JPH03127983A - Large-amount cultivation of hydrogen-oxidizing bacterium - Google Patents

Large-amount cultivation of hydrogen-oxidizing bacterium

Info

Publication number
JPH03127983A
JPH03127983A JP1267425A JP26742589A JPH03127983A JP H03127983 A JPH03127983 A JP H03127983A JP 1267425 A JP1267425 A JP 1267425A JP 26742589 A JP26742589 A JP 26742589A JP H03127983 A JPH03127983 A JP H03127983A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
oxygen
culture
culturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1267425A
Other languages
Japanese (ja)
Other versions
JP2564008B2 (en
Inventor
Fumiaki Ishizaki
文彬 石崎
Toshihisa Kanamaru
金丸 利壽
Takehiko Kawai
川井 武彦
Shigeru Yamada
茂 山田
Taku Geshi
下司 卓
Kenji Tanaka
賢二 田中
Toshihiro Takeshita
俊宏 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIBU GAS KK
Original Assignee
SEIBU GAS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIBU GAS KK filed Critical SEIBU GAS KK
Priority to JP1267425A priority Critical patent/JP2564008B2/en
Publication of JPH03127983A publication Critical patent/JPH03127983A/en
Application granted granted Critical
Publication of JP2564008B2 publication Critical patent/JP2564008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/02Percolation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas

Abstract

PURPOSE:To safely and economically culture hydrogen-oxidizing bacterium with making possible to keep mixed gas as raw material within explosion range and completely utilizing the raw material gas by supplying mixed gas of H2 and CO2 and oxygen gas to culturing solution of hydrogen-oxidizing bacterium in a specific method. CONSTITUTION:In a cultivation of hydrogen-oxidizing bacterium, e.g. Alcaligenes.eutrophus ATCC 17697, hydrogen to be substrate and carbon dioxide gas in a gas state previously mixed in a gas chamber 2 are supplied into a culturing tank 1 containing culturing solution with remaining space in upper part. On the other hand, 100% oxygen is solely and directly supplied into the culturing solution. Whole gas not utilized by the substrate accumulated in the space in the culturing tank 1 not dissolved in the culturing solution is circulated through a closed circulating system 41 and returned into the culturing solution. Furthermore, the amount of dissolved oxygen in the culturing solution is monitored by a dissolved oxygen sensor 5 and supplying of oxygen is controlled so that the amount of dissolved oxygen not to be <=1.8ppm in logarithmic propagating period and supplying of ammonia is controlled by a pH sensor 6 so as to keep the culturing solution at pH7.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は水素酸化細菌の大屡培徨方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for cultivating hydrogen-oxidizing bacteria.

(発明の背影及び従来の技術) 水素酸化細菌は水素の酸化によって発生する■ネルギー
を利用して、炭酸ガスを唯一の炭素源として生育する独
立栄養微生物であり、その菌体は菌体内に高濃度のたん
白質及び核酸を含み、飼ill・食料として利用できる
等広い用途を有している。
(Background of the invention and prior art) Hydrogen-oxidizing bacteria are autotrophic microorganisms that grow using carbon dioxide as the only carbon source, using the energy generated by hydrogen oxidation. Containing high concentrations of protein and nucleic acids, it has a wide range of uses, including use as livestock and food.

しかし乍ら、この水素酸化細菌を工業的に大損培養する
には次のような解決しなければならない大きな問題があ
り、現在のところまだ殆/υど手がつけられていないの
が現況である。
However, there are major problems that need to be solved in order to commercially cultivate hydrogen-oxidizing bacteria, which are still largely unaddressed at present. .

さて、その解決しなければならない大きな問題とは、 第1に: 水素酸化細菌は水素、酸素を含む爆発性の混合ガス中で
ないと良好な生育を示さない点である。
Now, the major problems that must be solved are: First: Hydrogen-oxidizing bacteria do not grow well unless in an explosive gas mixture containing hydrogen and oxygen.

従って、水素、酸素、炭酸ガスだけからなる混合気での
培養は極めて危険といわねばならず、安全に培養槽を運
転しつるがどうかの目途がたたない。
Therefore, culturing with a mixture consisting only of hydrogen, oxygen, and carbon dioxide gas is extremely dangerous, and there is no way to know whether the culture tank can be operated safely.

