JPH03129318A - Laser beam diameter controller - Google Patents

Laser beam diameter controller

Info

Publication number
JPH03129318A
JPH03129318A JP26620089A JP26620089A JPH03129318A JP H03129318 A JPH03129318 A JP H03129318A JP 26620089 A JP26620089 A JP 26620089A JP 26620089 A JP26620089 A JP 26620089A JP H03129318 A JPH03129318 A JP H03129318A
Authority
JP
Japan
Prior art keywords
slit
polarizing plate
laser beam
polarizing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26620089A
Other languages
Japanese (ja)
Inventor
Tomoatsu Imamura
友厚 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP26620089A priority Critical patent/JPH03129318A/en
Publication of JPH03129318A publication Critical patent/JPH03129318A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable laser beam diameter conversion with a shutter speed of 10 ns order by providing a 3rd slit on a 2nd polarizing plate on the same optical axis and nearly in the same shape with a 1st slit. CONSTITUTION:An aperture is constituted by superposing a 1st polarizing plate 6, a polarizing element 7, and the 2nd polarizing plate 8 in the traveling direction of a laser beam and the 1st polarizing plate 6 and the 2nd polarizing plate 8 have mutually 90 deg. different planes of polarization. The intermediate polarizing element 7 is provided with electrodes 4 and 4' for voltage application at the opposite end parts of an electrooptic material 3, which has planes of polarization of incident light and projection light rotated by 90 deg. by the application of a voltage, and also provided with a 1st slit 1 extending in a beam scanning direction at the center part, and a light shield plate 9 which is provided with a 2nd slit 2 wider than the range of the 1st slit slightly in a subscanning direction is superposed; and the 2nd polarizing plate 8 is provided with the 3rd slit 5 on the same optical axis and almost in the same shape with the 1st slit 1 of the polarizing element 7. Consequently, the polarizing operation of the electrooptic material by the voltage application is switched at the speed of almost 10 ns order almost simultaneously with the voltage application.

Description

【発明の詳細な説明】 (ILへ1胆1」 本発明は、レーザ光学装置のレーザビーム径制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser beam diameter control device for a laser optical device.

1東1ル −ザプリンタやデジタル複写機等、レーザビームで感光
体に光書込みを行なって、感光体上に潜像を形成するレ
ーザ光学装置では、結像面に形成されるレーザビームの
微小スポットによるド・ソトを画素として画像が形成さ
れる。
1 East 1 Laser optical devices, such as laser printers and digital copying machines, use a laser beam to optically write on a photoreceptor to form a latent image on the photoreceptor. An image is formed using do sotos caused by spots as pixels.

このようにして形成される画像では、ドツトの径によっ
て画像の濃度が異って見える。したがって、ドツトの径
を大小に変え、大小ドツトの比率を変えることによって
画像を多階調に調整することができる。
In the image formed in this way, the density of the image appears to vary depending on the diameter of the dot. Therefore, by changing the diameter of the dots and changing the ratio of large and small dots, it is possible to adjust the image to have multiple gradations.

画像の多階調々整の方法としては、同じ径のドツト形成
間隔を変えて印写する方法ら考えられるが、整数倍でな
い場合は簡単な電気的処理で対処することは困難である
A possible method for adjusting multiple gradations of an image is to print by changing the interval at which dots of the same diameter are formed, but if the dots are not multiplied by an integral number, it is difficult to deal with this by simple electrical processing.

したがって、画像の多段階調々整を行なうには、入力デ
ータに応じて感光体上に形成されるレーザビームスポッ
ト径を変更させるのが適当である。
Therefore, in order to perform multi-step image adjustment, it is appropriate to change the diameter of the laser beam spot formed on the photoreceptor in accordance with input data.

さて、レーザ光字装置のレーザビーム径を変える装置と
しては、例えば、特開平L−108522号公報に、結
像面に微小スポットを形成する集光レンズの入射側位置
に、ビーム形状ないしはビーム経文1ヒ方向を選択的に
可変させる形状の電極を備えた液晶素子を配置し、入力
信号により液晶素子の電圧印加状態を制御することによ
り、感光体に入射するレーザビーム径を変化させて微小
スポット径を変換させるようにしたビーム径変換装置が
開示されている。
Now, as a device for changing the laser beam diameter of a laser beam focusing device, for example, in Japanese Patent Application Laid-Open No. 108522, a beam shape or a beam pattern is added to the incident side position of a condensing lens that forms a minute spot on the imaging plane. By arranging a liquid crystal element equipped with an electrode shaped to selectively vary the direction of the laser beam, and controlling the voltage application state of the liquid crystal element using an input signal, the diameter of the laser beam incident on the photoreceptor is changed to create a minute spot. A beam diameter conversion device that converts the diameter is disclosed.

