JPH03127989A - Immobilized microbial cell - Google Patents

Immobilized microbial cell

Info

Publication number
JPH03127989A
JPH03127989A JP26523389A JP26523389A JPH03127989A JP H03127989 A JPH03127989 A JP H03127989A JP 26523389 A JP26523389 A JP 26523389A JP 26523389 A JP26523389 A JP 26523389A JP H03127989 A JPH03127989 A JP H03127989A
Authority
JP
Japan
Prior art keywords
gel
immobilized
microbial cells
microbial
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26523389A
Other languages
Japanese (ja)
Inventor
Masahiro Takahashi
正浩 高橋
Tsutomu Kaneko
勉 金子
Hideo Tanaka
秀夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP26523389A priority Critical patent/JPH03127989A/en
Publication of JPH03127989A publication Critical patent/JPH03127989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To remarkably increase the permeability of oxygen into a gel by including and immobilizing microbial cells with a gelatinizable polysaccharide in the form of thin filamentous gel. CONSTITUTION:The objective immobilized microbial cell containing microbial cells in a state included and immobilized in a gel is a thin filamentous gel having a diameter of <=0.5mm and derived from microbial cells and a gelatinizable polysaccharide. The polysaccharide is preferably alginic acid, its salt. kappa-carrageenan, etc. The gel can be formed e.g. by contacting a liquid mixture containing the microbial cells and alginic acid or its salt with a coagulation liquid containing polyvalent metal ion such as calcium ion, cooling a mixed liquid containing microorganisms and kappa-carrageenan, contacting the above mixed liquid with ions such as ammonium ion or potassium ion and an amine or contacting with a watermiscible organic solvent such as ethanol or acetone.

Description

【発明の詳細な説明】 (産業上利用分野〕 本発明は、ゲル化する性質を有する多11!類ゲルより
包括固定化された微生物菌体に関し、更に、微生物菌体
とアルギン酸またはその塩を含有する混合液を凝固液と
接触させることにより得られる、糸状のアルギン酸ゲル
により包括固定化された微生物菌体固定化物及び微生物
菌体とκ−カラギーナン混合液を冷却するなどにより得
られるκ−カラギーナンゲルにより包括固定化された微
生物菌体固定化物に関する。更に本発明は、これら微生
物菌体固定化物を用いて菌体生産物を生産させる方法に
関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to microorganisms that have been comprehensively immobilized by gels that have the property of gelatinization, and further relates to microorganisms that have been immobilized entrappingly from gels that have the property of gelatinization. A microbial cell immobilized product entrappingly immobilized by a filamentous alginate gel obtained by contacting the containing liquid mixture with a coagulation liquid, and a κ-carrageenan obtained by cooling a mixed liquid of microbial cells and κ-carrageenan. The present invention relates to immobilized microbial cells entrappingly immobilized with a gel.The present invention also relates to a method for producing microbial products using these immobilized microbial cells.

〔従来の技術〕[Conventional technology]

近年、微生物、酵素等を種々の担体に固定化し、食品製
造、医薬品製造、廃水処理等へ利用することが広く行な
われている。酵素の固定化には担体結合法が、微生物、
動物・植物細胞の固定化にはアルギン酸、カラギーナン
、寒天、ペクチン、コンニャク粉、キトサンなどゲル化
する性質を有する多I!類による包括固定化法がよく用
いられる。
In recent years, it has become common practice to immobilize microorganisms, enzymes, etc. on various carriers and utilize them in food production, pharmaceutical production, wastewater treatment, and the like. For immobilization of enzymes, carrier binding method is used to immobilize microorganisms,
For immobilization of animal and plant cells, multi-I! Comprehensive immobilization methods are often used.

そして、微生物菌体をアルギン酸ゲル、に〜カラギーナ
ンゲルにより包括固定化する方法は、温和な処理条件下
で短時間に固定化できる優れた方法として知られている
。通常、微生物菌体をアルギン酸ゲルで包括固定化する
場合、アルギン酸塩の水溶液に該微生物菌体を懸濁させ
たものを、カルシウムイオン等の多価金属イオンを含有
する凝固液中に注射器等を用いて滴下させることにより
球状もしくは糸状のゲルに成型するという方法がとられ
ており、従来は、2m[11〜5M程度の粒子径のもの
が得られている。
The method of comprehensively immobilizing microbial cells with alginate gel or carrageenan gel is known as an excellent method that allows immobilization in a short time under mild processing conditions. Normally, when entrapping and immobilizing microbial cells with alginate gel, the microbial cells are suspended in an aqueous solution of alginate and then inserted into a coagulating solution containing polyvalent metal ions such as calcium ions using a syringe, etc. A method is used in which a gel is formed into a spherical or thread-like gel by dropping it using a gel, and conventionally, particles with a particle size of about 2 m [11 to 5 M] have been obtained.

