JPH03127033A - Production of glass dispersed with fine particle of semiconductor - Google Patents

Production of glass dispersed with fine particle of semiconductor

Info

Publication number
JPH03127033A
JPH03127033A JP26644789A JP26644789A JPH03127033A JP H03127033 A JPH03127033 A JP H03127033A JP 26644789 A JP26644789 A JP 26644789A JP 26644789 A JP26644789 A JP 26644789A JP H03127033 A JPH03127033 A JP H03127033A
Authority
JP
Japan
Prior art keywords
semiconductor
sol
glass
gel
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26644789A
Other languages
Japanese (ja)
Other versions
JP2803229B2 (en
Inventor
Noboru Toge
峠 登
Tsutomu Minami
努 南
Ichiro Tanahashi
棚橋 一郎
Tsuneo Mitsuyu
常男 三露
Atsushi Nishino
敦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1266447A priority Critical patent/JP2803229B2/en
Publication of JPH03127033A publication Critical patent/JPH03127033A/en
Application granted granted Critical
Publication of JP2803229B2 publication Critical patent/JP2803229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To uniformly disperse the fine particles of a semiconductor in glass by gelatinizing a sol which is formed by previously adding a soluble cation source and sulfur compd. in the dispersion medium of the sol and heat treating the gel, thereby dispersing the fine particles of the semiconductor. CONSTITUTION:The sol which is previously added with the water- or alcohol- soluble cation source and sulfur compd. is gelatinized and the resulted gel is heat treated to disperse the fine particles of the semiconductor, by which the glass dispersed with the fine particles of the semiconductor is produced. The sol previously added with the cation source and sulfur source is gelatinized and the resulted gel is heat treated, by which the compsn. is uniformized and the glass dispersed with the fine particles of the semiconductor having the form of a thin film, bulk, fiber, etc., is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非線形光学効果を利用した光デバイスの基礎を
なす半導体微粒子分散ガラスの製造方法に関するもので
あも 従来の技術 従来の技術としては例えば日本セラミックス塩&  1
989年年次大会講演要旨集336ページに記載されて
いるようなゾル−ゲル法によるCdS含有シリカガラス
の作成法があも この方法はシリコンのアルコキシド(Si(OCaHs
)4)を加水分解した喪 メタノールに溶解させたCd
 (CHsCOO)12HaOを加えて撹拌すも その
微水エタノ−/k  アンモニア水の混合溶液を加えて
撹拌を続εす、この溶液をシャーレに移行しゲル板を作
威すも さらにこのゲル板を硫化水素(Has)ガスを
含んだ雰囲気中に置き、硫化反応によってCdS含有ガ
ラスを作成するものであも また J、Appl、Phys、63(3)、9571
988に開示されているようなCdS微粒子ドープ薄膜
ガラスがあもこの薄膜ガラスはターゲットにコーニング
社製7095ガラスと、CdSとを用い高周波マグネト
ロンスパッタリング法により、7095ガラス中にCd
Sを2〜4重量%分散させたものであも 発明が解決しようとする課題 上記方法の半導体微粒子分散ガラスの製造方法でζ上 
次のような2つの課題があっ1゜イ)ゾル−ゲル法の場
合: ゲル体を硫化水素雰囲気中に置き硫化反応によっ
てCdS含有ガラスを作成するたべ ゲル体内部にまで
均一にCdSを分散させることが困難であも 口)スパッタリング法を用いた場合: 装置が高価であ
るとともにガラス薄膜の形成に時間かかり、(特にスパ
ッタリング速度の小さな5insガラスの形成の場合)
厚膜を形成するのが困難であん本発明Cヨ  半導体微
粒子を均質に分散したガラスの製造方法を提供すること
を目的とすも課題を解決するための手段 上記課題を解決するために本発明(上 ゾル−ゲル法に
より半導体微粒子分散ガラスを作成する過程において、
あらかじめ水もしくはアルコール可溶性のカチオン源と
イオウ化合物とを加えておいたゾルをゲル化させ、得ら