ところで、1つの画像を多階調に調整しようとする場合
は1画素単位でスポット径、すなわちビーム径を可変に
することが望ましく、レーザプソンタやデジタル複写機
では、画像を形成するドツトの形成時間々隔は10 n
、 sのオーダーであるから、レーザビーム径の変換速
度は10nsのオーダーが要求される。
By the way, when trying to adjust one image to multiple gradations, it is desirable to vary the spot diameter, that is, the beam diameter, for each pixel. The distance is 10n
, s, the conversion speed of the laser beam diameter is required to be on the order of 10 ns.

ところが、前述の液晶素子を利用したビーム径変換装置
の場合は、電圧印加による液晶素子の動作速度はmsの
オーダーであるから、上記の液晶素子のシャッタ速度は
画面全体の濃度調整には差支えないが1画素単位でビー
ム径を変換して多階H調整を行なう目的に対しては不適
当である。
However, in the case of the beam diameter conversion device using the aforementioned liquid crystal element, the operating speed of the liquid crystal element due to voltage application is on the order of ms, so the shutter speed of the liquid crystal element mentioned above does not affect the density adjustment of the entire screen. However, it is inappropriate for the purpose of performing multi-level H adjustment by converting the beam diameter on a pixel-by-pixel basis.

′日が ゛ しようと る喋 本発明は、上記の実情にかんがみ、1画素単位で画素の
ドツト形成間隔に対応したシャッタ速度、すなわちIo
nsオーダーのシャ・ツタ速度を有するレーザビーム径
の変換が可能なレーザビーム径制御装置を提供すること
を課題とする。
In view of the above-mentioned circumstances, the present invention provides a shutter speed corresponding to the pixel dot formation interval in units of one pixel, that is, Io.
An object of the present invention is to provide a laser beam diameter control device capable of converting a laser beam diameter having a shutter speed on the order of nanoseconds.

0、題 ′のための 本発明のレーザビーム径制御装置は、上記の課題と解決
させるため、レーザダイオードより出射されるレーザビ
ームをコリメートレンズで集光し、アバー千ヤでビーム
径を絞るレーザ光学装置の上記のアパーチャが レーザビーム進行方向前後に、互いに肩先面が90°異
る第1、第2偏光板と、 それらの中間に配設され、制御電圧印加端子と、ビーム
走査方向に延設された第1スリットが設けられるととも
に、該第1スリットの範囲より若干副走査方向に広がっ
た第2スリットを有する遮光板が重ねられ、電圧印加に
より入射光と出射光の肩先面が90°回転する電気光学
性材料板より成り、その電圧非印加時の調光面の方向が
第1偏光板の(肩先面と一致する如く配置された(両光
素子とを有して構成され、 上記の第2信光板には上記の第1スリットと同一光軸上
に概ね同形状の第3スリットを設けたことを特徴とする
In order to solve the above-mentioned problem, the laser beam diameter control device of the present invention for the title 0 focuses a laser beam emitted from a laser diode with a collimating lens and narrows the beam diameter with an aperture. The above-mentioned aperture of the optical device is arranged in front and behind the laser beam traveling direction, with first and second polarizing plates whose shoulder surfaces differ from each other by 90 degrees, and between them, and with a control voltage application terminal, which extends in the beam scanning direction. A light-shielding plate having a first slit and a second slit slightly wider in the sub-scanning direction than the range of the first slit is overlapped, and by applying a voltage, the shoulder surfaces of the incident light and the output light are set at 90 degrees. It consists of a rotating electro-optic material plate, and is arranged so that the direction of the light control surface when no voltage is applied coincides with the shoulder surface of the first polarizing plate. The second optical signal plate is characterized in that a third slit having substantially the same shape as the first slit is provided on the same optical axis.

赴−1 以上の如くアパーチャを構成したので、M光素子に電圧
を印加しない状態では、その電気光学性材料の偏光作用
がないので、第1偏光板を通過したある偏光軸方向の光
は第1スリ・・lトと第2スリットの範囲を通過した後
、偏光面が90°異る第2m光仮により、第3スリット
の外側の範囲は通過を妨げられ、第1スリットの範囲に
ほり等しい第3スリットの範囲’!t 3ai ’Ii
して出射光となる。
Visit-1 Since the aperture is configured as described above, when no voltage is applied to the M optical element, there is no polarizing effect of the electro-optic material, so light in a certain polarization axis direction that passes through the first polarizing plate is After passing through the area between the first slit and the second slit, the area outside the third slit is blocked by the second m light beam whose polarization plane differs by 90 degrees, and the light falls into the area of the first slit. Equal third slit range'! t 3ai 'Ii
and becomes the emitted light.

