコアブロック半体の配置
および移動の方向を説明するための図、第2図はこの発
明の方法により得られた磁気ヘッドの特性を示す図、第
3図は従来の磁気ヘッドの製造方法を説明するための図
、第4図は第3図の方法により得られる磁気ヘッドの斜
視図、第5図は同じ〈従来の磁気ヘッドの製造方法を説
明するための図、第6図は、第5図の方法により得られ
る磁気ヘッドの斜視図、第7図は従来の方法で作られた
磁気ヘッドの特性を示す図、第8図は磁気ヘッドにおけ
る磁気コア層のアジマスの方向を説明するための図、第
9図及び第10図は従来例のコイル巻線用舟形溝を形成
する際の砥石、磁気ヘッドコアブロック半体の配置およ
び方向を説明するための図である。 7・・・砥石。 l・・・磁気ヘッドコアブロック半体、2・・・コイル
巻線用舟形溝、 3・・・ギャップ対向面、  4・・・軟磁性金属薄膜
、5・・・絶縁性薄膜、    6・・・積層体、情 胃 周り数[MHzl 便 (b) (C) (d) 筐 団 笛 図 閉 1゜ 便 ! lvIミ、LIE (MH2I 頷 問 (a) *10閏
FIG. 1 is a diagram for explaining the arrangement and movement direction of the grindstone and magnetic head core block halves when forming a boat-shaped groove for coil winding in the method of the present invention, and FIG. A diagram showing the characteristics of the obtained magnetic head, FIG. 3 is a diagram for explaining the conventional method of manufacturing a magnetic head, FIG. 4 is a perspective view of the magnetic head obtained by the method shown in FIG. 3, and FIG. 6 is a perspective view of a magnetic head obtained by the method shown in FIG. 5, and FIG. 7 is a diagram illustrating a conventional magnetic head manufacturing method. FIG. 8 is a diagram showing the azimuth direction of the magnetic core layer in the magnetic head. FIGS. 9 and 10 are diagrams showing the grinding wheel used to form the conventional boat-shaped groove for coil winding. FIG. 3 is a diagram for explaining the arrangement and direction of magnetic head core block halves. 7...Whetstone. l... Half magnetic head core block, 2... Boat-shaped groove for coil winding, 3... Gap opposing surface, 4... Soft magnetic metal thin film, 5... Insulating thin film, 6...・Laminated body, number of stomach circumferences [MHz] (b) (C) (d) Box flute diagram closed 1°! lvI Mi, LIE (MH2I Nodding Question (a) *10 Leap

Claims (1)

【特許請求の範囲】 1、非磁性基板内に、軟磁性金属薄膜と絶縁性薄膜の積
層体からなる磁性コア層が多数、所定間隔で傾斜して列
設され、かつこの基板の側面にこれらの磁気コア層の傾
斜断面を有する磁気ヘッドコアブロック半体を、コイル
巻線用溝を形成した後、該ブロック半体2つを各ブロッ
ク半体の側面の磁気コア層の傾斜断面が直線状につなが
るように接合した後、上記直線状の磁気コア層毎に分断
して磁気ヘッドチップを得る磁気ヘッドの製造方法にお
いて、 上記コイル巻線用溝の形成工程が、回転砥石の下に磁気
ヘッドコアブロック半体を、該回転砥石の最下点での回
転接線成分の方向と上記ブロック半体の移動方向とが同
じ向きとなるように進入移動して加工することからなり
、該溝が上記ブロック半体に列設される磁気コア層を横
断して形成される場合、上記半体内に列設された磁気コ
ア層の傾斜面が、溝を形成する側の面から砥石進入側と
は反対側でかつ下向きに傾斜した配置となる向きで、上
記ブロック半体を移動させることを特徴とする磁気ヘッ
ドの製造方法。
[Scope of Claims] 1. A large number of magnetic core layers each made of a laminate of soft magnetic metal thin films and insulating thin films are arranged in rows at predetermined intervals in an inclined manner in a non-magnetic substrate, and these are arranged on the side surface of the substrate. After forming coil winding grooves on the magnetic head core block halves having a magnetic core layer having a sloped cross section, two of the block halves were formed so that the slope cross section of the magnetic core layer on the side surface of each block half was straight. In the manufacturing method of a magnetic head, in which a magnetic head chip is obtained by joining each linear magnetic core layer so as to connect to each other, the magnetic head chip is obtained by dividing the linear magnetic core layer into each linear magnetic core layer. The core block half is machined by moving in such a way that the direction of the rotational tangential component at the lowest point of the rotary grindstone and the moving direction of the block half are the same, and the groove is When formed across the magnetic core layers arranged in a block half, the inclined surface of the magnetic core layers arranged in the half is opposite from the grinding wheel entry side from the side where the groove is formed. A method of manufacturing a magnetic head, characterized in that the half block is moved in a direction such that it is arranged sideways and downwardly inclined.
JP13648589A 1989-05-29 1989-05-29 Method of manufacturing magnetic head Expired - Lifetime JPH0748246B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13648589A JPH0748246B2 (en) 1989-05-29 1989-05-29 Method of manufacturing magnetic head
DE69016834T DE69016834T2 (en) 1989-05-29 1990-05-29 Manufacturing process of a magnetic head.
EP90305833A EP0400966B1 (en) 1989-05-29 1990-05-29 Method of manufacturing a magnetic head
US07/529,872 US5020212A (en) 1989-05-29 1990-05-29 Method of manufacturing a magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13648589A JPH0748246B2 (en) 1989-05-29 1989-05-29 Method of manufacturing magnetic head

Publications (2)

Publication Number Publication Date
JPH031307A true JPH031307A (en) 1991-01-08
JPH0748246B2 JPH0748246B2 (en) 1995-05-24

Family

ID=15176244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13648589A Expired - Lifetime JPH0748246B2 (en) 1989-05-29 1989-05-29 Method of manufacturing magnetic head

Country Status (1)

Country Link
JP (1) JPH0748246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310138A (en) * 2004-04-16 2005-11-04 Sick Ag Process control method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310138A (en) * 2004-04-16 2005-11-04 Sick Ag Process control method and device

Also Published As

Publication number Publication date
JPH0748246B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
JPH03504295A (en) 2-mode multi-track magnetic head
KR100274098B1 (en) Magnetic recording/reproducing head and fabrication process
US4595964A (en) Magnetic head and method of making the same
JPH031307A (en) Production of magnetic head
JPS62200517A (en) Vertical magnetic recording magnetic head and its manufacture
US5198950A (en) Thin-film perpendicular magnetic recording and reproducing head
US4731299A (en) Composite magnetic material
JP2957319B2 (en) Method for manufacturing substrate material and method for manufacturing magnetic head
JPH03252909A (en) Magnetic substrate of groove structure for thin-film head for perpendicular magnetic recording and reproducing
JPS60182507A (en) Magnetic head
JPS6015807A (en) Magnetic head
JPH0363912A (en) Thin-film magnetic head and production thereof
JPH0546009B2 (en)
JPS62205507A (en) Magnetic head
KR100200861B1 (en) Recording and reproducing magnetic head and the manufacturing method
JPS63108512A (en) Manufacture of thin film magnetic head
JPS59203210A (en) Magnetic core and its production
JPS6342327B2 (en)
JPS62157306A (en) Magnetic head
JPS59221821A (en) Thin film magnetic head
JPS63234406A (en) Multichannel thin film magnetic head
JPS6029916A (en) Magnetic head core and its production
JPS6284417A (en) Manufacture of magnetic head
JPH0565924B2 (en)
JPS5928211A (en) Thin film magnetic head