れたゲルを熱処理することにより半導体微粒子を分散さ
せることにより半導体微粒子分散ガラスを製造すも 作用 本発明の半導体微粒子分散ガラスの製造方法では ゾル
−ゲル法により半導体微粒子分散ガラスを作成する過程
において、あらかじめカチオン源とイオウ源を加えてお
いたゾルをゲル化させ、得られたゲルを熱処理すること
により組成に均一化が計られるたへ 薄膜 パル久 フ
ァイバー状等の形態を有する半導体微粒子分散ガラスを
得ることができも 実施例 本発明は ゾル中にカチオン源とイオウ化合物とを加え
るた敗 ゾルの分散媒に可溶なカチオン源とイオウ化合
物力丈 より生成した塩がより均一に分散できるため好
ましへ ゾルの分散媒としてε上 水もしくはメタノ−
/k  エタノール等のアルコールが専ら用いられも カチオン源としてはカドミウム 亜鰍鰍  セレン、モ
リブデン等が挙げられも その中でもカドミウム 亜鍜
 鉛化合物(友 イオウ化合物と均一に反応して半導体
を形成し易いため好ましへカドミウム化合物としては 
例えばCdC1a、 CdCO5,Cd(NOs)*、
  Cd(CHsCOO)*、  Cd(HCOO)a
啄  亜鉛化合物として(よ 例えばZnC1*、  
Zn(CHCOO)at  * タ鉛化合物としテg!
  例えばPbC1,、PbC0*、  Pb(NOs
)*、  Pb(CHsCOO)a等が挙げられもざら
にイオウ化合物として(友 例えばNa5a  (NH
a)*a  8C(NHa)を等カ挙if ラレ4以下
本発明の実施例について説明すも 実施例1 第1図に示す工程を経て、Cd8ドープ5ideガラス
を試作し九 第1表に示した原料を用いてマトリックスガラスとなる
ゾルを作製り、  5iftガラスに対してドープする
CdSが重量比で3%になるように 以下のCd源およ
びイオウ化合物(S源)をゾルに添加したすなわちメタ
ノールに溶解させたCd(HCOO)*をゾルに撹拌し
ながら添加し その後メタノールに溶解させた5C(N
Ha)*を続いて添加り、  80tで加熱してゾルを
ゲル化させ1.  さらにゲル体(バルク状)に残存す
る有機物を燃焼するた&  350t:で加熱しf; 
 CdSの結晶粒径を制御するため500tで2時間熱
処理しtら この時得られたCdSの粒径は50〜80Aであり、微
粒子のCdSが5ins中に分散していることがわかん
このガラスの光学的特性を第2図に示もまたCd源にメ
タノールに溶解させたCd(HCOO)*の代わり4Q
  CdC1a、  CdCO5,Cd(NOs)a及
びCd(CHsCOO)2を、モしてイオウ化合物のメ
タノールに溶解させた5C(NHs)*の代わりにNa
5H及び(NH4)*Sを用いて転 第2図とほぼ同様
な特性が得られ?。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing semiconductor fine particle dispersed glass, which forms the basis of an optical device that utilizes nonlinear optical effects. salt & 1
The method for producing CdS-containing silica glass by the sol-gel method, as described on page 336 of the abstracts of the 989 Annual Conference, is based on silicon alkoxide (Si(OCaHs).
)4) Cd dissolved in methanol
Add (CHsCOO)12HaO and stir. Add the mixed solution of slightly aqueous ethanol/k ammonia water and continue stirring. Transfer this solution to a petri dish and make a gel plate. It can also be placed in an atmosphere containing hydrogen sulfide (Has) gas to create a CdS-containing glass by a sulfidation reaction.J, Appl, Phys, 63(3), 9571
CdS fine particle doped thin film glass as disclosed in No. 988 is manufactured by using Corning's 7095 glass as a target and CdS by high frequency magnetron sputtering method.
Problems to be Solved by the Invention The above method for manufacturing semiconductor fine particle dispersed glass can be used to disperse S in an amount of 2 to 4% by weight.
There are the following two issues: 1) In the case of the sol-gel method: Place the gel body in a hydrogen sulfide atmosphere to create a CdS-containing glass through a sulfurization reaction. Distribute CdS uniformly inside the gel body. When using the sputtering method: The equipment is expensive and it takes time to form a glass thin film (especially when forming glass with a low sputtering speed of 5 inches).