一方、In光素子に電圧を印加した場合は、その電気光
学性材料の偏光面の方向は90°回転して入射側の肩先
面は第1偏光板の肩先面と一致し出射側の肩先面は第2
消光板の偏光面の方向と一致する。したがって、第1偏
光板から出射した光線は第1.第2スリットの範囲を通
過し、第2偏光板の第3スリット及びその外側の第2ス
リ・・lトに対応する範囲を通過して出射する6 したがって、電圧非印加時にはアパーチャは侠く、電圧
印加時にはアパーチャは広くなる。
On the other hand, when a voltage is applied to the In optical element, the direction of the polarization plane of the electro-optic material is rotated by 90 degrees, so that the shoulder surface on the incident side coincides with the shoulder surface of the first polarizing plate, and the shoulder surface on the output side coincides with the shoulder surface of the first polarizing plate. is the second
This corresponds to the direction of the polarization plane of the extinction plate. Therefore, the light rays emitted from the first polarizing plate are the same as those of the first polarizing plate. It passes through the range of the second slit, passes through the range corresponding to the third slit of the second polarizing plate, and the second slit outside of the third slit and exits.6 Therefore, when no voltage is applied, the aperture is narrow; The aperture widens when voltage is applied.

電気光学性材料の電圧印加による偏光作用は電圧印加と
はり同時に、概ね10nsオーダーで切換えられる。
The polarization effect of the electro-optic material due to voltage application is switched at the same time as voltage application, approximately on the order of 10 ns.

丸11 以下、本発明の実施例を図面に基づいて詳細に説明する
Circle 11 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明による可変アパーチャ12を備えたレー
ザプリンタ又はデジタル複写機の書込光字装置の構成を
示す図である。
FIG. 1 is a diagram showing the configuration of a writing optical character device of a laser printer or digital copying machine equipped with a variable aperture 12 according to the present invention.

発光源であるレーザダイオード(LD)toより出射さ
れる発散光はクワメートレンズ11″′C′集光されて
平行光に変換される。この平行光は、アパーチャ12の
スリット幅で副走査方向の幅が限定されてシリンドリカ
ルレンズ15に入り、これにより副走査方向光束幅はさ
らに絞られる。これを通過した光線はモータ17により
一定の高速度で回転する回転多面鏡16の鏡面に入射し
、その反射光はF−θレンズ18.19を通り、第1ミ
ラー23、第2ミラー20で反射し、感光体ベルト24
を回転多面鏡の各鏡面毎に所定の幅を照射光て′光走査
する。照射光はF−θレンズ18゜19の作用で像面が
平坦化され、感光体上での走査速度が一定となり、−直
線上に結像する。又、感光体ベルト24の一定速度の移
動により副走査が行なわれる。
Divergent light emitted from a laser diode (LD) which is a light source is focused by a kwamate lens 11'''C' and converted into parallel light. The beam enters the cylindrical lens 15 with a limited width, thereby further narrowing down the beam width in the sub-scanning direction.The beam passing through this is incident on the mirror surface of a rotating polygon mirror 16 that is rotated at a constant high speed by a motor 17. The reflected light passes through the F-θ lens 18.19, is reflected by the first mirror 23 and the second mirror 20, and is reflected by the photoreceptor belt 24.
Light is scanned by illuminating a predetermined width for each mirror surface of the rotating polygon mirror. The image plane of the irradiated light is flattened by the action of the F-theta lenses 18 and 19, the scanning speed on the photoreceptor becomes constant, and an image is formed on a straight line. Further, sub-scanning is performed by moving the photoreceptor belt 24 at a constant speed.

回転多面鏡16による偏向範囲の端部付近の光線の一部
は第2ミラーで反射された後、第3ミラー21、第4ミ
ラー22、シリンドリカフレレンズ14を経て光ファイ
バ13の一端に入射し、他端から図示しない光電センサ
に入射し、その出力信号により主走査の同期がとられる
A part of the light beam near the end of the deflection range by the rotating polygon mirror 16 is reflected by the second mirror, and then passes through the third mirror 21, the fourth mirror 22, and the cylindrical cuff lens 14 to reach one end of the optical fiber 13. The light enters a photoelectric sensor (not shown) from the other end, and main scanning is synchronized by its output signal.