また微生物菌体をκ−カラギーナンゲルで包括固定化す
る場合、に−カラギーナンの水溶液に咳微生物菌体を懸
濁させたものを、冷却するか、アンモニウムイオン、カ
リウムイオン、カルシウムイオン、i同イオン、マグネ
シウムイオン、鉄(III)イオンなどのイオンやアミ
ン類と接触させるか又はエタノール、アセトンなど水混
和性有機溶媒と接触させて、アルギン酸ゲルと同しく球
状もしくは糸状のゲルに成型するという方法がとられて
いる。
In addition, when entrapping and immobilizing microbial cells in a κ-carrageenan gel, a suspension of cough microorganisms in an aqueous solution of carrageenan is cooled, or ammonium ions, potassium ions, calcium ions, , contact with ions such as magnesium ions, iron (III) ions, or amines, or contact with water-miscible organic solvents such as ethanol or acetone, and form it into a spherical or thread-like gel like alginate gel. It is taken.

アルギン酸水溶液と金属イオンによりアルギン酸繊維を
作ることに関しては、例えば特開昭56169809号
(食品加工用繊維)があるが、これは高剪断力下でアル
ギン酸水溶液と金属イオンとを反応させた加工食品用フ
ルーツバルプ状の繊維であり、微生物を固定化したもの
ではなく、また繊維径も特定化されていない。
Regarding the production of alginic acid fibers using an alginic acid aqueous solution and metal ions, there is, for example, Japanese Patent Application Laid-open No. 5,616,9809 (fibers for food processing), which is a method for making alginic acid fibers for processed foods in which an alginic acid aqueous solution and metal ions are reacted under high shear force. It is a fruit-bulp-shaped fiber that does not contain immobilized microorganisms, and the fiber diameter is not specified.

微生物をアルギン酸ゲルにより糸状に固定化する報告と
しては、特開昭57−163484号(インベルターゼ
の固定化法)があり、この場合径1.0mmのノズルか
らアルギン酸水溶液と酵母抽出残渣の混合物をカルシウ
ム水溶液中に押し出して糸状に固定化する実施例の記載
があるものの、径に関しては特定化するものではなく、
また酸素透過性改善を目的としたものでもない。
There is a report on the immobilization of microorganisms in the form of filaments using alginate gel, such as JP-A-57-163484 (invertase immobilization method). Although there is a description of an example in which it is extruded into an aqueous solution and immobilized in the form of a thread, the diameter is not specified.
Furthermore, it is not intended to improve oxygen permeability.

更に、特公平1−27720号(酵素及び/又は微生物
含有アルギン酸繊維紙の製造方法)では、酵素或いは微
生物を含有するアルギン酸水溶液を、直径0.5mm以
下のノズルから凝固液中に紡出させ、−度は繊維状ゲル
となしているものの、引続き抄紙とするために繊維長/
繊維径が150となるように該ゲルをカットして短繊維
化(実施例では3餉長に力・ント)することを必須条件
とした、比表面積の増大を目的とする繊維紙の製法に関
するものであり、酸素透過性改善を目的としたものでは
ない。
Further, in Japanese Patent Publication No. 1-27720 (Method for producing alginate fiber paper containing enzymes and/or microorganisms), an alginic acid aqueous solution containing enzymes or microorganisms is spun into a coagulating liquid from a nozzle with a diameter of 0.5 mm or less, -Although the degree is considered to be a fibrous gel, the fiber length /
Relating to a method for producing fiber paper for the purpose of increasing the specific surface area, with the essential condition of cutting the gel to shorten the fibers so that the fiber diameter is 150 (in the example, the length is 3 mm) It is not intended to improve oxygen permeability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ゲル化する性質を有する多糖類ゲルにより微生物菌体を
固定化した時の問題点の1つにゲルの酸素透過性がある
。即ち、ゲルの表面付近は好気的であるが内部は嫌気状
態となっている。従って、一般に好気性微生物をゲル化
する性質を有する多糖類ゲルで固定化すると、ゲル内部
の菌体は酸素不足のために急速に死滅するとされている
。一方、このゲルの特性を利用したバイオリアクターの
研究例もいくつか報告されている。例えば、11゜Ta
naka、 llKurosawa+ tl、Mura
kamiらのrEthanolProduction 
from 5tarch by a Cojmmobi
lizedMixed Cu1ture System
 of Aspergillus awamorian
d Zymomonas mobilis・・Biot
echnoloHy and Bi。
One of the problems when immobilizing microbial cells using a polysaccharide gel that has a gelling property is the oxygen permeability of the gel. That is, the area near the surface of the gel is aerobic, but the inside is anaerobic. Therefore, it is generally believed that when aerobic microorganisms are immobilized in a polysaccharide gel that has a gelling property, the bacterial cells inside the gel die rapidly due to lack of oxygen. On the other hand, several research examples of bioreactors utilizing the properties of this gel have been reported. For example, 11°Ta
naka, llKurosawa+ tl, Mura
kami et al.'s rEthanolProduction
from 5tarch by a Cojmmobi
lizedMixed Culture System
of Aspergillus awamorian
d Zymomonas mobilis...Biot
echnoloHy and Bi.