第2に: 原料ガスは培養液への溶解度が極めて低いため、原料ガ
スの利用効率が非常に低い点である。
Second: Since the solubility of the raw material gas in the culture solution is extremely low, the utilization efficiency of the raw material gas is extremely low.

従って、水素ガスを主体とする未利用の可燃性原料ガス
を大尽に放出することになり、その原料ロスによる低い
経済性ばかりでなく、防災安全上も重大な問題となる。
Therefore, a large amount of unused combustible raw material gas mainly composed of hydrogen gas is released, which causes not only low economic efficiency due to raw material loss but also a serious problem in terms of disaster prevention and safety.

なお、原料ガスの利用効率を高めるためには、未刊用ガ
スを排出せず循環することにより再利用を行うことが考
えられるが、爆発範囲内の組成の混合ガスを循環するこ
とはやはり多大な危険を伴う。
In order to increase the utilization efficiency of raw material gas, it is possible to reuse unpublished gas by circulating it without emitting it, but circulating a mixed gas with a composition within the explosive range still requires a lot of effort. It's dangerous.

一方、これら爆発の危険及び原料ロスの不経済性と防災
上の問題を解決するものとして、特開昭51−3848
0弓公報の方法が既に知られている。
On the other hand, as a solution to the danger of explosion, uneconomical loss of raw materials, and disaster prevention problems, Japanese Patent Laid-Open No. 51-3848
The method of the 0 Bow publication is already known.

この特開昭5l−38413(1号公報の方法は、第2
図に示づ装置を用いて、水素酸化細菌の培養液を入れた
I8養槽(1)から培養液を、水素ガス吸着装置(7)
を有する循環系と酸素ガス吸着装@(8)を有する循環
系を通じて循環し、水素ガス吸着装置(7)と酸素ガス
吸着装置(8)にそれぞれ導入した培養液に水素ガスと
M素ガスを別個に溶解せしめたのら、これらを培養槽(
1)に戻すことにより、系内に爆発範囲内の組成の混合
ガスを形成することなく、かつ水素ガス、酸素ガスの利
用効率を低下させることなく培養することを可能にした
ものである。
The method of JP-A-5L-38413 (No. 1) is
Using the device shown in the figure, the culture solution is transferred from the I8 culture tank (1) containing the culture solution of hydrogen oxidizing bacteria to the hydrogen gas adsorption device (7).
Hydrogen gas and M gas are circulated through the circulation system having Once dissolved separately, these were dissolved in a culture tank (
By returning to 1), it is possible to culture without forming a mixed gas with a composition within the explosive range in the system and without reducing the utilization efficiency of hydrogen gas and oxygen gas.

しかし乍ら、このような方法においては水素ガス及び酸
素ガス吸着装置に導入される培養液中の細菌は増殖に不
適当な水素リッチ、酸素リッチの条件下におかれ、増殖
速度が遅い状態となり、しかも培養液と共に18養栖に
戻され、培養液の混合により増殖のための最適条件下に
おかれた後も直ちに充分な増殖速度が得られないことが
考えられ不安定となる慣れがあり、実用上十分でかつ安
定した生産性を期待し難い。
However, in this method, the bacteria in the culture solution introduced into the hydrogen gas and oxygen gas adsorption device are placed under hydrogen-rich and oxygen-rich conditions that are inappropriate for growth, resulting in a slow growth rate. Furthermore, even after being returned to the No. 18 nursery along with the culture medium and placed under optimal conditions for growth by mixing the culture medium, it is thought that a sufficient growth rate may not be obtained immediately, resulting in instability. , it is difficult to expect practically sufficient and stable productivity.