以上の説明からも判るように、アパーチャ12のスリッ
ト幅はシリンドリカルレンズ15とともに、感光体上に
形成されるドツトの副走査方向の寸法を決定している。
As can be seen from the above description, the slit width of the aperture 12, together with the cylindrical lens 15, determines the size of the dots formed on the photoreceptor in the sub-scanning direction.

次に、本発明による可変アパーチャの一実施例を第2図
に基づいて詳細に説明する。
Next, an embodiment of the variable aperture according to the present invention will be described in detail with reference to FIG.

アパーチャ12は、第1偏光板6と、偏光素子7と、第
2は先板8とがレーザビーム進行方向に重ね合されて構
成されている。第2図には、これらを互いに分離して示
されている。第1偏光板6と第2偏光板8とは、偏光面
が互いに90°異っている。
The aperture 12 is constructed by overlapping a first polarizing plate 6, a polarizing element 7, and a second leading plate 8 in the laser beam traveling direction. In FIG. 2, these are shown separated from each other. The first polarizing plate 6 and the second polarizing plate 8 have polarization planes different from each other by 90°.

中間の偏光素子7は、電圧を印加することにより入射光
と光射光の偏光面が90’回転する電気光学性材fi3
の相対する端部に電圧印加用電極4.4’ 、中央部に
ビーム走査方向に延びる第1スリット1が設けられ、こ
の第1スリットの範囲より若干副走査方向くスリットの
幅方向)に広がった第2スリット2を設けた遮光板9が
重ねられて構成されている。
The intermediate polarizing element 7 is an electro-optic material fi3 that rotates the plane of polarization of the incident light and the incident light by 90' by applying a voltage.
Voltage applying electrodes 4.4' are provided at opposing ends of the electrodes, and a first slit 1 extending in the beam scanning direction is provided in the center, and the beam extends slightly beyond the range of the first slit in the sub-scanning direction (in the width direction of the slit). The light shielding plates 9 provided with the second slits 2 are stacked one on top of the other.

第2刊光板8には、前記の偏光素子7の第1スリット1
と同一光軸上に概ね同形状の第3スリ・・ノド5か設け
られている。
The second light plate 8 has the first slit 1 of the polarizing element 7.
A third slot 5 having approximately the same shape is provided on the same optical axis.

第1スリット2は、単に切明けただけでら、電気光学性
材料板3と同一の光透過率を有し偏光性のない透明材料
を埋めてもよい。
The first slit 2 may be simply cut out, or may be filled with a transparent material that has the same light transmittance as the electro-optic material plate 3 and has no polarizing property.

したがって、電圧印加用電極4,4′間に電圧を印加し
ない場合は、偏光素子7の電気光学性材料板3は開光作
用がなく、単なる透明板として作用する。ランダムな偏
光面を持つ入射光aは第1偏光板6によって偏光軸の方
向がbの光成分のみが通過し、偏光素子7の第1スリッ
ト1及びその墳方向両側の範囲を含む第2スリ・ソト2
の範囲を通過し、bと同じ方向Cの偏光面を持った光と
なって第2 a光電8に入射する。第2偏光板8の開先
方向は第1偏光板6の偏光方向すと90°異るので、i
光素子7の第2スリット2から出射された光は第3スリ
ット5の狭い範囲からのみ出射される。
Therefore, when no voltage is applied between the voltage application electrodes 4 and 4', the electro-optic material plate 3 of the polarizing element 7 does not have a light-spreading effect and functions simply as a transparent plate. The incident light a having a random polarization plane passes through the first polarizing plate 6 so that only the light component with the polarization axis direction b passes through the first slit 1 of the polarizing element 7 and the second slit including the range on both sides in the direction of the burial mound.・Soto 2
The light passes through the range of , becomes light with a polarization plane in the same direction C as b, and enters the second a photoelectric element 8 . Since the groove direction of the second polarizing plate 8 is 90° different from the polarization direction of the first polarizing plate 6, i
The light emitted from the second slit 2 of the optical element 7 is emitted only from a narrow range of the third slit 5.