An object of the present invention is to provide a method for manufacturing glass in which semiconductor fine particles are homogeneously dispersed.Means for Solving the ProblemsIn order to solve the above problems, the present invention (Top: In the process of creating semiconductor fine particle dispersed glass using the sol-gel method,
A sol to which a water or alcohol-soluble cation source and a sulfur compound have been added in advance is gelled, and the resulting gel is heat-treated to disperse semiconductor particles, thereby producing a semiconductor particle-dispersed glass. In the manufacturing method of semiconductor fine particle dispersed glass, in the process of creating semiconductor fine particle dispersed glass by the sol-gel method, a sol to which a cation source and a sulfur source have been added in advance is gelled, and the resulting gel is heat-treated. Although the composition can be made uniform, it is possible to obtain a glass in which semiconductor fine particles are dispersed in the form of a thin film, fiber or the like. A cation source and a sulfur compound that are soluble in the solvent are preferable because the salt produced can be dispersed more uniformly.Epsilon water or methanol is used as the dispersion medium for the sol.
Alcohols such as ethanol are used exclusively, but cation sources include cadmium, selenium, molybdenum, etc. Among them, cadmium, zinc, and lead compounds (because they easily react uniformly with sulfur compounds to form semiconductors) The preferred cadmium compound is
For example, CdC1a, CdCO5, Cd(NOs)*,
Cd(CHsCOO)*, Cd(HCOO)a
As a zinc compound (for example, ZnC1*,
Zn(CHCOO)at* As a lead compound!
For example, PbC1,, PbC0*, Pb(NOs
)*, Pb(CHsCOO)a, etc. are listed as sulfur compounds (for example, Na5a (NH
a) *a 8C (NHa), etc. If Rare 4 Below, we will explain the embodiments of the present invention.Example 1 A Cd8-doped 5ide glass was prototyped through the steps shown in Figure 1, and the results are shown in Table 1. The following Cd source and sulfur compound (S source) were added to the sol so that the CdS to be doped with the 5ift glass was 3% by weight, i.e., methanol. Cd(HCOO)* dissolved in methanol was added to the sol with stirring, and then 5C(N
Ha)* was then added and heated at 80 t to gel the sol.1. Furthermore, it was heated at 350 tons to burn off the organic matter remaining in the gel body (bulk).
In order to control the crystal grain size of CdS, heat treatment was performed at 500 t for 2 hours. The grain size of the CdS obtained at this time was 50 to 80 A, indicating that fine particles of CdS were dispersed within 5 ins. The optical properties are shown in Figure 2. 4Q was also used instead of Cd(HCOO)* dissolved in methanol as a Cd source.
CdC1a, CdCO5, Cd(NOs)a and Cd(CHsCOO)2 were mixed with Na instead of 5C(NHs)*, which was dissolved in methanol as a sulfur compound.
By using 5H and (NH4)*S, almost the same characteristics as shown in Figure 2 can be obtained. .