engineering+ 28:1761−1768
(’86) J 、H,Kurosawa。
engineering+ 28:1761-1768
('86) J., H., Kurosawa.

H,[shikawa+ H,Tanakaらの’L−
Lactic Ac1d Pro−duction f
ron+ 5tarch by Coimmobili
zed  MixedCulture System 
of Aspergi口us awamori and
Streptococcus Iactis・−Bio
technology and Bi。
H, [shikawa+ H, Tanaka et al.'L-
Lactic Ac1d Pro-duction f
ron+ 5tarch by Coimmobili
zed MixedCulture System
of Aspergi mouth us awamori and
Streptococcus Iactis・-Bio
Technology and Bi.

engineering+ 31:183−187(’
88) Jなどがあるが、これらは、好気性菌と嫌気性
菌を同時に固定化すると、好気性菌であるAsp、aw
amoriがゲル表層に、嫌気性菌であるZym、mo
bilis、、St、Iactisがゲル内部に固定化
されて機能t−るという研究報告である。
engineering+ 31:183-187('
88) J, etc., but when aerobic bacteria and anaerobic bacteria are immobilized at the same time, the aerobic bacteria Asp, aw
amori contains anaerobic bacteria Zym and mo on the gel surface layer.
This is a research report showing that Bilis, St, and Iactis are immobilized inside the gel and function.

しかし、好気性微生物を包括固定化する場合、或いは好
気条件下で特定の機能を発揮する微生物を固定化する場
合、ゲルの酸素透過性が改善され、該微生物に十分な酸
素を供給すること力咄来れば、固定化生体触媒の用途が
拡大し、「微生物による有用物質生産」に大きく貢献す
ることは疑う余地もない。また、動植物細胞の固定化に
も資する所が極めて大である。
However, when aerobic microorganisms are comprehensively immobilized or microorganisms that perform specific functions under aerobic conditions are immobilized, the oxygen permeability of the gel is improved and sufficient oxygen is supplied to the microorganisms. There is no doubt that if this technology is successful, the applications of immobilized biocatalysts will expand and they will greatly contribute to the production of useful substances by microorganisms. It also greatly contributes to the immobilization of animal and plant cells.

本発明者らは、従来のゲル化する性質を有する多IJ!
!?iゲルにより固定化された微生物菌体固定化物が有
するゲル内部の酸素不足という問題を解決せんと鋭意研
究の結果、本発明を完成したものであって、その目的と
するところは、ゲル化する性質を有する多糖類ゲル、好
ましくはアルギン酸ゲル、に−カラギーナンゲルを使用
しゲル内部への「酸素透過性」が著しく高められ、しか
も菌体活性が非固定化菌体(Free Ce1l)と同
等程度である微生物菌体固定化物を提供するにある。
The present inventors have developed a multi-IJ film with conventional gelling properties.
! ? The present invention was completed as a result of intensive research to solve the problem of oxygen deficiency inside the gel of immobilized microorganisms immobilized by i-gel, and its purpose is to By using a polysaccharide gel, preferably an alginate gel, or a carrageenan gel, the "oxygen permeability" to the inside of the gel is significantly increased, and the cell activity is equivalent to that of non-immobilized cells (Free Cell). The purpose of the present invention is to provide an immobilized microbial cell material.

なお、「酸素透過性」という用語については、以下「物
体の内部まで酸素を通すことができる性質」の意味で使
用する。
The term "oxygen permeability" is hereinafter used to mean "the property of allowing oxygen to pass through to the inside of an object."