一方、1日光素子7の電圧印加電極4.4’aに電圧を
印加すると、電気光学性材料板3は入射側と出射側とで
偏光面が90″回転し、第1償光板6から出射した偏光
方向すの光線は第1スリットと幅方向にその両側の範囲
を含む第2スリット2の範囲から図中に破線で示す如く
、偏光方向Cと90°回転した偏光方向dの光となって
第2偏光板8に入射する。偏光方向dは第21!4光板
8の偏光方向と一致するので、1肩光素子7の第2スリ
ット2から出射した光はそのま1第2 II光先板を通
過する。したがって、光束の幅は、電圧を印加しない場
合より広くなる。
On the other hand, when a voltage is applied to the voltage application electrode 4.4'a of the first sunlight element 7, the polarization plane of the electro-optic material plate 3 rotates by 90'' between the incident side and the output side, and the light is emitted from the first compensator plate 6. The light beam in the polarization direction S becomes light in the polarization direction d rotated by 90 degrees from the polarization direction C from the range of the second slit 2 including the first slit and the range on both sides of the first slit in the width direction, as shown by the broken line in the figure. and enters the second polarizing plate 8. Since the polarization direction d matches the polarization direction of the 21st and 4th light plates 8, the light emitted from the second slit 2 of the first optical element 7 is directly converted into the first and second II light. The light beam passes through the front plate.Therefore, the width of the light beam becomes wider than when no voltage is applied.

その結果副走査方向のビーム径が電圧の印加、非印加に
よって変化し、ビームスポット、ひい℃は画像形成ドツ
トの大きさを可変とすることができ5大小のドツトの組
合せにより、画像の多階調調整が可能となる。
As a result, the beam diameter in the sub-scanning direction changes depending on whether or not a voltage is applied, and the size of the beam spot, or even the image forming dot, can be varied. Adjustment is possible.

本発明に使用される電圧の印加により偏光面が90°回
転する電気光学性材料としては、ジルコン酸チタン酸鉛
ランタン(1ead  Iant、hanumzirc
onate LitanaLe;構成元素記号の頭文字
を並べてPLZTと云われる)が著名である。この材料
は、電圧の印加、機械的圧縮、引張りにより光学的性質
が変化する0本発明に使用する電気光学性材料としては
これ以外の材料も使用可能である。
As an electro-optic material whose polarization plane rotates by 90° upon application of a voltage used in the present invention, lead lanthanum zirconate titanate (lead lanthanum zirconate titanate) is used.
onate LitanaLe (called PLZT by arranging the initials of the constituent element symbols) is famous. The optical properties of this material change upon application of voltage, mechanical compression, or tension. Other materials may also be used as the electro-optic material used in the present invention.

電圧印加による光学的性質の変化は殆んど瞬間的に行な
われ、10nsオーダーのシャッタ速度を要求されるレ
ーザ光学装置の可変アパーチャとして極めて適している
The change in optical properties caused by voltage application occurs almost instantaneously, making it extremely suitable as a variable aperture for laser optical devices that require a shutter speed on the order of 10 ns.

丸−1 以上の如く、本発明によれば、1画素毎に副走査方向の
径を異にするドツトを得ることができ、画像の多階調々
整が可能となる。この方法によれば、1ドツト毎に副走
査方向に異なる値を出力できるので、同一径のドツトの
組合せによる方法に比べて位置ずれが発生しにくい利点
も得られる。
Circle-1 As described above, according to the present invention, it is possible to obtain dots having different diameters in the sub-scanning direction for each pixel, and it is possible to perform multi-gradation adjustment of an image. According to this method, since a different value can be output in the sub-scanning direction for each dot, there is an advantage that positional deviations are less likely to occur compared to a method using a combination of dots of the same diameter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるアパーチャを備えたレーザ
ビーム画11書込光学装置の1例の構成を示す斜視図、
第2図は本発明の実施例のアパーチャの構成を示す分解
斜視図である。 1・・・第1スリット、 2・・・第2スリ・ソト、 3・・・電気光学性材料板、 4.4′・・・電圧印加端子、 5・・・第3スリット。 6・・・第11i光板、 7・・・偏光素子、 8・・・第2偏光板、 9・・・遮光板、 10・・・レーザダイオード、 11・・・コリメートレンズ、 12・・・アパーチャ、 16・・・回転多面鏡、 18.19・・・F−θレンズ、 24・・・感光体 M 1 図
FIG. 1 is a perspective view showing the configuration of an example of an optical device for writing a laser beam image 11 with an aperture to which the present invention is applied;
FIG. 2 is an exploded perspective view showing the structure of an aperture according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... First slit, 2... Second slit, 3... Electro-optic material plate, 4.4'... Voltage application terminal, 5... Third slit. 6... 11th light plate, 7... Polarizing element, 8... Second polarizing plate, 9... Light blocking plate, 10... Laser diode, 11... Collimating lens, 12... Aperture , 16... Rotating polygon mirror, 18.19... F-θ lens, 24... Photoreceptor M 1 Figure