(発明が解決しようとする課題) 本発明は上述した従来技術が有する問題点に鑑みてなさ
れたもので、その目的とするところは、原料の混合ガス
を爆発範囲外に維持制御し得ると共に原料ガスを培養系
外に一切排出せヂ100%利用し得て安全かつ経済的で
あるのは勿論、実用上十分な生産性の得られる新規な水
素酸化細菌の大量培養法を提供することにある。
(Problems to be Solved by the Invention) The present invention has been made in view of the problems of the above-mentioned prior art, and its purpose is to be able to maintain and control the mixed gas of raw materials outside the explosion range, and to The object of the present invention is to provide a new method for mass-culture of hydrogen-oxidizing bacteria that is not only safe and economical as it can utilize 100% of the gas without discharging any gas outside the culture system, but also has sufficient productivity for practical use. .

(課題を達成するための手段〉 上記目的を達成するために、本発明の水素酸化細菌の大
量培養法にあっては、上部に空間を残して水素酸化細菌
の培養液を収容した培養槽に、基質となる水素と炭酸ガ
スを予めガスチャンバーにおいて混合し混合ガスの状態
で供給する一方、100%酸素を単独で直接培養液中に
供給する。培養液に溶解しきれずに培養槽内の空間部に
溜る全て呈質からなる未利用ガスは閉鎖循環系を介して
循環さし、培養液中に戻す。一方、@養液中の溶存M素
品をモニターしながら酸素の供給拐を制御して、培養槽
及び閉鎖循環系双方の混合ガス組成を爆発範囲外に維持
する。
(Means for Achieving the Object) In order to achieve the above object, in the method for mass culturing hydrogen oxidizing bacteria of the present invention, a culture tank containing a culture solution of hydrogen oxidizing bacteria is placed in a culture tank with a space left at the top. Hydrogen and carbon dioxide, which serve as substrates, are mixed in advance in a gas chamber and supplied in the form of a mixed gas, while 100% oxygen is supplied directly into the culture medium.It does not completely dissolve in the culture medium and fills the space inside the culture tank. The unused gas accumulated in the nutrient solution, consisting entirely of substances, is circulated through a closed circulation system and returned to the culture solution.Meanwhile, the supply and removal of oxygen is controlled while monitoring the dissolved M components in the nutrient solution. to maintain the gas mixture composition in both the culture tank and the closed circulation system outside the explosive range.

培養液への原料ガスの溶解量は分圧が高いほど大きい。The higher the partial pressure, the greater the amount of raw material gas dissolved in the culture solution.

ところが、上記のように100%酸素を単独で直接培f
fi液中に供給することにより、酸素の溶解量が大きく
なり、しかも、培養槽室間中の酸素分圧を低くすること
ができる。即ち培養槽内の水素混合ガス中の酸′lf4
濃度を爆発範囲以下に維持することができる。
However, as mentioned above, direct cultivation using 100% oxygen alone
By supplying it to the fi liquid, the amount of oxygen dissolved can be increased, and the oxygen partial pressure within the chambers of the culture tank can be lowered. That is, the acid 'lf4 in the hydrogen mixed gas in the culture tank
Concentrations can be maintained below the explosive range.

培養液中の溶存酸素量は、溶存酸素センサーを用いて直
接測定することもできるし、酸化還元電位を検出するこ
とにより知ることもできる。
The amount of dissolved oxygen in the culture solution can be directly measured using a dissolved oxygen sensor, or can be known by detecting the redox potential.

培養液への酸素供給量溶存酸素量をモニターしながら、
溶存酸素量が所定下限値以下になったら供給し、所定の
上限値以上になったら供給を停止するように制御する。
While monitoring the amount of oxygen supplied to the culture medium and the amount of dissolved oxygen,
The supply is controlled to be supplied when the amount of dissolved oxygen is below a predetermined lower limit, and to be stopped when the amount is above a predetermined upper limit.

培養槽は所謂ジャーファーメンタで、攪拌型。The culture tank is a so-called jar fermenter, and is of a stirring type.

エアリフト型等いかなるものも用いることができる。Any type, such as an air lift type, can be used.

ガスチャンバーは有水式のガスボルダ−が@適であり、
そのガス槽内に水素と炭酸ガスを所定割合で槽がほぼ最
人容森になるように充填する。このガスチャンバーは閉
鎖循環系中に介設する。
A water-filled gas boulder is suitable for the gas chamber.
The gas tank is filled with hydrogen and carbon dioxide gas at a predetermined ratio so that the tank is almost full. This gas chamber is interposed in a closed circulation system.

