JPH03126850A - Improvement of aluminum parts strength and scroll member using same - Google Patents

Improvement of aluminum parts strength and scroll member using same

Info

Publication number
JPH03126850A
JPH03126850A JP26386289A JP26386289A JPH03126850A JP H03126850 A JPH03126850 A JP H03126850A JP 26386289 A JP26386289 A JP 26386289A JP 26386289 A JP26386289 A JP 26386289A JP H03126850 A JPH03126850 A JP H03126850A
Authority
JP
Japan
Prior art keywords
treatment
scroll member
scroll
corner
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26386289A
Other languages
Japanese (ja)
Inventor
Masayuki Hayakawa
正幸 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26386289A priority Critical patent/JPH03126850A/en
Publication of JPH03126850A publication Critical patent/JPH03126850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To refine locally a metallic structure and to improve mechanical properties by subjecting the required part of aluminum parts to glazing treatment by means of a high density energy source and then to solid solution heat and ageing treatment. CONSTITUTION:For example, a scroll member used for a scroll-type fluid machine is rotated at a fix speed by using a positioner, and the distance between the position of a focus of a laser condenser lens and the corner 3 at the base of a lap 2 is held constant. Subsequently, after local melting, rapid cooling is performed by means of thermal diffusion cooling toward the base-material side, by which laser glazing treatment is completed. The thickness of a refined layer of the resulting metallic structure is about 0.8mm, and Vickers hardness is higher by 20-30 than that of the base material. Successively, artificial ageing treatment is performed at 170 deg.C for 4hr, and then, the corner 3 is finish-worked so that 1.0-0.8mm curvature is reached.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスクロール型流体機械用アルξニウム製スクロ
ール部材等のアルミニウム部品のn1tliil上方法
及びこの方法によるスクロール部材に関す(従来の技術
及びその課題) スクロール型流体機械に用いられるスクロール部材は第
3図(a)、(b)に示すように円盤状の端板■上にう
ず巻状のラップ2を立設してなる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing aluminum parts such as an aluminum scroll member for scroll-type fluid machinery, and a scroll member produced by this method. Problem) A scroll member used in a scroll-type fluid machine has a spiral wrap 2 erected on a disc-shaped end plate 2, as shown in FIGS. 3(a) and 3(b).

従来、このスクロール部材はアル珈ニウム合金の重力鋳
造法又は高圧凝固鋳造法によって鋳造されていた。この
スクロール部材の端板lとラップ2の根元の角隅部3に
は応力が集中するので、この角隅部3の疲労強度を向上
するため、角隅部3の曲率を大きくしたり、角隅部3に
ショットピーニングやハンマーピーニングにより圧縮残
留応力を付与する等の方策が採られていた。
Conventionally, this scroll member has been cast by gravity casting or high pressure solidification casting of an aluminum alloy. Stress is concentrated at the corner 3 at the base of the end plate l and wrap 2 of this scroll member, so in order to improve the fatigue strength of the corner 3, the curvature of the corner 3 may be increased or Measures such as applying compressive residual stress to the corner portion 3 by shot peening or hammer peening have been taken.

しかし、角隅部3の曲率を大きくすると、スクロール型
流体機械のバランスが崩れたり、このスクロールと噛合
する他方のスクロール部材との間に干渉等が生ずるので
、曲率の大きさは自ずと制約される。
However, if the curvature of the corner portion 3 is increased, the balance of the scroll-type fluid machine will be lost, and interference will occur between this scroll and the other scroll member that meshes with it, so the size of the curvature is naturally limited. .

また、ショットピーニングやハンマーピーニングはアル
ミニウム合金に対しては疲労弛度の改善効果が小さく、
また、ピーニング効果層の層厚が薄いため切削等の後加
工を要する場合には有効ではない、しかも、スクロール
部材の角隅部3のような狭隘部にショットピーニングや
ハンマーピーニングを施すのは物理的に困5mである等
の問題があった。
Additionally, shot peening and hammer peening have little effect on improving fatigue sag for aluminum alloys.
In addition, since the peening effect layer is thin, it is not effective when post-processing such as cutting is required, and it is difficult to apply shot peening or hammer peening to narrow areas such as the corners 3 of scroll members. There were problems such as the distance being 5m.

(課題を解決するための手段) 本発明は上記課題を解決するために発明されたものであ
って、第1の発明の要旨とするところは、アルミニウム
部品の所要部位を高密度エネルギー源によりグレージン
グ処理した後、固溶化・時効処理することを特徴とする
アルミニウム部品の強度向上方法にある。
(Means for Solving the Problems) The present invention was invented to solve the above problems, and the gist of the first invention is to glaze required parts of aluminum parts with a high-density energy source. The present invention provides a method for improving the strength of aluminum parts, which comprises performing solid solution treatment and aging treatment after treatment.