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、すでに前述の’L−Lactic ac
idProduction from 5tarch 
by Coi+nmobilized MixedCu
lture System of Aspergill
us atvamori andStreptococ
cus Iactis」の報告の中で、好気性菌と嫌気
性菌をアルギン酸ゲルビーズに同時固定すると、好気性
菌はゲル表層近辺に、嫌気性菌はゲル内部にと、その酸
素要求度の違いに応じて所謂「棲み分け」が行なわれる
ことを確認している。
The present inventors have already discovered the above-mentioned 'L-Lactic ac
idProduction from 5tarch
by Coi+nmobilized MixedCu
lture System of Aspergill
us atvamori and Streptococcus
In the report on ``Cus Iactis,'' when aerobic bacteria and anaerobic bacteria were immobilized simultaneously on alginate gel beads, aerobic bacteria were placed near the surface of the gel, and anaerobic bacteria were placed inside the gel, depending on the difference in oxygen demand. It has been confirmed that so-called ``separation'' will take place.

また、好気性菌の固定は、表層からおよそ0.3順まで
が限界であることもゲルビーズの顕微鏡写真により確認
している。本発明者らはこれらの知見をもとに固定化菌
体の形状について検討を重ねたものである。
It has also been confirmed from microscopic photographs of gel beads that the immobilization of aerobic bacteria is limited to about 0.3 degrees from the surface layer. Based on these findings, the present inventors have repeatedly investigated the shape of immobilized bacterial cells.

本発明は、微生物菌体とゲル化する性質を有する多tJ
!類から直径が0.5 mm以下の細い糸状に固定化し
て得られる菌体固定化物であって、ゲル内部への酸素透
過性に優れており、発酵生産に使用できることを見出し
た。また、本発明は、微生物菌体とアルギン酸またはそ
の塩を含有する混合液を、カルシウムイオン等の多価金
属イオンを含有する凝固液と接触させることにより得ら
れたゲルが、直径0.5+nm以下の細い糸状ゲルから
戒る微生物菌体がゲル内に包括固定化された微生物菌体
固定化物であって、菌体の固定化物が直径0.5mm以
下の細い糸状体に形成されているため、ゲルの酸素透過
性が著しく優れた効果を示すものである。
The present invention provides multi-tJ that has the property of gelling with microbial cells.
! It has been found that this product is obtained by immobilizing microbial cells in the form of thin filaments with a diameter of 0.5 mm or less, has excellent oxygen permeability into the gel interior, and can be used for fermentation production. Further, the present invention provides a gel obtained by contacting a mixed solution containing microbial cells and alginic acid or a salt thereof with a coagulation solution containing polyvalent metal ions such as calcium ions, which has a diameter of 0.5+ nm or less. This is an immobilized microbial cell in which the microbial cells contained in the thin filamentous gel are encircled and immobilized within the gel, and the immobilized bacterial cells are formed into a thin filamentous body with a diameter of 0.5 mm or less. This shows that the oxygen permeability of the gel is significantly improved.

また本発明は、微生物菌体とκ−カラギーナンを含有す
る混合液を、冷却するか、アンモニウムイオン、カリウ
ムイオン、カルシウムイオン、洞イオン、マグネシウム
イオン、鉄(I[[)イオンなどのイオンやアミン類と
接触させるか又はエタノール、アセトンなどの水混和性
有機溶媒と接触させることにより得られるゲルが、直径
0.5mm以下の細い糸状ゲルから成る微生物菌体がゲ
ル内に包括固定化された微生物菌体固定化物であって、
菌体の固定化物が直径0.5111ff+以′下の細い
糸状体に形成されているため、ゲルの酸素透過性が著し
く優れた効果を示すものである。
In addition, the present invention cools a mixed solution containing microbial cells and κ-carrageenan, or cools it or cools the mixture containing ions such as ammonium ions, potassium ions, calcium ions, sinus ions, magnesium ions, iron (I[[) ions, etc.] and amines. A microorganism in which the microbial cells are entrappingly immobilized in the gel, and the gel obtained by contacting with a water-miscible organic solvent such as ethanol or acetone is a thin filamentous gel with a diameter of 0.5 mm or less. A bacterial cell immobilized product,
Since the immobilized bacterial cells are formed into thin filaments with a diameter of 0.5111ff+ or less, the gel exhibits an extremely excellent oxygen permeability effect.

更に本発明は、上記の微生物菌体固定化物を、培養液と
接触させ、好気的条件下に保持することにより、培養液
中に菌体生産物を生産させることを特徴とする菌体生産
物の生産方法にある。
Furthermore, the present invention provides a method for producing bacterial cells, which comprises bringing the immobilized microbial cells described above into contact with a culture liquid and maintaining them under aerobic conditions to produce bacterial products in the culture liquid. It's in the way things are produced.

本発明において菌体の包括固定化に使用されるゲル化す
る性質を有する多糖類としてはアルギン酸並びにその塩
、に−カラギーナン、寒天、ペクチン、コンニャク粉、
キトサンなどが適用される。
In the present invention, polysaccharides with gelling properties used for entrapping immobilization of bacterial cells include alginic acid and its salts, carrageenan, agar, pectin, konjac powder,
Chitosan etc. are applied.

これらは通常は1〜5%の濃度で使用する。These are normally used in concentrations of 1-5%.

固定化される微生物は好気性のものであれば、酵母、細
菌、カビなどのいずれの微生物であってもよい。
The microorganism to be immobilized may be any aerobic microorganism such as yeast, bacteria, or mold.

固定化方法は限定されないが、微生物菌体とゲル化する
性質を有する多Il!類を含む混合液を細いノズル又は
注射針から凝固液中へ押出しゲル化させる方法が望まし
い。
The immobilization method is not limited, but it is possible to use polyimide, which has the property of forming a gel with microbial cells. A desirable method is to extrude a mixture containing the above substances into a coagulating liquid through a thin nozzle or injection needle to form a gel.

本発明において固定化糸状ゲルの直径は0.5鵬以下に
する必要がある。0.5mmを越えた場合は、内部への
十分な酸素透過性を確保することができなくなり、死滅
する微生物の割合が急速に増える。
In the present invention, the diameter of the immobilized filamentous gel must be 0.5 mm or less. If it exceeds 0.5 mm, sufficient oxygen permeability to the interior cannot be ensured, and the proportion of microorganisms that die will rapidly increase.

本発明の菌体固定化物は、培養タンクに投入して用いる
ときは繰り返して使用することができ、またカラムに充
填し培養液を通液し、物質生産を行なわせることもでき
る。
The immobilized bacterial cells of the present invention can be used repeatedly when placed in a culture tank, or can be filled into a column and a culture solution passed therethrough to produce substances.

本発明の微生物菌体固定化物はゲルの酸素透過性が良好
であるため、好気的条件下での物質生産に用いる場合は
、非固定化菌体(Free Ce11)と同程度の物質
生産性を示すという格段に優れた利点を有する。
Since the gel of the immobilized microbial cells of the present invention has good oxygen permeability, when used for material production under aerobic conditions, the material productivity is comparable to that of non-immobilized microbial cells (Free Ce11). It has the outstanding advantage of showing .

また、本発明の固定化糸状ゲルは、径が極端に小さいが
粒状のゲルに比して調製し易いという利点もある。
Furthermore, although the immobilized filamentous gel of the present invention has an extremely small diameter, it also has the advantage of being easier to prepare than granular gel.

〔発明の効果〕〔Effect of the invention〕

本発明によって、ゲル内部への酸素透過性の優れたゲル
化する性質を有する多糖類ゲルにより包括固定化された
微生物菌体固定化物及び該微生物菌体固定化物を用いて
菌体生産物を効率よく生産する方法を提供することがで
きた。
According to the present invention, a microbial cell immobilized product entrappingly immobilized with a polysaccharide gel having gelling properties with excellent oxygen permeability into the gel interior, and a microbial cell product efficiently produced using the microbial cell immobilized material. We were able to provide a method for better production.

〔実施例〕〔Example〕

次に、実施例を挙げて本発明を具体的に説明するが、本
発明はこれらの実施例に限定されるものではない。
Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例I MR3培地100成を用いてS、1actis 5ub
sp。
Example I Using 100 volumes of MR3 medium, S. 1actis 5ub
sp.

diacetylactis 3022株を30°Cl
2O時間培養する。
diacetylactis strain 3022 at 30°C
Incubate for 20 hours.

本培養液を遠心分離(5000rpm、 4°C915
分)により集菌し、これをアルギン酸ナトリウム溶液(
アルギン酸ナトリウム濃度2.5%)と混合する。なお
、MR3培地は、ペプトン10i 肉エキス10g1酵
母工キス5g、ブドウ糖20g、ツイーン801.Om
l、 K2HPO42,Og、 CHzCOONa・3
11zO5g、クエン酸アンモニウム2 g 1Mg5
On 4tlz0200mg、 MnSO4・4H,0
50mg+及び蒸留水10100Oを混合し、pH6,
0〜6.5に調製し120°Cで15分間殺菌したもの
である。
Centrifuge the main culture solution (5000 rpm, 4°C915
Collect bacteria using a sodium alginate solution (
Sodium alginate concentration 2.5%). The MR3 medium contains 10i peptone, 10g meat extract, 5g yeast extract, 20g glucose, and Tween 801. Om
l, K2HPO42,Og, CHzCOONa・3
11zO5g, ammonium citrate 2g 1Mg5
On 4tlz0200mg, MnSO4・4H,0
Mix 50mg+ and distilled water 10100O, pH 6,
0 to 6.5 and sterilized at 120°C for 15 minutes.

アルギン酸ナトリウムと3022株の菌体の混合溶液を
、注射針を用いてO,1M塩化カルシウム溶液に紡出さ
せることにより、径が約0.2m11の固定化糸状ゲル
を調製した。径の小さい糸状ゲルは粒状ゲルに比して調
製が容易であった。
An immobilized filamentous gel having a diameter of about 0.2 ml was prepared by spinning a mixed solution of sodium alginate and 3022 strain of bacterial cells into an O.1M calcium chloride solution using a syringe needle. Thread-like gels with small diameters were easier to prepare than granular gels.

この固定化糸状ゲル10allを新鮮なMR8培地10
0dに投入し、30°Cで振盪(1255trokes
/5in) Lながらジアセチルを生成させた。なお、
対照は、固定化系状ゲル10dに相当する量の菌体を含
むMR3培養液を遠心処理して集菌し、これを非固定化
菌体(Free Ce1l)として使用した。
Transfer 10all of this immobilized filamentous gel to 10ml of fresh MR8 medium.
0d and shaken at 30°C (1255 trokes).
/5in) diacetyl was produced. In addition,
As a control, an MR3 culture solution containing an amount of bacterial cells equivalent to 10 d of immobilized gel was collected by centrifugation and used as non-immobilized bacterial cells (Free Cell).

この固定化糸状ゲルと非固定化菌体(Free Ce1
l)によるジアセチル生成量を第1図に示す。この結果
から、細径の糸状ゲルとすることにより酸素透過性が改
善され、振盪培養した場合、非固定化菌体(Free 
Ce1l)と同量のジアセチルを生成することが確認で
きる。
This immobilized filamentous gel and non-immobilized bacterial cells (Free Ce1
Figure 1 shows the amount of diacetyl produced by 1). From this result, oxygen permeability was improved by forming a thin filamentous gel, and when cultured with shaking, non-immobilized bacterial cells (Free
It can be confirmed that the same amount of diacetyl as Ce11) is produced.

なお、この実施例で使用した5treptococcu
slactiSSubsp、diacetylacti
s 3022株は、振盪培養(即ち、好気培養)すると
ジアセチル生成活性並びにジアセチル生成量のいずれと
も、静置培養したものに比較し、著しく高くなることを
本発明者らがすでに6i tWしている(金子 勉らr
Strep−tococcus Iactis 5ub
sp、diacetylactis 3022株のジア
セチル生成能について」日本農芸化学会1989年度大
会講演要旨集p、350)微生物であって、この菌株は
工業技術院微生物工業技術研究所に微工研菌寄第110
08号(FERM P−11008)として寄託されて
おり、第三者はここから容易に人手することができる。
In addition, 5treptococcu used in this example
slactiSSubsp, diacetylacti
The present inventors have already demonstrated that when cultured with shaking (i.e., aerobic culture), the diacetyl production activity and amount of diacetyl produced by the S. 3022 strain are significantly higher than when cultured statically. There is (Kaneko Tsutomu r)
Strep-tococcus Iactis 5ub
"About the diacetyl-producing ability of the sp.
It has been deposited as No. 08 (FERM P-11008) and can be easily accessed by a third party.

(比較例) ここでは、実施例1で使用したS、]actis 5u
bsp。
(Comparative example) Here, S, ]actis 5u used in Example 1
bsp.

diacetylactis 3022株を、通常の方
法によりアルギン酸ゲルで包括固定化し、得られた粒径
約3 mmの固定化ビーズ状ゲルを用いて、非固定化菌
体(Free Ce1l)を対照にジアセチル生成試験
を行なった。
diacetylactis strain 3022 was comprehensively immobilized with alginate gel using a conventional method, and using the obtained immobilized bead-like gel with a particle size of approximately 3 mm, a diacetyl production test was conducted using non-immobilized bacterial cells (Free Ce1l) as a control. I did it.

実施例1と同様な方法で調製した菌体を、アルギン酸ナ
トリウム溶液(アルギン酸ナトリウム濃度2.5%)と
混合する。
Bacterial cells prepared in the same manner as in Example 1 are mixed with a sodium alginate solution (sodium alginate concentration 2.5%).

この混合液を0,1M塩化カルシウム溶液に滴下し、粒
径約311II11の固定化ビーズ状ゲルを得た。
This mixed solution was added dropwise to a 0.1M calcium chloride solution to obtain a fixed bead-like gel having a particle size of about 311II11.

本固定化ビーズ状ゲルlOdを新鮮なMR3培地100
dに投入し、30°Cで振盪(1255trokes/
m1n) Lながらジアセチル生成量を測定した。なお
、対照は、固定化ビーズ状ゲルLOmlに相当する量の
菌体を含むMR3培養液を遠心処理して集菌し、これを
非固定化菌体(Free Ce1l)として使用した。
This immobilized bead-shaped gel is added to fresh MR3 medium 100 ml.
d and shaken at 30°C (1255 trokes/
m1n) The amount of diacetyl produced was measured. As a control, an MR3 culture solution containing an amount of bacterial cells corresponding to LO ml of immobilized beaded gel was collected by centrifugation, and this was used as non-immobilized bacterial cells (Free Cell).

固定化ビーズ状ゲルと非固定化菌体(Free Ce1
l)によるジアセチル生成量は、第2図に示すように大
きな差が見られた。
Immobilized bead-shaped gel and non-immobilized bacterial cells (Free Ce1
As shown in FIG. 2, there was a large difference in the amount of diacetyl produced by 1).

同一菌体量であるにもかかわらず、振盪培養しても固定
化ビーズ状ゲルのジアセチル生成量が、非固定化菌体(
Free Ce1l)の1/2〜173程度にすぎない
ということは、ビーズ状ゲルの酸素透過性に問題のある
ことは明らかである。
Despite having the same amount of bacterial cells, the amount of diacetyl produced by the immobilized bead-like gel is higher than that of non-immobilized bacterial cells (
It is clear that there is a problem with the oxygen permeability of the bead-like gel since it is only about 1/2 to 173 of Free Ce11).

実施例2 実施例1と同様な方法で調製した菌体をκ−カラギーナ
ンン容液(に−カラギーナン濃度3.4%)とt見合し
た。
Example 2 Bacterial cells prepared in the same manner as in Example 1 were mixed with a κ-carrageenan solution (ni-carrageenan concentration: 3.4%).

この混合液を、注射針を用いて2%塩化カリウム?8液
に紡出させることにより、径が約0.3 Mの糸状ゲル
を調製した。この固定化糸状ゲル10m1を用いて、実
施例1と同様の方法でジアセチルを1威した。
Inject this mixture into 2% potassium chloride using a syringe needle. A filamentous gel having a diameter of approximately 0.3 M was prepared by spinning into 8 liquids. Using 10 ml of this fixed filamentous gel, diacetyl was added once in the same manner as in Example 1.

6時間培養後のジアセチル生成量は20mg/l:MR
3培地であり、対照として実施した非固定化菌体(Fr
ee Ce1l)の24mg/f;MR3培地とほぼ同
量の生成量であった。
The amount of diacetyl produced after 6 hours of culture was 20 mg/l: MR
3 medium, and non-immobilized bacterial cells (Fr
ee Ce1l) at 24 mg/f; the production amount was approximately the same as that of the MR3 medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、振盪培養による固定化糸状ゲルと非固定化菌
体のジアセチル生成量を示すグラフである。 第2図は、振盪培養による固定化ビーズ状ゲルと非固定
化菌体のジアセチル生成量を示すグラフである。
FIG. 1 is a graph showing the amount of diacetyl produced by immobilized filamentous gel and non-immobilized bacterial cells by shaking culture. FIG. 2 is a graph showing the amount of diacetyl produced by immobilized bead-like gel and non-immobilized bacterial cells by shaking culture.

Claims (1)

【特許請求の範囲】 1、微生物菌体とゲル化する性質を有する多糖類によっ
て得られたゲルが、直径0.5mm以下の細い糸状ゲル
から成る微生物菌体がゲル内に包括固定化された微生物
菌体固定化物。 2、微生物菌体とアルギン酸またはその塩を含有する混
合液を、カルシウムイオン等の多価金属イオンを含有す
る凝固液と接触させることにより得られたゲルが、直径
0.5mm以下の細い糸状ゲルから成る微生物菌体がゲ
ル内に包括固定化された微生物菌体固定化物。 3、微生物菌体とκ−カラギーナンを含有する混合液を
、冷却するか又はアンモニウムイオン、カリウムイオン
などのイオンやアミン類と接触させるか又はエタノール
、アセトンなどの水混和性有機溶媒と接触させることに
よって得られるゲルが、直径0.5mm以下の細い糸状
ゲルから成る微生物菌体がゲル内に包括固定化された微
生物菌体固定化物。 4、請求項1、2、3のいずれか記載の微生物菌体固定
化物を、培養液と接触させ、好気的条件下に保持するこ
とにより、培養液中に菌体生産物を生産させることを特
徴とする菌体生産物の生産方法。
[Claims] 1. A gel obtained from a polysaccharide that has the property of gelling with microbial cells is a thin filamentous gel with a diameter of 0.5 mm or less, in which microbial cells are encircled and immobilized. Immobilized microbial cells. 2. The gel obtained by contacting a mixed solution containing microbial cells and alginic acid or its salt with a coagulating solution containing polyvalent metal ions such as calcium ions is a thin filamentous gel with a diameter of 0.5 mm or less. A microbial cell immobilized product in which microbial cells consisting of are comprehensively immobilized in a gel. 3. Cooling the liquid mixture containing microbial cells and κ-carrageenan, or contacting it with ions such as ammonium ions and potassium ions, or amines, or contacting it with a water-miscible organic solvent such as ethanol and acetone. The gel obtained by this method is a thin filamentous gel with a diameter of 0.5 mm or less, and the microbial cells are entrappingly immobilized within the gel. 4. Bringing the immobilized microbial cell according to any one of claims 1, 2, and 3 into contact with a culture solution and maintaining it under aerobic conditions to produce a microbial product in the culture solution. A method for producing a bacterial cell product characterized by:
JP26523389A 1989-10-13 1989-10-13 Immobilized microbial cell Pending JPH03127989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26523389A JPH03127989A (en) 1989-10-13 1989-10-13 Immobilized microbial cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26523389A JPH03127989A (en) 1989-10-13 1989-10-13 Immobilized microbial cell

Publications (1)

Publication Number Publication Date
JPH03127989A true JPH03127989A (en) 1991-05-31

Family

ID=17414370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26523389A Pending JPH03127989A (en) 1989-10-13 1989-10-13 Immobilized microbial cell

Country Status (1)

Country Link
JP (1) JPH03127989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524907A (en) * 2013-07-18 2016-08-22 ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト Optimized process for producing isomaltulose-containing compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524907A (en) * 2013-07-18 2016-08-22 ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト Optimized process for producing isomaltulose-containing compositions

Similar Documents

Publication Publication Date Title
JP6433789B2 (en) Composition for embedded microorganism culture
GB2192171A (en) Production of polymetric beads having alginate shells
US20160032270A1 (en) Apparatus and process for production of an encapsulated cell product
JPS61189218A (en) Encapsulation
JPH0320234B2 (en)
Oyeagu et al. Addition of fillers to sodium alginate solution improves stability and immobilization capacity of the resulting calcium alginate beads
Olson et al. Immobilized enzymes in food and microbial processes
GB2138842A (en) Process for recovering nonsecreted substances produced by cells
Shinonaga et al. Immobilization of yeast cells with cross-linked chitosan beads
JPS63177791A (en) Production of immobilized enzyme or immobilized microorganism
Marcipar et al. Immobilization of yeasts on ceramic supports
US5916789A (en) Immobilized enzyme
Van Neerven et al. Scanning electron microscopy of immobilized bacteria in gel beads: a comparative study of fixation methods
Baudet et al. Growth and sporulation of entrapped Bacillus subtilis cells
JPH03127989A (en) Immobilized microbial cell
Nilsson et al. [19] Entrapment of microbial and plant cells in beaded polymers
Förster et al. Immobilization of citrate-producing Yarrowia lipolytica cells in polyelectrolyte complex capsules
EP0245986A2 (en) Immobilization of nonanchorage-dependent cells
Mandali et al. Rifamycin SV production using immobilized cells of Amycolatopsis mediterranei OVA5-E7 in different matrices
JPS6374490A (en) Use of cellulase preparation in culture and use of cellulose producing bacteria
Bastos et al. Heterotrophic growth of Aphanothece microscopica Nägeli in calcium alginate beads from BG11 medium and vinasse
JP3282271B2 (en) Method for producing ε-poly-L-lysine
JPH0468912B2 (en)
Lee et al. Ca-Alginate Liquid Core Capsule for Lactobacili Fermentation
JPS63160584A (en) Production of immobilized enzyme or immobilized microorganism