従って、閉鎖循環系はガスチャンバーを含み、その所要
の箇所にはポンプを設δする。
Therefore, the closed circulation system includes a gas chamber, and pumps are installed at the required locations.

これによりガスチャンバーに導入され、該ガスチャンバ
ー西で混合された水素と炭酸ガスは閉鎖循環系を介して
培?S槽内にυ(給されるが、この際ガスチャンバー内
において閉鎖循環系を循環流動する未利用ガスとも混合
され、これら全てがdB合された状態で供給されること
になる。
This introduces the hydrogen and carbon dioxide gas into the gas chamber, and the hydrogen and carbon dioxide gases mixed in the west of the gas chamber are cultured through a closed circulation system. υ( is supplied into the S tank, but at this time, it is also mixed with unused gas circulating in the closed circulation system in the gas chamber, and all of these are supplied in a dB combined state.

この閉鎖循環系は混合ガス中に含まれる酸素のJ8養液
へのとけ込みを良好にするために、その培浴梢への入口
側をtg i n中に挿入する。これによりI8養液中
の酸素濃度を高くする反面培養槽空間部の酸A分圧を多
少なりと5低くすることができる。
The inlet side of this closed circulation system to the top of the culture bath is inserted into tg i in order to improve the dissolution of oxygen contained in the mixed gas into the J8 nutrient solution. As a result, the oxygen concentration in the I8 nutrient solution can be increased, while the acid A partial pressure in the culture tank space can be lowered by 5%.

上記ガスブーヤンバーには混合ガスの組成を均一化する
ために組成均一化装置を設ける。
The gas booyan bar is provided with a composition homogenizing device to homogenize the composition of the mixed gas.

組成均−化装「lとしては随伴式1強制循環式等を用い
ることができるが、安全性を考j遭すればポンプを備え
る閉鎖循環管路からなる強制循環式のものが好適である
As the composition equalization device 1, a forced circulation type or the like can be used, but in consideration of safety, a forced circulation type consisting of a closed circulation pipe equipped with a pump is preferable.

この組成均一化装置は、混合ガス中の酸素分圧が部分的
に高くなり、爆発範囲に入るのを防止する上で非常に有
効である。
This composition homogenization device is very effective in preventing the oxygen partial pressure in the mixed gas from becoming partially high and entering the explosive range.

なお、上記ガスチャンバーは閉鎖循環系外に設け、この
閉鎖循環系とは別の系により水素・炭酸ガスの混合ガス
をJBm槽に供給するようになづことも可能であるが、
この場合には、水素・炭酸ガスの供給が培養液への酸素
のとけ込みを阻害しないように水素・炭酸)Jスを直接
培養中に供給吐す、培養液上方の空間に供給するように
する必要がある。
Note that the gas chamber may be provided outside the closed circulation system, and the mixed gas of hydrogen and carbon dioxide gas may be supplied to the JBm tank by a system separate from the closed circulation system.
In this case, in order to prevent the supply of hydrogen and carbon dioxide gas from interfering with the dissolution of oxygen into the culture solution, it is recommended to supply hydrogen and carbon dioxide gas directly into the culture and into the space above the culture solution. There is a need to.