さらに同様な原職 方法を用いて直径0 、5 m&長
さ20cmのファイバー状CdSドープ5ideガラス
も試作することができtら 以下余白 第1表 実施例2 実施例1と同様な過程を経てZnSドープSiO2ガラ
スを試作しtも 第1表に示した原料を用いてゾルを作製り、  SiO
2ガラスに対してドープするZnSが重量比で3%にな
るように 以下のZn源およびイオウ化合物をゾルに添
加した すなわちメタノールに溶解させたZn(CH3
Coo )2をゾルに撹拌しながら添加し その後メタ
ノールに溶解させたSC(NHe )aを続いて添加し
80℃で加熱してゾルをゲル化させた さらにゲル体(
バルク状)に残存する有機物を燃焼するたべ350℃で
加熱しf;  ZnSの結晶粒径を制御するため500
℃で2時間加熱しtも この時得られたZnSの粒径は60〜80Aであつた。
Furthermore, using the same method, we were able to fabricate a fibrous CdS-doped 5ide glass with a diameter of 0.5 m and a length of 20 cm. We made a prototype of SiO2 glass and made a sol using the raw materials shown in Table 1.
The following Zn sources and sulfur compounds were added to the sol so that the ZnS doped with 2 glasses was 3% by weight. That is, the Zn (CH3
Coo )2 was added to the sol with stirring, and then SC(NHe)a dissolved in methanol was added and heated at 80°C to gel the sol.
The organic matter remaining in the bulk (bulk) was heated at 350°C to burn;
After heating for 2 hours at .degree. C., the particle size of the ZnS obtained at this time was 60 to 80 A.