Claims (1)

【特許請求の範囲】 レーザダイオードより出射されるレーザビームをコリメ
ートレンズで集光し、アパーチャでビーム径を絞るレー
ザ光学装置のレーザビーム径制御装置において、 上記アパーチャは レーザビーム進行方向前後に、互いに偏光面が90゜異
る第1、第2偏光板と、 それらの中間に配設され、制御電圧印加端子と、ビーム
走査方向に延設された第1スリットが設けられるととも
に、該第1スリットの範囲より若干副走査方向に広がっ
た第2スリットを有する遮光板が重ねられ、電圧印加に
より入射光と出射光の偏光面が90゜回転する電気光学
性材料板より成り、その電圧非印加時の偏光面の方向が
第1偏光板の偏光面と一致する如く配置された偏光素子
とを有して構成され、 上記の第2偏光板には上記の第1スリットと同一光軸上
に概ね同形状の第3スリットを設けたことを特徴とする
レーザビーム径制御装置。
[Claims] In a laser beam diameter control device for a laser optical device in which a laser beam emitted from a laser diode is condensed by a collimating lens and the beam diameter is narrowed by an aperture, the apertures are arranged in front and rear of the laser beam traveling direction, First and second polarizing plates having polarization planes different by 90 degrees, a control voltage application terminal disposed between them, and a first slit extending in the beam scanning direction are provided, and the first slit A light-shielding plate having a second slit slightly wider in the sub-scanning direction than the range of and a polarizing element arranged such that the direction of the polarization plane of the first slit coincides with the polarization plane of the first polarizing plate, and the second polarizing plate has a slit approximately on the same optical axis as the first slit. A laser beam diameter control device characterized in that a third slit of the same shape is provided.
JP26620089A 1989-10-16 1989-10-16 Laser beam diameter controller Pending JPH03129318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26620089A JPH03129318A (en) 1989-10-16 1989-10-16 Laser beam diameter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26620089A JPH03129318A (en) 1989-10-16 1989-10-16 Laser beam diameter controller

Publications (1)

Publication Number Publication Date
JPH03129318A true JPH03129318A (en) 1991-06-03

Family

ID=17427654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26620089A Pending JPH03129318A (en) 1989-10-16 1989-10-16 Laser beam diameter controller

Country Status (1)

Country Link
JP (1) JPH03129318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057775A1 (en) * 2007-10-31 2009-05-07 Meiji Dairies Corporation Anti-fatigue agent comprising amino acid composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057775A1 (en) * 2007-10-31 2009-05-07 Meiji Dairies Corporation Anti-fatigue agent comprising amino acid composition

Similar Documents

Publication Publication Date Title
US20080297731A1 (en) Apparent speckle reduction apparatus and method for mems laser projection system
US5289001A (en) Laser beam scanning apparatus having a variable focal distance device and the variable focal distance device for use in the apparatus
JPS63241519A (en) Light beam recorder
KR20000062829A (en) Multibeam scanning optical apparatus and color image-forming apparatus
JPH05224142A (en) Electrooptical controller and system for spot position control in optical output device
US5574491A (en) Apparatus spot position control in an output device employing a linear array of light sources
JPH03129318A (en) Laser beam diameter controller
US4641920A (en) Optical element having the function of changing the cross-sectional intensity distribution of a light beam
JPH06118323A (en) Optical device
JPH10133135A (en) Light beam deflecting device
JPH07111509B2 (en) Optical scanning device
JP3144857B2 (en) Image writing device
JPH08190070A (en) Optical scanner
JPH02254409A (en) Scanning optical system and laser beam printer using its system
US5532859A (en) Electro-optical device for variable scan width
JPH0378722A (en) Optical scanning device and image forming device
JP3156305B2 (en) Optical writing device and gradation image recording device
JP2743858B2 (en) Optical printer
JP3334488B2 (en) Optical scanning device
JP3093877B2 (en) Disk for light beam recording device and light beam recording device
JPH02238424A (en) Optical scanner
JPH0511209A (en) Optical scanning and recording device
JP2927527B2 (en) Optical scanning device
JPH05232414A (en) Laser recording device
KR20060118717A (en) Light scanning unit with uniform light power distribution