本光明においては、多くの水素酸化細菌に使用すること
ができる。、fIAえば 11ydraoenomonas  eutropha
          八TCC17697(Alcal
igenes eutrophus)11ydroge
nomonas facilis      ATCC
11228(Peeudomonas facilis
)Pecudomonas  5accharophi
la       ATCCR946Brevtbac
tcium SP、         FERN−P2
234Hycobacterium SP、     
    FERH−P2235NOCardia Op
aca Streptomyces autorophicaH
icrococcus  denitrificans
      ATCC19367(Paracoccu
s denitrificans)培養液は通常の〜も
のでよく、アンモニウム塩あるいは硝酸塩のような窒素
源、またはリン酸イオン、カリウムイオン、マグネシウ
ムイオン、鉄イオン、マンガンイオン、硫酸イオン、カ
ルシウムイオン等の無機イオン類を含有する。また場合
によってはビタミン類、アミノ酸類、核酸類等の微量栄
養素あるいは、これらの微量栄蓬素を含む天然栄養物質
、例えば酵母エキス、麦芽エキス等を加えることにより
生育を促進することも可能である。
This method can be used for many hydrogen-oxidizing bacteria. , fIA example 11ydraenomonas eutropha
8TCC17697 (Alcal
igenes eutrophus) 11ydroge
nomonas facilis ATCC
11228 (Peudomonas facilis
) Pecudomonas 5accharophi
la ATCCR946Brevtbac
tcium SP, FERN-P2
234Hycobacterium SP,
FERH-P2235NOCardia Op
aca Streptomyces autorificaH
icrococcus denitrificans
ATCC19367 (Paracoccu
S denitrificans) The culture medium may be a normal one containing nitrogen sources such as ammonium salts or nitrates, or inorganic ions such as phosphate ions, potassium ions, magnesium ions, iron ions, manganese ions, sulfate ions, calcium ions, etc. Contains. In some cases, it is also possible to promote growth by adding micronutrients such as vitamins, amino acids, and nucleic acids, or natural nutritional substances containing these micronutrients, such as yeast extract and malt extract. .

j8養の途中で、培養液のp口は微生物の生育に伴って
低下してくるが、培養槽で0口4からp H9になるよ
うに制御する。この中和にはガス状あるいは液状アンモ
ニアを用いることがp口の調整とともに、消費された窒
素源を補うことになるので望ましい。
During the cultivation, the pH of the culture solution decreases as the microorganisms grow, but the pH is controlled in the culture tank so that the pH ranges from 4 to 9. It is desirable to use gaseous or liquid ammonia for this neutralization because it not only adjusts the p port but also compensates for the consumed nitrogen source.

上記アンモニアは直接培養槽に供給する。The above ammonia is directly supplied to the culture tank.

培養液のp口は培養槽に設置したpロセンサーにより測
定することができる。
The p port of the culture solution can be measured using a p sensor installed in the culture tank.

[実施例] アルカリグネスユートロフ7ス(Alcal igen
eseutrophus)ΔT CC17697を第1
図に示す装置を用いて以下の方法により培養した。
[Example] Alcal igen
eseutrophus) ΔT CC17697 as the first
Culture was carried out by the following method using the apparatus shown in the figure.

(NH4)2 SO23Q/# 、KH2PO40,5
Q/II 、MQSO4・7020 0.2/fJ1C
aSO4・2020 4m(1/N 、FeSO470
2020m(]/j!からなる培養液1fJを0日7に
調整して容量21の培養槽(ジャーファーメンタ)(1
)に入れた。
(NH4)2 SO23Q/# , KH2PO40,5
Q/II, MQSO4・7020 0.2/fJ1C
aSO4・2020 4m (1/N, FeSO470
2020m(]/j! of culture solution 1fJ was adjusted to 0.7 days and culture tank (jarfermenta) with a capacity of 21 (1
).

一方、有水式ガスホルダーからなる容fi 3001の
混合ガスチャンバー(2)に水素ガスと炭酸ガスを水素
ガス87%、炭酸ガス13%となるように調整して入れ
、組成均一化装置(3)を構成する循環管路(31)の
ポンプ(32)を作動させ混合ガスを上記組成均一化循
環管路(31)を介して循環させ混合ガスの組成を均一
にした。
On the other hand, hydrogen gas and carbon dioxide gas were adjusted to be 87% hydrogen gas and 13% carbon dioxide gas and put into the mixed gas chamber (2) of the FI 3001 consisting of a water-filled gas holder. ) was operated to circulate the mixed gas through the composition homogenizing circulation pipe (31) to make the composition of the mixed gas uniform.

続いて、培養液中に純酸素を入れると共に、閉鎖循環系
(4)の混合ガス循環管路(41)に設けたポンプ(4
2)を作動さじ、混合ガスWi環管路(41)を介して
培養槽(1)、混合がスチャンバ−(2)間に混合ガス
を循環させながら、1a養液中の酸素l11度を1.8
ppmに調整した後、アルカリゲネスユートロファスA
TCC17697の種培養液50ccを培養液に加えた
Next, while adding pure oxygen to the culture solution, a pump (4) installed in the mixed gas circulation pipe (41) of the closed circulation system (4) is added.
2) using an operating spoon, while circulating the mixed gas between the culture tank (1) and the mixing chamber (2) through the mixed gas Wi ring pipe (41), the oxygen l in the 1a nutrient solution was heated to 11 degrees. .8
After adjusting to ppm, Alcaligenes eutrophus A
50 cc of TCC17697 seed culture was added to the culture solution.

そして、ポンプ(32)  (42)の作動をつづけ、
K1戊均−化循環管路(31)による循環、混合ガス循
環管路(41)による循環を継続しながらJ?i養液中
の溶存酸素亀を溶存酸素センサー(5)でモニターし、
溶存酸素星が列数増殖期において1.8ppm以下にな
らないように酸素供給を制御すると共に培養液のOl−
1を0日センサー(6)でモニターしpロアを保つよう
にアンモニアの供給を制御して30vr間運転した。
Then, the pumps (32) and (42) continue to operate,
While continuing the circulation through the K1 homogenization circulation line (31) and the circulation through the mixed gas circulation line (41), the J? i Monitor dissolved oxygen in the nutrient solution with a dissolved oxygen sensor (5),
Oxygen supply is controlled so that the dissolved oxygen star does not fall below 1.8 ppm during the row number growth phase, and Ol-
1 was monitored with a sensor (6) on day 0, and the supply of ammonia was controlled to maintain the p lower value, and the operation was carried out for 30 vr.

定常状態において培f&槽及びガスチャンバーを含む閉
鎖循環爪の気相中の酸素濃度Cま水素混合ガスの爆発範
囲外である5%以下に押さえられた。
In a steady state, the oxygen concentration C in the gas phase of the closed circulation mechanism, which includes the culture tank and gas chamber, was kept below 5%, which is outside the explosive range of hydrogen mixed gas.

また運転終了時、菌量は17Q/j  (乾燥国体)で
あった。
Furthermore, at the end of the operation, the bacterial count was 17Q/j (dry national polity).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明水素酸化細菌の人出培養法に用いる装置
の概略を示す説明図、第2図は従来の方法に用いる装置
の一例を示す説明図である。 図中
FIG. 1 is an explanatory diagram showing an outline of the apparatus used in the human culture method for hydrogen-oxidizing bacteria of the present invention, and FIG. 2 is an explanatory diagram showing an example of the apparatus used in the conventional method. In the diagram

Claims (1)

【特許請求の範囲】[Claims] 上部に空間を残して水素酸化細菌の培養液を収容した培
養槽に、水素と炭酸ガスを予めガスチャンバーにおいて
混合して混合ガスの状態で供給する一方、酸素を単独で
直接培養液中に供給すると共に培養槽内の空間部に溜る
未利用ガスを閉鎖循環系を介して循環させつつ培養液中
に供給しながら水素酸化細菌の培養を行い、その際、培
養液中の溶存酸素量をモニターしながら酸素の供給量を
制御して、培養槽及び閉鎖循環系双方の混合ガス組成を
爆発範囲外に維持することを特徴とする水素酸化細菌の
大量培養法。
Hydrogen and carbon dioxide are mixed in advance in a gas chamber and supplied in the form of a mixed gas to a culture tank containing a culture solution of hydrogen-oxidizing bacteria with a space left at the top, while oxygen is supplied directly into the culture solution alone. At the same time, hydrogen-oxidizing bacteria are cultured while unused gas accumulated in the space in the culture tank is circulated through a closed circulation system and supplied into the culture solution. At this time, the amount of dissolved oxygen in the culture solution is monitored. A method for mass-culture of hydrogen-oxidizing bacteria, characterized by controlling the amount of oxygen supplied while maintaining the mixed gas composition in both the culture tank and the closed circulation system outside the explosive range.
JP1267425A 1989-10-12 1989-10-12 Mass culture method for hydrogen-oxidizing bacteria Expired - Lifetime JP2564008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267425A JP2564008B2 (en) 1989-10-12 1989-10-12 Mass culture method for hydrogen-oxidizing bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267425A JP2564008B2 (en) 1989-10-12 1989-10-12 Mass culture method for hydrogen-oxidizing bacteria

Publications (2)

Publication Number Publication Date
JPH03127983A true JPH03127983A (en) 1991-05-31
JP2564008B2 JP2564008B2 (en) 1996-12-18

Family

ID=17444671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267425A Expired - Lifetime JP2564008B2 (en) 1989-10-12 1989-10-12 Mass culture method for hydrogen-oxidizing bacteria

Country Status (1)

Country Link
JP (1) JP2564008B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052295A1 (en) * 2016-09-15 2018-03-22 Kwr Water B.V. Bioreactor for aerobic hydrogenotrophic fermentation
WO2019188727A1 (en) * 2018-03-26 2019-10-03 積水化学工業株式会社 Method for manufacturing organic substance
CN111836898A (en) * 2018-03-30 2020-10-27 英威达纺织(英国)有限公司 Method for controlling dissolved oxygen concentration in continuous aerobic fermentation
WO2024048796A1 (en) * 2022-09-02 2024-03-07 富士フイルム株式会社 Culture device and method for controlling culture device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052295A1 (en) * 2016-09-15 2018-03-22 Kwr Water B.V. Bioreactor for aerobic hydrogenotrophic fermentation
WO2019188727A1 (en) * 2018-03-26 2019-10-03 積水化学工業株式会社 Method for manufacturing organic substance
CN111836898A (en) * 2018-03-30 2020-10-27 英威达纺织(英国)有限公司 Method for controlling dissolved oxygen concentration in continuous aerobic fermentation
CN111836898B (en) * 2018-03-30 2024-02-23 英威达纺织(英国)有限公司 Method for controlling dissolved oxygen concentration in continuous aerobic fermentation
WO2024048796A1 (en) * 2022-09-02 2024-03-07 富士フイルム株式会社 Culture device and method for controlling culture device

Also Published As

Publication number Publication date
JP2564008B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
DK1419234T3 (en) Process for fermentation
US4874707A (en) Process for producing an aqueous suspension of nitrifying bacteria
Claus et al. Denitrification of nitrate and nitric acid with methanol as carbon source
Short et al. Iron respiration-driven proton translocation in aerobic bacteria
US20240067993A1 (en) Method of culture
CN103898026A (en) Culture solution of nitrosobacteria as well as preparation method and culture method thereof
JP2011177047A (en) Apparatus for culturing algae
JPH03127983A (en) Large-amount cultivation of hydrogen-oxidizing bacterium
CA2335171C (en) Method for producing high concentration carbon dioxide product
Bone The influence of canavanine, oxygen, and urea on the steady-state levels of nitrogenase in Anabaena flos-aquae
Chapman et al. Improved methods for the cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea
Enfors et al. Biodegradation of nitrilotriacetate (NTA) by bacteria—II. Cultivation of an NTA-degrading bacterium in anaerobic medium
Freter et al. Explanation for limitation of populations of Escherichia coli in broth cultures
JP2000354484A (en) Preservation of aerobic microorganism
JP2513644B2 (en) Miso manufacturing equipment
KR100499178B1 (en) Method of using oxygen to eliminate carbon dioxide poisoning in aerobic fermentation
ARMENANTE et al. Mineralization of 2-chlorophenol by P. chrysosporium using different reactor designs
MAKI Effect of dissolved oxygen concentration on the biological oxidation of sulfide and elemental sulfur by the A-type sulfurturf growing in hot spring effluents
Khanna et al. Oxygen inhibition of the photoassimilation of CO 2 in Rhodopseudomonas capsulata
Kučera et al. Function of terminal acceptors in the biosynthesis of denitrification pathway components in Paracoccus denitrificans
JPS59105895A (en) Methane fermentation apparatus adjusted with carbon dioxide
RU2026830C1 (en) Method of biological treatment of sewage containing nitrocellulose
SU1655980A1 (en) Method of producing biomass of microorganisms
JPS6463368A (en) Production of high-viscosity substance by fermentation
Dias et al. Regulation and energization of nitrate transport in a halophilic Pseudomonas stutzeri