またZn源にZnCII!を、イオウ化合物にNa5H
,(NH4)23を用いても実施例2と同様なZnSド
ープガラスを得ることができた 実施例3 実施例1と同様な過程を経てPbSドープ5i(hガラ
スを試作しtも 第1表に示した原料を用いてゾルを作製シSiO2ガラ
スに対して、 ドープするPbSが重量比で3%になる
ように 以下のpb源およびS源をゾルに添加した す
なわちメタノールに溶解させたPb(CHsCOO)2
をゾルに撹拌しながら添加し その後メタノールに溶解
させた5C(NH2)2を続いて添加し80℃で加熱し
てゾルをゲル化させた さらにゲル体(バルク状)に残
存する有機物を燃焼するため350℃で加熱しt:、 
 pbsの結晶粒径を制御するため500℃で2時間加
熱し丸 この時得られたPbSの粒径は60〜100Aでありt
も またpb源にPbC1a、  PbC0a及びPb(N
Os )aを、モしてイオウ化合物にNa5H及び(N
H4)2Sを用いても実施例3と同様なPbSドープガ
ラスを得ることができた実施例4 実施例1と同様な過程を経てシリコンのアルコキシド以
外に はう素のアルコキシドあるいはチタンのアルコキ
シドを添加LACdSドープ5iO2−BaO3あるい
はCdSドープSi0g−TiO2ガラスを試作したと
こム 実施例1とほぼ同様な光学的特性を示す半導体ド
ープガラスを得ることができた実施例5 実施例1に示したゾルを用いて、厚み0 、5 mmの
石英ガラス基板上表i;  CdSが重量比で5%含大
した2、5μm厚の5iChガラス薄膜をブライピング
法により形成し 光双安定素子を作製し1゜この素子の
石英ガラス基板側から波長530nmのレザ光(N2光
励起色素レーザ光)をスポット径5μmで入射し九 次に入射光の強度と出射光の強度の関係を室温(25℃
〉にて測定したとこム 第3図に示したような双安定特
性を示した 実施例6 実施例2に示したゾルを用いて、厚み0 、5 mmの
石英ガラス基板上表!L:、  ZnSが重量比で5%
含大した2、8μm厚の5insガラス薄膜をブライピ
ング法により形成し 光双安定素子を作製し1゜この素
子の石英ガラス基板側から波長530nmのレーザ光(
N2光励起色素レーザ光)をスポット径5μmで入射し
tも 次に入射光の強度と出射光の強度の関係を室温(25℃
)にて測定したとこム 第3図とほぼ同様な双安定特性
を示し1゜ また本発明の方法によればアルコールに可溶な物質、例
えば(NH4)MO34を用いてMo5a分散ガラスを
試作することができも 発明の効果 本発明Q あらかじめゾルの分散媒に可溶性のカチオン
源とイオウ化合物とを加えたゾルをゲル化させ、得られ
たゲルを熱処理する半導体微粒子分散ガラスの製造方法
によれば 薄膜 パル久ファイバー状等の形態を有する
均質な半導体微粒子分散ガラスを得ることが可能式 そ
の応用として光双安定素子等を作製することができも
Also, ZnCII as a Zn source! , Na5H to the sulfur compound
, (NH4)23, a ZnS-doped glass similar to that of Example 2 could be obtained.Example 3 A PbS-doped 5i (h glass) was prototyped through the same process as in Example 1, and t was also shown in Table 1. A sol was prepared using the raw materials shown in .The following Pb sources and S sources were added to the SiO2 glass so that the PbS to be doped was 3% by weight.In other words, Pb dissolved in methanol ( CHsCOO)2
was added to the sol with stirring. Then, 5C(NH2)2 dissolved in methanol was added and heated at 80℃ to gel the sol. Furthermore, the organic matter remaining in the gel body (bulk) was burned. Heat at 350℃ for
In order to control the crystal grain size of PBS, it was heated at 500°C for 2 hours, and the grain size of PbS obtained at this time was 60 to 100A, and
Also, PbC1a, PbC0a and Pb(N
Os)a is converted into a sulfur compound by adding Na5H and (N
H4) Example 4 A PbS-doped glass similar to Example 3 could be obtained using 2S. Through the same process as Example 1, boron alkoxide or titanium alkoxide was added in addition to silicon alkoxide. Experimental production of LACdS-doped 5iO2-BaO3 or CdS-doped Si0g-TiO2 glass Example 5 A semiconductor-doped glass with almost the same optical properties as Example 1 was obtained Using the sol shown in Example 1 Then, on a quartz glass substrate with a thickness of 0.5 mm, a 5iCh glass thin film with a thickness of 2.5 μm containing 5% CdS by weight was formed by the briping method, and an optical bistable device was fabricated. Laser light (N2 light excited dye laser light) with a wavelength of 530 nm is incident from the quartz glass substrate side with a spot diameter of 5 μm.
Example 6 Examples 6 Example 6 shown in Example 2 shown in Fig. 3 measured in Fig. 3 L:, ZnS is 5% by weight
A 5-ins glass thin film with a thickness of 2.8 μm was formed using a briping method to fabricate an optically bistable device, and a laser beam with a wavelength of 530 nm (
N2 photoexcited dye laser light) was incident with a spot diameter of 5 μm, and then the relationship between the intensity of the incident light and the intensity of the output light was measured at room temperature (25°C).
), it showed almost the same bistable characteristics as shown in Figure 3.According to the method of the present invention, Mo5a dispersion glass can be prototyped using an alcohol-soluble substance, such as (NH4)MO34. Effects of the Invention Invention Q According to the method for producing semiconductor fine particle dispersed glass, the sol is gelled by adding a soluble cation source and a sulfur compound to the dispersion medium of the sol in advance, and the resulting gel is heat-treated. It is possible to obtain a homogeneous semiconductor particle-dispersed glass having a thin film or fiber-like morphology.As an application of this method, it is possible to produce optical bistable devices, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のゾル−ゲル法による半導体ドープガラ
スの製造行程を示す楓 第2図は半導体ドープガラスの
光学的特性を示す飄 第3図は光双安定特性を示す図で
あも
Figure 1 shows the manufacturing process of semiconductor-doped glass using the sol-gel method of the present invention. Figure 2 shows the optical properties of semiconductor-doped glass. Figure 3 shows the optical bistability characteristics.