第2の発明の要旨とするところは、端板上にうず巻状の
ランプを立設してなるスクロール型流体機械的用アルミ
ニウム製スクロール部材において、上記端板と上記ラッ
プの根元との角隅部を高密度エネルギー源によりグレー
ジング処理した後、固溶化・時効処理したことを特徴と
するスクロール部材にある。
The gist of the second invention is to provide a scroll-type aluminum scroll member for fluid mechanical use having a spiral ramp erected on an end plate, in which a corner corner between the end plate and the base of the wrap is provided. The scroll member is characterized in that part of the scroll member is subjected to glazing treatment using a high-density energy source, and then subjected to solid solution treatment and aging treatment.

(作用) 第1の発明においては、アルミニウム部品の所要部位を
高密度エネルギー源によりグレージング処理をすること
によって金属組織が局所的に微細化され、その引張強さ
、伸び、衝撃値等の機械的性質が向上するとともに疲労
強度が向上する。グレージング処理の後、固溶化・時効
処理することによって、グレージング処理による引張残
留応力が圧縮残留応力となって、更に疲労強度が向上す
る。
(Function) In the first invention, the metal structure is locally refined by glazing the required parts of the aluminum part using a high-density energy source, and mechanical properties such as tensile strength, elongation, impact value, etc. As properties improve, fatigue strength also improves. By performing solution treatment and aging treatment after the glazing treatment, the tensile residual stress caused by the glazing treatment becomes compressive residual stress, and the fatigue strength is further improved.

(実施例) 先ず、鋳物用AL−3i 合金、即ち、重量%でSi:
8.7%、Cu:1.7%、Mg:0.4%、Ti:0
.08%、Sb二0.1% 残部不可避的不純物を含む
ALからなるアルミ合金を用いて高圧凝固鋳造法により
第3図に示すスクロール部材を鋳造する。
(Example) First, the AL-3i alloy for casting, that is, Si in weight%:
8.7%, Cu: 1.7%, Mg: 0.4%, Ti: 0
.. The scroll member shown in FIG. 3 is cast by a high-pressure solidification casting method using an aluminum alloy consisting of AL containing 0.08% Sb2, 0.1% Sb2, and the remainder unavoidable impurities.

次いで、このスクロール部材の端板1とラップ2の根元
の角隅部3に沿ってCO□レーザービームを照射し、こ
の角隅部3を連続的に局所加熱することにより溶解させ
る。
Next, a CO□ laser beam is irradiated along the corner portion 3 at the base of the end plate 1 and the wrap 2 of the scroll member, and the corner portion 3 is continuously locally heated and melted.

この際、スクロール部材をポジショナ−を用いて一定速
度で回転させ、レーザー集光レンズの焦点位置と角隅部
3との距離を一定に維持する。COLレーザービーム照
射条件は出力;0.3KW、スポット径;3.Ow、ビ
ームの傾斜角度:20度、ビームの移動速度:6111
分である。
At this time, the scroll member is rotated at a constant speed using a positioner, and the distance between the focal position of the laser condensing lens and the corner portion 3 is maintained constant. COL laser beam irradiation conditions are output: 0.3KW, spot diameter: 3. Ow, beam inclination angle: 20 degrees, beam movement speed: 6111
It's a minute.

局所溶解後、母材側への熱拡散冷却によって急冷するこ
とによりレーザーグレージング処理が完了する。
After local melting, the laser glazing process is completed by rapidly cooling the base material by thermal diffusion cooling.

このレーザーグレージング処理による金属Mg織の微細
化層の層厚は約0.8+u+ 、ビンカーズ硬度は母材
より20ないし30高い、このレーザーグレージング処
理前後の金属Mg織が第1図(a)、(b)に示され、
処理後の金属Mg織(a)は処理前のそれ(b)に比し
極めて微細化しており、もはやDAS(i(金属組織の
微細化を測る尺度として用いられ、金属組織の樹枝状晶
の2次アーム間距離(単位μ園で示される)は正確な測
定が不可能な程小さい。
The layer thickness of the fine layer of the metal Mg woven fabric by this laser glazing treatment is about 0.8+u+, and the Binkers hardness is 20 to 30 higher than that of the base material. b)
The metal Mg texture (a) after treatment is extremely finer than that before treatment (b), and is no longer used as a scale for measuring the fineness of the metal structure (DAS), which is used as a measure to measure the fineness of the metal structure. The distance between the secondary arms (expressed in units of micrometers) is so small that accurate measurement is impossible.

レザービームの照射後、540°Cの温度下で4時間の
固溶化処理をし、続いて、170℃の温度下で4時間の
人工時効処理を施す。しかる後、角隅部3を1.0から
0.8mmの曲率になるよう仕上加工を施す。
After laser beam irradiation, a solid solution treatment is performed at a temperature of 540°C for 4 hours, followed by an artificial aging treatment at a temperature of 170°C for 4 hours. Thereafter, the corner portion 3 is finished to have a curvature of 1.0 to 0.8 mm.

上記各処理終了後の角隅部3から試験片を切り出し、こ
れについてシエンク式曲げ疲労試験を実施した結果が第
2図に示されている。
A test piece was cut out from the corner portion 3 after each of the above treatments, and a Sienck bending fatigue test was performed on the test piece. The results are shown in FIG.

この第2図から明らかなように、グレージング処理のみ
を施したもの疲労強度は母材に比し1.2倍程度に向上
する。これは金属組織が局所的に微細化されるとともに
引張残留応力が生ずるためと考えられる。グレージング
処理後、固溶化・時効処理を施すことにより引張残留応
力は圧縮残留応力に変化し、疲労強度は母材に比し、1
.5〜2.0倍程度に向上している。
As is clear from FIG. 2, the fatigue strength of the specimen subjected to only glazing treatment is improved by about 1.2 times compared to that of the base material. This is thought to be because the metal structure is locally refined and tensile residual stress is generated. After glazing treatment, tensile residual stress changes to compressive residual stress by solution treatment and aging treatment, and the fatigue strength is 1% compared to the base material.
.. The improvement is about 5 to 2.0 times.

上記実施例においては、COl レーザービームを照射
したが、他のレーザ光、電子ビーム等の高密度エネルギ
ー源を用いて局所的に加熱溶融することができる。また
、金属Mg織の微細化層の厚さを任意に変えることによ
って、微細化処理後に表面を切削しても効果が出るよう
にすることができる。
In the above embodiments, a COl laser beam was used, but other high-density energy sources such as laser light and electron beams can be used to locally heat and melt the material. Further, by arbitrarily changing the thickness of the fine layer of the metal Mg woven fabric, it is possible to obtain an effect even if the surface is cut after the fine treatment.

(発明の効果) 第1の発明においては、アルミニウム部品の所要部位を
高密度エネルギー源によりグレージング処理した後、固
溶化・時効処理することにより所要部位の疲労強度を大
巾に向上できる。
(Effects of the Invention) In the first invention, the fatigue strength of the required portions can be greatly improved by subjecting the required portions of the aluminum component to glazing treatment using a high-density energy source and then subjecting them to solution treatment and aging treatment.

第2の発明においては、スクロール部材の端板とラップ
の根元との角隅部を高密度エネルギー源によりグレージ
ング処理した後、固溶化・時効処理したため、角隅部の
疲労強度が向上する。従って、ラップの高さを高くして
スクロール型流体機械の能力を増大させることができる
。また、狭隘な角隅部の疲労強度を四重を大きくするこ
となく、容易、かつ、低コストで向上することができる
In the second invention, the corner portion between the end plate of the scroll member and the base of the wrap is subjected to glazing treatment using a high-density energy source and then subjected to solution treatment and aging treatment, so that the fatigue strength of the corner portion is improved. Therefore, the height of the wrap can be increased to increase the capacity of the scroll-type fluid machine. Further, the fatigue strength of a narrow corner can be easily improved at low cost without increasing the quadrupling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)はグレージング処理前後の金属組
織を示す写真、第2図は本発明のl実施例における疲労
強度及び残留応力の変化を示す線図である。第3図はス
クロール部材の1例を示し、第3図(a)は正面図、第
3図(b)は断面図である。 (d) 地1図 Cb) (d) 第2図 第3図 (b)
FIGS. 1(a) and 1(b) are photographs showing the metal structure before and after glazing treatment, and FIG. 2 is a diagram showing changes in fatigue strength and residual stress in Example 1 of the present invention. FIG. 3 shows an example of a scroll member, with FIG. 3(a) being a front view and FIG. 3(b) being a sectional view. (d) Figure 1 Cb) (d) Figure 2 Figure 3 (b)

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム部品の所要部位を高密度エネルギー
源によりグレージング処理した後、固溶化・時効処理す
ることを特徴とするアルミニウム部品の強度向上方法。
(1) A method for improving the strength of aluminum parts, which comprises glazing a desired part of the aluminum part using a high-density energy source, and then subjecting it to solution treatment and aging treatment.
(2)端板上にうず巻状のラップを立設してなるスクロ
ール型流体機械的用アルミニウム製スクロール部材にお
いて、上記端板と上記ラップの根元との角隅部を高密度
エネルギー源によりグレージング処理した後、固溶化・
時効処理したことを特徴とするスクロール部材。
(2) In a scroll-type aluminum scroll member for hydromechanical use in which a spiral wrap is erected on an end plate, the corner between the end plate and the base of the wrap is glazed with a high-density energy source. After treatment, solid solution
A scroll member characterized by being subjected to an aging treatment.
JP26386289A 1989-10-12 1989-10-12 Improvement of aluminum parts strength and scroll member using same Pending JPH03126850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26386289A JPH03126850A (en) 1989-10-12 1989-10-12 Improvement of aluminum parts strength and scroll member using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26386289A JPH03126850A (en) 1989-10-12 1989-10-12 Improvement of aluminum parts strength and scroll member using same

Publications (1)

Publication Number Publication Date
JPH03126850A true JPH03126850A (en) 1991-05-30

Family

ID=17395275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26386289A Pending JPH03126850A (en) 1989-10-12 1989-10-12 Improvement of aluminum parts strength and scroll member using same

Country Status (1)

Country Link
JP (1) JPH03126850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239054A1 (en) * 2001-03-07 2002-09-11 Bayerische Motoren Werke Aktiengesellschaft Heat treatment of hypereutectic Al-Si alloys
US10766120B2 (en) 2014-10-16 2020-09-08 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Method and device for manufacturing compressor scrolls, compressor scroll, and scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239054A1 (en) * 2001-03-07 2002-09-11 Bayerische Motoren Werke Aktiengesellschaft Heat treatment of hypereutectic Al-Si alloys
US10766120B2 (en) 2014-10-16 2020-09-08 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Method and device for manufacturing compressor scrolls, compressor scroll, and scroll compressor

Similar Documents

Publication Publication Date Title
Oliveira et al. Welding and joining of NiTi shape memory alloys: a review
Dhakal et al. Laser shock peening as post welding treatment technique
Prabhakaran et al. Compound technology of manufacturing and multiple laser peening on microstructure and fatigue life of dual-phase spring steel
Richter et al. Laser cladding of the titanium alloy Ti6242 to restore damaged blades
US5032468A (en) Composite aluminum plate and target for physical coating processes produced therefrom and methods for producing same
Edwardson et al. Geometrical influences on multi-pass laser forming
Yan et al. Effects of heat treatment on metal-ceramic combination of selective-laser-melted cobalt-chromium alloy
Zhao et al. Microstructure and mechanical properties of laser additive repaired Ti17 titanium alloy
Choi et al. Microstructure evolution in Zr under equal channel angular pressing
Mostaan et al. Nd: YAG laser micro-welding of ultra-thin FeCo–V magnetic alloy: optimization of weld strength
Orishich et al. Effect of heat treatment on mechanical and microstructural properties of the welded joint of the Al–Mg–Li alloy obtained by laser welding
Sobiyi et al. Microstructural investigation of Ti coating on Ti6Al4V by laser cladding
JPS61286079A (en) Method of joining constitutional member consisting of super alloy dispersed and cured through pressure welding method
Gu et al. Evaluating creep deformation in controlled microstructures of Sn-3Ag-0.5 Cu solder
Fan et al. Microstructures and mechanical properties of Invar/MnCu functionally graded material fabricated by directed energy deposition
Praveenkumar et al. Surface oxidation and subsurface deformation in a laser-peened Ti-6Al-4V
Ma et al. Explosive welding method for manufacturing ITER-grade 316L (N)/CuCrZr hollow structural member
JPH03126850A (en) Improvement of aluminum parts strength and scroll member using same
JP5088876B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
Shojaei Zoeram et al. Effect of welding speed on mechanical and fracture behavior of nitinol laser-joints
US20090159161A1 (en) METHOD FOR FABRICATING A THICK Ti64 ALLOY ARTICLE TO HAVE A HIGHER SURFACE YIELD AND TENSILE STRENGTHS AND A LOWER CENTERLINE YIELD AND TENSILE STRENGTHS
Hatamleh et al. Finite element study of laser peening on selective laser melted A357 aluminum alloy during tension test
Smith Characterization of linear friction welded in-service Inconel 718 superalloy
Dutta et al. Magnetic-force-assisted straightening of bent mild steel strip by laser irradiation
Zhuang et al. Microstructure and mechanical properties of laser additive repaired Ti17 titanium alloy