Claims (3)

【特許請求の範囲】[Claims] (1)ゾル−ゲル法により半導体微粒子分散ガラスを作
成する過程において、あらかじめゾルの分散媒に可溶性
のカチオン源とイオウ化合物とを加えておいたゾルをゲ
ル化させ、得られたゲルを熱処理することにより半導体
微粒子を分散させることを特徴とする半導体微粒子分散
ガラスの製造方法。
(1) In the process of creating semiconductor fine particle dispersed glass using the sol-gel method, a sol is gelled by adding a soluble cation source and a sulfur compound to the dispersion medium of the sol in advance, and the resulting gel is heat-treated. A method for producing semiconductor fine particle dispersed glass, characterized by dispersing semiconductor fine particles.
(2)カチオン源がカドミウム化合物、亜鉛化合物ある
いは鉛化合物の内の何れか一種であることを特徴とする
請求項1記載の半導体微粒子分散ガラスの製造方法。
(2) The method for producing semiconductor fine particle dispersed glass according to claim 1, wherein the cation source is one of a cadmium compound, a zinc compound, or a lead compound.
(3)半導体微粒子分散ガラスが、バルク状、膜状、あ
るいはファイバー状であることを特徴とする請求項1も
しくは2何れかに記載の半導体微粒子分散ガラスの製造
方法。
(3) The method for producing a semiconductor particle-dispersed glass according to claim 1 or 2, wherein the semiconductor particle-dispersed glass is in the form of a bulk, a film, or a fiber.
JP1266447A 1989-10-13 1989-10-13 Method for producing semiconductor fine particle dispersed glass Expired - Fee Related JP2803229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1266447A JP2803229B2 (en) 1989-10-13 1989-10-13 Method for producing semiconductor fine particle dispersed glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1266447A JP2803229B2 (en) 1989-10-13 1989-10-13 Method for producing semiconductor fine particle dispersed glass

Publications (2)

Publication Number Publication Date
JPH03127033A true JPH03127033A (en) 1991-05-30
JP2803229B2 JP2803229B2 (en) 1998-09-24

Family

ID=17431063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1266447A Expired - Fee Related JP2803229B2 (en) 1989-10-13 1989-10-13 Method for producing semiconductor fine particle dispersed glass

Country Status (1)

Country Link
JP (1) JP2803229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103055A (en) * 2007-10-23 2009-05-14 Toyota Motor Corp Control device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109236A (en) * 1989-09-22 1991-05-09 Hoya Corp Production of glass dispersed with superfine particle of semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109236A (en) * 1989-09-22 1991-05-09 Hoya Corp Production of glass dispersed with superfine particle of semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103055A (en) * 2007-10-23 2009-05-14 Toyota Motor Corp Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2803229B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
Beecroft et al. Nanocomposite materials for optical applications
CN100396826C (en) Process for preparing patterning titanium dioxide inverse opal photonic crystal
CN1045383A (en) Small semiconductor particle in the rigid matrix
Kim et al. Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots
Pérez-Cuapio et al. Enhanced green photoluminescence and dispersion of ZnO quantum dots shelled by a silica shell
JPH03127033A (en) Production of glass dispersed with fine particle of semiconductor
JP2691276B2 (en) Method for manufacturing semiconductor-doped matrix
JPH03164726A (en) Production of fine semiconductor particles dispersed glass
JPS6054928A (en) Production of quartz glass
Chen et al. Preparation and optical properties of Sb2S3 microcrystallite doped silica glasses by the sol-gel process
JPH04276724A (en) Production of semiconductor particle dispersed glass
JPH02271933A (en) Production of nonlinear optical material
JPH03164721A (en) Nonlinear optical material and production thereof
JPH04274223A (en) Manufacture of semiconductor fine grain dispersed glass
JPH03199137A (en) Production of amorphous body containing dispersed fine particles of semiconductor
JPH04270131A (en) Production of semiconductor fine particle-dispersed glass
CN114059169B (en) Ferroelectric deep ultraviolet transparent sulfate crystal and optical device
JPH03141134A (en) Production of silica glass with semiconductor fine particle dispersed
JPH04274224A (en) Manufacture of semiconductor fine grain dispersed glass
JPH04274222A (en) Nonlinear optical material and its manufacture
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPH05270842A (en) Glass containing gold particulate and production thereof
JPH02230223A (en) Production of nonlinear optical medium
Shrotriya et al. GROWTH OF ZNSE THIN FILMS BY SOL-GEL METHOD
JPS6330335A (en) Production of quartz glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees