JPH0312657B2 - - Google Patents

Info

Publication number
JPH0312657B2
JPH0312657B2 JP59013698A JP1369884A JPH0312657B2 JP H0312657 B2 JPH0312657 B2 JP H0312657B2 JP 59013698 A JP59013698 A JP 59013698A JP 1369884 A JP1369884 A JP 1369884A JP H0312657 B2 JPH0312657 B2 JP H0312657B2
Authority
JP
Japan
Prior art keywords
diaphragm
pressure
fuel
chamber
diaphragm chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59013698A
Other languages
Japanese (ja)
Other versions
JPS60159357A (en
Inventor
Masataka Nakano
Shinya Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP1369884A priority Critical patent/JPS60159357A/en
Publication of JPS60159357A publication Critical patent/JPS60159357A/en
Publication of JPH0312657B2 publication Critical patent/JPH0312657B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明はLPGエンジンの吸気系に燃料を供給
する燃料供給装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an improvement in a fuel supply device that supplies fuel to an intake system of an LPG engine.

(従来技術) 従来、LPGエンジン用燃料供給装置の2段減
圧式ベーパライザは混合器のスロツトルバルブ上
流に位置するベンチユリ部の負圧をベーパライザ
の2次室に導き、その負圧が2次室のダイアフラ
ムに加わることによる弁開閉レバーの動きによつ
てベーパライザの1次室から2次室への燃料通路
を開いて燃料タンクからの燃料を気化・減圧させ
て混合器に供給している。
(Prior art) Conventionally, a two-stage decompression type vaporizer for a fuel supply system for an LPG engine guides the negative pressure in the vent lily section located upstream of the throttle valve of the mixer to the secondary chamber of the vaporizer. The movement of the valve opening/closing lever applied to the diaphragm opens the fuel passage from the primary chamber to the secondary chamber of the vaporizer, vaporizes and depressurizes the fuel from the fuel tank, and supplies the fuel to the mixer.

従つて、ベンチユリ部に負荷が発生しないと
き、レバーはスプリングの付勢力で弁を閉じて1
次室から2次室への燃料通路を閉じ、かつ、混合
器への燃料供給装量を制御する燃料流量制御部は
固定式のジエツト又はスクリユウで最適諸元を決
めて、2次室と混合器を連通する燃料供給通路に
開口面積をセツトしているが、この場合、吸気の
径、即ち、ベンチユリ径を大きくしてエンジンの
体積効率を高め、エンジンの出力を向上させよう
としても、ベンチユリ部に生ずる負圧が小さくな
ることから、低吸入空気量時或は全域において十
分な燃料供給量が得られなくなる。
Therefore, when no load is applied to the bench lily, the lever closes the valve with the biasing force of the spring.
The fuel flow control unit, which closes the fuel passage from the next chamber to the secondary chamber and controls the amount of fuel supplied to the mixer, uses a fixed jet or screw to determine the optimum specifications and mixes the fuel with the secondary chamber. In this case, even if an attempt is made to increase the volumetric efficiency of the engine and improve the engine output by increasing the diameter of the intake air, that is, the diameter of the vent lily, Since the negative pressure generated in the fuel tank becomes small, a sufficient amount of fuel cannot be supplied when the amount of intake air is low or in the entire region.

そこで、この燃料供給量不足を補うには2次減
圧室のダイアフラム或は燃料供給通路の径を非常
に大きくしなければならないが、現実にはそのよ
うなことはできず、このことは特開昭52−100012
号のように電気的にアクチユエータで燃料を制御
しても同じことで、又、特開昭57−122151号は高
吸入空気量時にベーパライザの2次室から正圧の
燃料を混合器に供給して、この問題を解決してい
るが、この場合、1次室から混合器に直接燃料を
供給することによる空燃比変動等の問題、即ち、
ベーパライザを1段減圧室として1次室から燃料
を取出すと、第1図に実線で示す2次室の特性に
比較して1次室では燃料が気化することによる蒸
発潜熱の影響で第1図に点線で示すように温度変
化が大きいため、燃料比重量変化が大きくなり、
これは燃料流量制御を通路の面積或は開閉時間で
制御する場合において供給燃料重量の変化が大き
くなつて空燃比が大幅に変化するという欠点があ
つた。
Therefore, in order to compensate for this lack of fuel supply, the diameter of the diaphragm of the secondary decompression chamber or the fuel supply passage must be made extremely large, but in reality this is not possible, and this is disclosed in Japanese Patent Application Publication No. Showa 52-100012
The same thing happens even if the fuel is electrically controlled by an actuator as in No. 57-122151, and JP-A-57-122151 supplies positive pressure fuel from the secondary chamber of the vaporizer to the mixer when the amount of intake air is high. However, in this case, problems such as air-fuel ratio fluctuations caused by supplying fuel directly from the primary chamber to the mixer, i.e.,
When a vaporizer is used as a first-stage decompression chamber and fuel is taken out from the primary chamber, the characteristics in the primary chamber are as shown in Figure 1 due to the influence of the latent heat of vaporization due to the vaporization of the fuel, compared to the characteristics of the secondary chamber shown by the solid line in Figure 1. As shown by the dotted line, the temperature change is large, so the fuel specific weight change is large,
This has the disadvantage that when the fuel flow rate is controlled by the area of the passage or the opening/closing time, the weight of supplied fuel increases and the air-fuel ratio changes significantly.

(発明の目的) 本発明は2段減圧式ベーパライザの2次減圧室
の機構を1次減圧室とほぼ同様の機構として、2
次減圧室圧力を1次減圧室圧力よ低い正圧値と
し、しかも、2次減圧室圧力をエンジン負荷の変
化に対応して変化させた状態で、燃料量制御部の
開口面積をアクチユエータで制御するLPGエン
ジンの燃料供給装置を提供することによつて、空
燃比を安定させた状態でエンジン負荷の上昇に従
つて十分な燃料量を確保し、エンジンの体積効率
を高めて出力を向上させるとともに、出力向上に
よつて最終減速比を小さくしエンジンの使用回転
数を下げて、燃費の向上を図る他、電気アクチユ
エータ駆動による燃料低流量域の制御分解能を向
上させて空燃比の制御精度を良くし、又、過渡運
転時の燃料供給の追従性を向上させて、燃費と運
転性の向上を図ることにある。
(Objective of the Invention) The present invention provides a two-stage decompression type vaporizer with a secondary decompression chamber having almost the same mechanism as the primary decompression chamber.
The opening area of the fuel amount control section is controlled by the actuator while the secondary pressure reducing chamber pressure is set to a positive pressure value lower than the primary pressure reducing chamber pressure, and the secondary pressure reducing chamber pressure is changed in response to changes in engine load. By providing a fuel supply system for an LPG engine that maintains a stable air-fuel ratio, a sufficient amount of fuel can be secured as the engine load increases, increasing the volumetric efficiency of the engine and increasing output. In addition to improving fuel efficiency by reducing the final reduction ratio and lowering engine speed by increasing output, the electric actuator drive improves control resolution in the low fuel flow range to improve air-fuel ratio control accuracy. Furthermore, it is an object of the present invention to improve the followability of fuel supply during transient operation, thereby improving fuel efficiency and drivability.

(発明の構成) 第2図は本発明の構成を明示する全体構成図で
あつて、本発明はLPGを気化・減圧するベーパ
ライザ1の1次側ダイアフラム室2と燃料タンタ
3との間に、1次側ダイアフラム室2内の圧力が
少なくとも1次側ダイアフラム室2のダイアフラ
ム4を押圧する調圧スプリング5で定まる1次側
設定圧力より大きくなつたときに閉じる1次側減
圧弁6を設け、LPGエンジン7の吸気系8に接
続された前記ベーパライザ1の2次側ダイアフラ
ム室9と前記1次側ダイアフラム室2との間に、
エンジン負荷の増大に従つて2次側ダイアフラム
室9のダイアフラム10押圧力を大きくするとと
もに2次側ダイアフラム室9内の圧力が2次側ダ
イアフラム室9のダイヤフラム10押圧力で定ま
る前記1次側設定圧力より低い正圧の2次側設定
圧力より大きくなつたときに閉じる2次側減圧弁
12を設け、かつ、LPGエンジン7の吸気系8
と2次側ダイアフラム室9との間に燃料供給通路
13に、アクチユエータ14駆動の開閉弁15と
前記燃料供給通路13の通路面積を変化させるア
クチユエータ16駆動の燃料量制御弁17を設け
たLPGエンジンの燃料供給装置にある。
(Structure of the Invention) FIG. 2 is an overall configuration diagram clearly showing the structure of the present invention. A primary side pressure reducing valve 6 is provided which closes when the pressure in the primary side diaphragm chamber 2 becomes higher than the primary side set pressure determined by the pressure regulating spring 5 pressing the diaphragm 4 of the primary side diaphragm chamber 2, Between the secondary diaphragm chamber 9 of the vaporizer 1 connected to the intake system 8 of the LPG engine 7 and the primary diaphragm chamber 2,
As the engine load increases, the pressing force of the diaphragm 10 in the secondary diaphragm chamber 9 is increased, and the pressure in the secondary diaphragm chamber 9 is determined by the pressing force of the diaphragm 10 in the secondary diaphragm chamber 9. The intake system 8 of the LPG engine 7 is provided with a secondary side pressure reducing valve 12 that closes when the positive pressure becomes higher than the secondary side set pressure, which is lower than the pressure.
An LPG engine is provided with an on-off valve 15 driven by an actuator 14 and a fuel amount control valve 17 driven by an actuator 16 that changes the passage area of the fuel supply passage 13 in the fuel supply passage 13 between the diaphragm chamber 9 and the secondary diaphragm chamber 9. in the fuel supply system.

(実施例の構成) 次に、本発明の第1実施例の構成を第3図〜第
6図によつて説明する。
(Configuration of Embodiment) Next, the configuration of the first embodiment of the present invention will be described with reference to FIGS. 3 to 6.

LPGエンジンの吸気系に燃料タンク21から
の燃料を気化・減圧して供給するベーパライザ2
2の1次側ダイアフラム室23と燃料タンク21
に接続されたベーパライザ22の燃料入口との間
には、1次側ダイアフラム室23内の圧力が1次
側ダイアフラム室のダイヤフラム24を押圧する
調圧スプリング25の付勢力で定まる1次側設定
圧力より大きくなつたときに閉じる1次側減圧弁
26、この場合、一端部をダイヤフラム24と一
体のフツク27に係合してのレバー28の回転に
よつてレバー28の他端部に取付けた弁体29を
本体ケース30に形成した弁孔31の弁シート3
2に圧接して弁孔31を閉じる1次側減圧弁26
が取付けられ、かつ、ダイアフラム24は本体ケ
ース30に取付けられたセツトスクリユウ33よ
る荷重調整可能な調圧スプリング25によつて弁
開の1次側ダイアフラム室23方向に付勢されて
いる。
Vaporizer 2 that vaporizes and depressurizes the fuel from the fuel tank 21 and supplies it to the intake system of the LPG engine.
2 primary side diaphragm chamber 23 and fuel tank 21
Between the fuel inlet of the vaporizer 22 connected to A primary side pressure reducing valve 26 that closes when the pressure increases, in this case a valve that is attached to the other end of the lever 28 by engaging the hook 27 integral with the diaphragm 24 at one end and rotating the lever 28. Valve seat 3 of valve hole 31 with body 29 formed in main body case 30
2 and closes the valve hole 31.
is attached, and the diaphragm 24 is urged toward the primary diaphragm chamber 23 when the valve is open by a pressure regulating spring 25 whose load can be adjusted by a set screw 33 attached to the main body case 30.

この1次側ダイアフラム室23と、LPGエン
ジンの吸気系に接続された前記ベーパライザ22
の2次側ダイアフラム室34との間には、負圧作
動のダイアフラム装置35のダイアフラム36と
2次側ダイアフラム室34のダイアフラム37と
の間に取付けられた押圧スプリング38と、ダイ
アフラム装置35内にセツトスクリユウ39によ
る押圧力調節可能に取付けられてダイアフラム3
6を押圧する調圧スプリング40との付勢力で定
まる前記1次側設定圧力より低い正圧の2次側設
定圧力より大きくなつたときに閉じる2次側減圧
弁41と、この場合、一端部をロツド42を介し
てダイアフラム37に自在結合させたレバー43
の回転によつてレバー43の他端部に取付けた弁
体44を本体ケース30に形成した弁孔45の弁
シート46に圧接して弁孔45を閉じる2次側減
圧弁41が取付けられている。
This primary side diaphragm chamber 23 and the vaporizer 22 connected to the intake system of the LPG engine
A pressing spring 38 is installed between the diaphragm 36 of the negative pressure operated diaphragm device 35 and the diaphragm 37 of the secondary diaphragm chamber 34, and The diaphragm 3 is attached so that the pressing force can be adjusted by the set screw 39.
A secondary side pressure reducing valve 41 that closes when the positive pressure becomes higher than the secondary side set pressure which is lower than the primary side set pressure determined by the biasing force of the pressure regulating spring 40 that presses the pressure regulating spring 40; A lever 43 is freely connected to the diaphragm 37 via a rod 42.
A secondary side pressure reducing valve 41 is attached to which the valve element 44 attached to the other end of the lever 43 is pressed into contact with the valve seat 46 of the valve hole 45 formed in the main body case 30, thereby closing the valve hole 45. There is.

この2次側ダイアフラム室34とLPGエンジ
ンの吸気系との間の燃料供給通路47には、アク
チユエータ駆動を開閉弁48、この場合、電磁ソ
レノイド49の励磁によるスプリング50の付勢
力に抗しての弁体51の移動によつて本体ケース
30に形成した弁孔52を開く開閉弁48と、燃
料供給通路47の通路面積を変化させるアクチユ
エータ駆動の燃料量制御弁53、この場合、ステ
ツプモータ54の正・逆回転による図示省略、例
えばナツト・スクリユウの回転一直線変換機構を
介してのニードル55の往復動によつて混合器5
6のベンチユリ部57に形成した弁孔58の流路
面積、即ち、燃料供給通路47の有効断面積を変
化させる燃料量制御弁53とが取付けられてい
る。
A fuel supply passage 47 between this secondary side diaphragm chamber 34 and the intake system of the LPG engine has an actuator-driven on-off valve 48, in this case an actuator-driven on-off valve 48, which resists the biasing force of a spring 50 due to the excitation of an electromagnetic solenoid 49. An on-off valve 48 that opens a valve hole 52 formed in the main body case 30 by movement of the valve body 51, and an actuator-driven fuel amount control valve 53 that changes the passage area of the fuel supply passage 47, in this case a step motor 54. The mixer 5 is rotated in forward and reverse directions (not shown), for example, by reciprocating movement of the needle 55 via a nut-screw rotation-linear conversion mechanism.
A fuel amount control valve 53 that changes the flow path area of a valve hole 58 formed in the bench lily portion 57 of No. 6, that is, the effective cross-sectional area of the fuel supply passage 47 is attached.

このように形成された燃料供給装置59の開閉
弁48の電磁ソレノイド49と、燃料量制御弁5
3のステツプモータ54とは、燃料供給通路47
に取付けられて燃料温度に対応した出力を発生さ
せる燃料温度センサ60と、吸気管61に取付け
られて吸入空気量に対応した出力を発生させる吸
入空気量センサ62と、吸気管61に取付けられ
て吸入空気温度に対応した出力を発生させる吸入
空気温度センサ63と、吸気管61のスロツトル
バルブ64開度に対応した出力を発生させるスロ
ツトルセンサ65と、吸気管61の負圧に対応し
た出力を発生させる負圧センサ66と、エンジン
始動時に出力を発生させるスタータ67と、デイ
ストリビユータ68に取付けられてエンジンの回
転数に対応した出力を発生させる回転数センサ6
9とのそれぞれからの入力信号に対応してエンジ
ンに対する燃料供給を最適制御する電気制御装置
70からの出力によつて制御され、ベーパライザ
22のダイアフラム装置35には吸気管61負圧
が導入されている。
The electromagnetic solenoid 49 of the on-off valve 48 of the fuel supply device 59 formed in this way and the fuel amount control valve 5
The step motor 54 of No. 3 is the fuel supply passage 47.
A fuel temperature sensor 60 is attached to the intake pipe 61 and generates an output corresponding to the fuel temperature; an intake air amount sensor 62 is attached to the intake pipe 61 and generates an output corresponding to the intake air amount; An intake air temperature sensor 63 that generates an output corresponding to the intake air temperature, a throttle sensor 65 that generates an output that corresponds to the opening degree of the throttle valve 64 of the intake pipe 61, and an output that corresponds to the negative pressure of the intake pipe 61. a negative pressure sensor 66 that generates an output, a starter 67 that generates an output when starting the engine, and a rotational speed sensor 6 that is attached to the distributor 68 and generates an output that corresponds to the engine rotational speed.
The negative pressure of the intake pipe 61 is introduced into the diaphragm device 35 of the vaporizer 22 under the control of the output from the electric control device 70, which optimally controls the fuel supply to the engine in response to the input signals from the vaporizer 22 and the vaporizer 22. There is.

次に、第5図は電気制御装置70からの電気回
路図であつて、記憶部71のプログラムに従つて
制御されるCPU72には、スタータ67とイグ
ニツシヨンスイツチ73、回転数センサ69から
の信号が入力インターフエイス74を介して入力
される他、吸入空気量センサ62と負圧センサ6
6と吸入空気温度センサ63と燃料温度センサ6
0とスロツトルセンサ65からの信号が入力イン
ターフエイス75とA/Dコンバータ76を介し
て入力され、前記開閉弁48の電磁ソレノイド4
9と燃料量制御弁53のステツプモータ54には
出力インターフエイス76とそれぞれの駆動回路
77,78を介してCPU72からの出力が供給
される。
Next, FIG. 5 is an electric circuit diagram from the electric control device 70, and the CPU 72, which is controlled according to the program in the storage section 71, has a starter 67, an ignition switch 73, and a rotation speed sensor 69. In addition to inputting signals via the input interface 74, the intake air amount sensor 62 and the negative pressure sensor 6
6, intake air temperature sensor 63, and fuel temperature sensor 6
0 and the signals from the throttle sensor 65 are inputted via the input interface 75 and the A/D converter 76, and the signals from the electromagnetic solenoid 4 of the on-off valve 48 are input.
9 and the step motor 54 of the fuel amount control valve 53 are supplied with output from the CPU 72 via an output interface 76 and respective drive circuits 77 and 78.

(実施例の作用) 次に、本実施例の作用を第6図のフローチヤー
トによつて説明する。
(Operation of the embodiment) Next, the operation of the embodiment will be explained with reference to the flowchart of FIG.

エンジン始動前のイグニツシヨンスイツチ73
オン状態において、ステツプ101で燃料量制御弁
53のニードル55は予め設定した開口面積の初
期設定位置にセツトされる他、開閉弁48は閉状
態に保持され、この状態でCPU72にはイグニ
ツシヨンスイツチ73、スタータ67、各センサ
60,63,65,66,69からエンジンの停
止及び運転状態に対応した信号が入力され、ステ
ツプ102でエンジンが始動状態かが判定され、始
動状態であればステツプ103でエンジンの始動の
ための燃料量制御弁53のニードル55の目標位
置がCPUで算出されるとともにエンジンは最適
条件で始動制御され、ステツプ102で始動状態で
なければ、ステツプ104でエンジン運転状態かが
判定され、停止状態であればステツプ101に戻り、
運転状態であればステツプ105で燃料量制御弁5
3のニードル55の目標位置がCPU72で算出
されるとともに、エンジンはその運転状態に対応
して最適制御され、ステツプ106ではエンジン減
速状態かが判定され、減速状態であればステツプ
107で減速状態に対応した燃料量制御弁53のニ
ードル55の目標位置がCPU72で算出される
とともに、エンジンはその減速状態に対応して最
適制御される。
Ignition switch 73 before starting the engine
In the on state, in step 101, the needle 55 of the fuel amount control valve 53 is set to the initial setting position of the preset opening area, and the on-off valve 48 is held in the closed state. Signals corresponding to the stop and operating states of the engine are input from the switch 73, starter 67, and sensors 60, 63, 65, 66, and 69, and it is determined in step 102 whether the engine is in the starting state. At step 103, the target position of the needle 55 of the fuel quantity control valve 53 for starting the engine is calculated by the CPU, and the engine is controlled to start under optimal conditions.If the engine is not in the starting state at step 102, the engine operating state is changed at step 104. If it is stopped, the process returns to step 101.
If it is in operation, the fuel amount control valve 5 is turned off in step 105.
The target position of the needle 55 of No. 3 is calculated by the CPU 72, and the engine is optimally controlled according to its operating state. In step 106, it is determined whether the engine is decelerating, and if it is, the step
At 107, the target position of the needle 55 of the fuel amount control valve 53 corresponding to the deceleration state is calculated by the CPU 72, and the engine is optimally controlled in accordance with the deceleration state.

この燃料量制御弁53による空燃比制御におい
て、ベーパライザ22から正圧で燃料を混合器5
6に供給することができるため、混合器56の吸
気部径を大きくしても十分に燃料を供給すること
ができ、その結果、エンジンの体積効率を高めて
出力を向上させることができるとともに、出力の
向上で減速比を小さくしてエンジンの使用回転域
を下げ、これによつて燃費の向上をも図ることが
できる。
In the air-fuel ratio control by the fuel amount control valve 53, fuel is supplied from the vaporizer 22 to the mixer 5 under positive pressure.
6, it is possible to supply sufficient fuel even if the diameter of the intake part of the mixer 56 is increased, and as a result, the volumetric efficiency of the engine can be increased and the output can be improved. By increasing the output, it is possible to reduce the reduction ratio and lower the operating speed range of the engine, thereby improving fuel efficiency.

即ち、1次側ダイアフラム室23圧力よりも低
い正圧に2次側ダイアフラム室34圧力を制御す
る効果は次のとおりである。
That is, the effect of controlling the pressure in the secondary diaphragm chamber 34 to a positive pressure lower than the pressure in the primary diaphragm chamber 23 is as follows.

燃料タンク21内燃料圧力は燃料成分、温度に
よつて必然的に変化し、ベーパライザ22の調圧
機構から1次側ダイアフラム室23圧力も変化す
るが、2段減圧して2次側ダイアフラム室34を
正圧とした状態で燃料タンク21内圧力が変化し
た場合、1次側ダイアフラム室23圧力の変化率
よりも2次側ダイアフラム室34圧力の変化率を
小さくできることである。
The fuel pressure in the fuel tank 21 inevitably changes depending on the fuel components and temperature, and the pressure in the primary diaphragm chamber 23 also changes due to the pressure regulating mechanism of the vaporizer 22, but the pressure in the secondary diaphragm chamber 34 is reduced by two steps. When the internal pressure of the fuel tank 21 changes while the pressure is set to positive pressure, the rate of change in the pressure in the secondary diaphragm chamber 34 can be made smaller than the rate of change in the pressure in the primary diaphragm chamber 23.

これは燃料タンク21の圧力変化をΔP、1次
側ダイアフラム室23の圧力変化をΔP1、2次側
ダイアフラム室34の圧力をP2としたとき、1
次側ダイアフラム室23の圧力変化率は第7図に
点線で示すように、 ΔP1∞K1×ΔP… (1) ここで、K1はベーパライザ22の設計諸元に
よつて定まる値でK1<1の関係にある。
This is 1 when the pressure change in the fuel tank 21 is ΔP, the pressure change in the primary diaphragm chamber 23 is ΔP1, and the pressure in the secondary diaphragm chamber 34 is P2.
The rate of pressure change in the next diaphragm chamber 23 is as shown by the dotted line in FIG. In a relationship.

更に、2次側ダイアフラム室34の圧力変化率
は第7図に実線で示すように、 ΔP2∞K2×ΔP1… (2) ここでK2<1 以上の(1)(2)式が調圧機構から成立し、これによ
つて燃料タンク21内圧力が変化してもベーパラ
イザ22から混合器56への燃料供給圧力が安定
し、燃料流量の制御精度を向上させることができ
る。
Furthermore, the rate of pressure change in the secondary diaphragm chamber 34 is as shown by the solid line in Figure 7, ΔP2∞K2×ΔP1... (2) where K2<1 Equations (1) and (2) above are the pressure regulating mechanism. As a result, even if the internal pressure of the fuel tank 21 changes, the fuel supply pressure from the vaporizer 22 to the mixer 56 is stabilized, and the control accuracy of the fuel flow rate can be improved.

ベーパライザ22は1次側ダイアフラム室23
で減圧・気化した燃料を2次側ダイアフラム室3
4で更に減圧し、このときの圧力は1次側ダイア
フラム室23の燃料が2次側減圧弁41を押す力
と、2次側ダイアフラム室34の圧力が2次側ダ
イアフラム室37に加わつてロツド42を介して
2次側減圧弁41を閉じさせる方向に作用する力
と、押圧スプリング38が2次側ダイアフラム室
37を押す力との釣合によつて決まる正圧で、こ
の押圧スプリング38の付勢力が強い程、2次側
ダイアフラム室34の圧力が高くなる。
The vaporizer 22 has a primary side diaphragm chamber 23
The depressurized and vaporized fuel is transferred to the secondary diaphragm chamber 3.
4, the pressure is further reduced by the force of the fuel in the primary diaphragm chamber 23 pushing the secondary pressure reducing valve 41, and the pressure in the secondary diaphragm chamber 34 applied to the secondary diaphragm chamber 37, resulting in the pressure being reduced by the rod. The pressure spring 38 is activated by a positive pressure determined by the balance between the force acting in the direction of closing the secondary side pressure reducing valve 41 via the pressure spring 42 and the force of the pressure spring 38 pushing the secondary side diaphragm chamber 37. The stronger the biasing force, the higher the pressure in the secondary diaphragm chamber 34.

一方、2次側ダイアフラム室34の圧力制御用
ダイアフラム装置35に導入される吸気管61か
らの吸気負圧が調圧スプリング40の付勢力以上
になると、ダイアフラム36は調圧スプリング4
0の付勢力に抗して第4図の右方向に移動して押
圧スプリング38の撓量を小さくするとともに荷
重が小さくなるため2次側ダイアフラム室34の
圧力は低くなる。
On the other hand, when the negative intake pressure from the intake pipe 61 introduced into the pressure control diaphragm device 35 of the secondary diaphragm chamber 34 exceeds the biasing force of the pressure regulating spring 40, the diaphragm 36
The pressure spring 38 moves to the right in FIG. 4 against the urging force of 0 to reduce the amount of deflection of the pressing spring 38, and the load becomes smaller, so the pressure in the secondary diaphragm chamber 34 becomes lower.

その結果、ベーパライザ22はエンジンが軽負
荷のとき、燃料供給圧力が低く、高負荷のとき高
くなつて次の効果を得ることができる。
As a result, the fuel supply pressure of the vaporizer 22 is low when the engine is under a light load, and becomes high when the engine is under a high load, thereby achieving the following effects.

(1) ベーパライザ22からの燃料供給圧力は最大
要求燃料量を供給し得る圧力で決められ、か
つ、ステツピングモータ54の単位ストローク
当たりの空燃比変化量は第8図に示すように燃
料供給圧力が低い程、小さくなる。
(1) The fuel supply pressure from the vaporizer 22 is determined by the pressure that can supply the maximum required amount of fuel, and the amount of change in air-fuel ratio per unit stroke of the stepping motor 54 is determined by the fuel supply pressure as shown in FIG. The lower the value, the smaller the value.

これは燃料量制御弁53のニードル55によ
つて変化する弁孔58の開口面積をA、ニード
ル55の前後圧力をΔPとすると燃料流量Gfは Gf∞A×√ になることから、ΔPが小さくなれば、ステツ
ピングモータ54単位ストローク当たりの面積
変化量に対する燃料流量変化が小さくなるため
で、このことは空燃比の精密な制御が要求され
る軽負荷域の空燃比制御分解能が向上して軽負
荷域におけるエンジン運転性能を向上させるこ
とができるとともに、燃費特性を向上させかつ
排気ガスレベルを低減することができる。
This is because if the opening area of the valve hole 58 that changes with the needle 55 of the fuel amount control valve 53 is A, and the pressure before and after the needle 55 is ΔP, the fuel flow rate Gf becomes Gf∞A×√, so ΔP is small. This is because the change in fuel flow rate with respect to the area change per unit stroke of the stepping motor 54 becomes smaller. Engine operating performance in a load range can be improved, fuel efficiency characteristics can be improved, and exhaust gas levels can be reduced.

(2) 負荷急変時は燃料量制御弁53前後の差圧が
第9図に示すようにベーパライザ22にて増幅
されるため、前記(1)で示した式 Gf∞A×√ から、要求される燃料増加量に対して、弁孔5
8開口面積の変化量、即ち、ステツピングモー
タ54のストローク量は小さくすることがで
き、このことは燃料制御系の応答性を向上させ
ることになつて、過渡運転域におけるエンジン
の運転特性を著しく向上させることができる。
(2) When the load suddenly changes, the pressure difference before and after the fuel quantity control valve 53 is amplified by the vaporizer 22 as shown in Fig. 9, so from the formula Gf∞A×√ shown in (1) above, the required Valve hole 5
The amount of change in the area of the 8 openings, that is, the amount of stroke of the stepping motor 54 can be reduced, which improves the responsiveness of the fuel control system and significantly improves the operating characteristics of the engine in the transient operating range. can be improved.

次に、第10図、第11図は本発明の第2実施
例であつて、この場合は、ベーパライザ80を構
成する2次側ダイアフラム室81のダイアフラム
82押圧用調圧スプリング83の付勢力調節用と
して前記第1実施例のダイアフラム装置35に代
えて電磁石装置、例えば電磁ソレノイド84を用
いるとともに、該電磁ソレノイド84を吸気負圧
作動の負圧スイツチ85でオン・オフ切換えする
ことによつて、2次側ダイアフラム室81圧力を
吸気負圧によつて第11図のように変化させた他
は、構成、作用、効果とも前記第1実施例とほぼ
同様である。
Next, FIGS. 10 and 11 show a second embodiment of the present invention, in which the biasing force of a pressure regulating spring 83 for pressing a diaphragm 82 in a secondary diaphragm chamber 81 constituting a vaporizer 80 is adjusted. By using an electromagnetic device, for example, an electromagnetic solenoid 84, in place of the diaphragm device 35 of the first embodiment, and by switching the electromagnetic solenoid 84 on and off with a negative pressure switch 85 operated by an intake negative pressure, The configuration, operation, and effects are substantially the same as in the first embodiment, except that the pressure in the secondary diaphragm chamber 81 is changed as shown in FIG. 11 by the intake negative pressure.

次に第13図は本発明の第3実施例であつて、
この場合は、ベーパライザ90を構成する2次側
ダイアフラム室91のダイアフラム92押圧用調
圧スプリング93の付勢力調節用として前記第1
実施例のダイアフラム装置35に代えてステツピ
ングモータ94を用いるとともに、該ステツピン
グモータ94を吸気負圧に比例した出力を発生さ
せる図示省略負圧センサからの出力に基づいて作
動させるようにした他は、構成、作用、効果とも
前記第1実施例とほぼ同様である。
Next, FIG. 13 shows a third embodiment of the present invention, in which
In this case, the first diaphragm chamber 91 of the vaporizer 90 is used for adjusting the biasing force of the pressure regulating spring 93 for pressing the diaphragm 92 of the secondary diaphragm chamber 91.
A stepping motor 94 is used in place of the diaphragm device 35 of the embodiment, and the stepping motor 94 is operated based on the output from a negative pressure sensor (not shown) that generates an output proportional to the intake negative pressure. The configuration, operation, and effects are almost the same as those of the first embodiment.

(発明の効果) 本発明は2段減圧式ベーパライザの2次減圧室
の機構を1次減圧室とほぼ同様の機構として、2
次減圧室圧力を1次減圧室圧力より低い正圧値と
し、しかも、2次減圧室圧力をエンジン負荷の変
化に対応、例えば吸気負圧にほぼ反比例して変化
させた状態で、燃料制御部の開口面積をアクチユ
エータで制御することによつて、空燃比を安定さ
せた状態でエンジン負荷の上昇に従つて十分な燃
料量を確保し、エンジンの体積効率を高めて出力
を向上させるとともに、出力向上によつて最終減
速比を小さくしエンジンの使用回転数を下げて燃
費の向上を計る他、電気アクチユエータ駆動によ
る燃料低流量域の制御分解能を向上させて空燃比
の制御精度を良くし、又、過渡運転時の燃料供給
の追従性を向上させて、燃費と運転特性の向上を
図ることができる効果がある。
(Effects of the Invention) The present invention provides a two-stage decompression type vaporizer in which the mechanism of the secondary decompression chamber is almost the same as that of the primary decompression chamber.
The fuel control part By controlling the opening area of the engine with an actuator, it is possible to secure a sufficient amount of fuel as the engine load increases while keeping the air-fuel ratio stable, increasing the volumetric efficiency of the engine and increasing output. This improvement not only reduces the final reduction ratio and lowers the engine speed used to improve fuel efficiency, but also improves the control resolution in the low fuel flow range by driving the electric actuator to improve the control accuracy of the air-fuel ratio. This has the effect of improving the followability of fuel supply during transient operation, thereby improving fuel efficiency and driving characteristics.

即ち、本発明は、ベーパライザの2次室圧力を
正圧にし、この正圧のLPGを混合器のベンチユ
リ部に形成された弁孔に供給していることから、
混合器の吸気口を大きくしてエンジン出力を大幅
に増大することができ、しかも、全運転域でエン
ジン負圧に応じて正圧のベーパライザ2次室圧力
を制御するダイアフラム機構を備えた状態で、燃
料通路面積をアクチユエータ駆動の燃料量制御弁
で変化させているため、エンジン負圧によりベー
パライザ2次室の正圧力が変化して自動的に燃料
量の制御ができている状態でアクチユエータが駆
動されることになつて、アクチユエータの動く巾
を小さくでき、その結果、アクチユエータ駆動に
よる燃料量の制御精度と応答度を大幅に向上させ
ることができる効果がある。
That is, in the present invention, the pressure in the secondary chamber of the vaporizer is made positive, and LPG at this positive pressure is supplied to the valve hole formed in the bench lily part of the mixer.
The engine output can be greatly increased by increasing the intake port of the mixer, and it is equipped with a diaphragm mechanism that controls the positive vaporizer secondary chamber pressure in accordance with the engine negative pressure in the entire operating range. Since the fuel passage area is changed by the fuel amount control valve driven by the actuator, the engine negative pressure changes the positive pressure in the vaporizer secondary chamber, and the actuator is driven while the fuel amount is automatically controlled. As a result, the width of movement of the actuator can be reduced, and as a result, the accuracy and responsiveness of controlling the amount of fuel by driving the actuator can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来実施例の比較特性図、第2図は本
発明の構成を明示する全体構成図、第3図は本発
明の第1実施例の説明図、第4図はその要部詳細
図、第5図はその電気回路図、第6図はそのフロ
ーチヤート図、第7図〜第9図はその特性図、第
10図は本発明の第2実施例の要部詳細図、第1
1図はその特性図、第12図は本発明の第3実施
例の要部詳細図である。 1……ベーパライザ、2……1次側ダイアフラ
ム室、3……燃料タンク、4,10……ダイアフ
ラム、5,11……調圧スプリング、6……1次
側減圧弁、7……LPGエンジン、8……吸気系、
9……2次側ダイアフラム室、12……2次側減
圧弁、13……燃料供給通路、14,16……ア
クチユエータ、15……開閉弁、17……燃料量
制御弁。
Fig. 1 is a comparative characteristic diagram of a conventional embodiment, Fig. 2 is an overall configuration diagram clearly showing the structure of the present invention, Fig. 3 is an explanatory diagram of the first embodiment of the present invention, and Fig. 4 is a detailed diagram of its main parts. 5 is its electrical circuit diagram, FIG. 6 is its flowchart, FIGS. 7 to 9 are its characteristic diagrams, FIG. 10 is a detailed view of the main part of the second embodiment of the present invention, and FIG. 1
FIG. 1 is a characteristic diagram thereof, and FIG. 12 is a detailed diagram of a main part of a third embodiment of the present invention. 1... Vaporizer, 2... Primary side diaphragm chamber, 3... Fuel tank, 4, 10... Diaphragm, 5, 11... Pressure regulating spring, 6... Primary side pressure reducing valve, 7... LPG engine , 8...Intake system,
9...Secondary side diaphragm chamber, 12...Secondary side pressure reducing valve, 13...Fuel supply passage, 14, 16...Actuator, 15...Opening/closing valve, 17...Fuel amount control valve.

Claims (1)

【特許請求の範囲】 1 LPGを気化・減圧するベーパライザの1次
側ダイアフラム室とベーパライザの燃料入口との
間に、1次側ダイアフラム室内の圧力が少なくと
も1次側ダイアフラム室のダイアフラムを押圧す
る調圧スプリングの付勢力で定める1次側設定圧
力より大きくなつたときに閉じる1次側減圧弁を
設け、LPGエンジンの吸気系に接続された前記
ベーパライザの2次側ダイアフラム室と前記1次
側ダイアフラム室との間に、エンジン負荷の増大
に従つて2次側ダイアフラム室のダイアフラム押
圧力を大きくするとともに2次側ダイアフラム室
内の圧力が2次側ダイアフラム室の前記ダイアフ
ラム押圧力で定まる前記1次側設定圧力より低い
正圧の2次側設定圧力より大きくなつたときに閉
じる2次側減圧弁を設け、かつ、LPGエンジン
の吸気系と2次側ダイアフラム室との間の燃料供
給通路に、アクチユエータ駆動の開閉弁と前記燃
料供給通路の通路面積を変化させるアクチユエー
タ駆動の燃量制御弁とを設けることを特徴とする
LPGエンジンの燃料供給装置。 2 エンジン負荷の増大に従つて2次側ダイアフ
ラム室のダイアフラム押圧力を大きくする手段と
して前記ダイアフラムを押圧する調圧スプリング
の撓量を変化させるダイアフラム装置を用いるこ
とを特徴とする特許請求の範囲第1項に記載の
LPGエンジンの燃料供給装置。 3 エンジン負荷の増大に従つて2次側ダイアフ
ラム室のダイアフラム押圧力を大きくする手段と
して前記ダイアフラムを押圧する調圧スプリング
の撓量を変化させる電磁石装置を用いることを特
徴とする特許請求の範囲第1項に記載のLPGエ
ンジンの燃料供給装置。 4 エンジン負荷の増大に従つて2次側ダイアフ
ラム室のダイアフラムの押圧力を大きくする手段
として前記ダイアフラムを押圧する調圧スプリン
グの撓量を変化させるステツピングモータを用い
ることを特徴とする特許請求の範囲第1項に記載
のLPGエンジンの燃料供給装置。
[Scope of Claims] 1. Between the primary diaphragm chamber of the vaporizer that vaporizes and depressurizes LPG and the fuel inlet of the vaporizer, there is a control system in which the pressure in the primary diaphragm chamber presses at least the diaphragm of the primary diaphragm chamber. A primary side pressure reducing valve is provided which closes when the primary side set pressure determined by the biasing force of a pressure spring is exceeded, and the secondary side diaphragm chamber and the primary side diaphragm of the vaporizer are connected to the intake system of the LPG engine. The diaphragm pressing force in the secondary diaphragm chamber is increased as the engine load increases, and the pressure in the secondary diaphragm chamber is determined by the diaphragm pressing force in the secondary diaphragm chamber. A secondary side pressure reducing valve is provided that closes when the positive pressure becomes higher than the secondary side set pressure, which is lower than the set pressure, and an actuator is installed in the fuel supply passage between the intake system of the LPG engine and the secondary side diaphragm chamber. It is characterized by providing a driven on-off valve and an actuator-driven fuel control valve that changes the passage area of the fuel supply passage.
Fuel supply system for LPG engine. 2. As a means for increasing the diaphragm pressing force in the secondary diaphragm chamber as the engine load increases, a diaphragm device is used that changes the amount of deflection of a pressure regulating spring that presses the diaphragm. As stated in paragraph 1
Fuel supply system for LPG engine. 3. As a means for increasing the diaphragm pressing force in the secondary diaphragm chamber as the engine load increases, an electromagnetic device is used that changes the amount of deflection of a pressure regulating spring that presses the diaphragm. The fuel supply device for the LPG engine according to item 1. 4. A stepping motor that changes the amount of deflection of a pressure regulating spring that presses the diaphragm is used as means for increasing the pressing force of the diaphragm in the secondary diaphragm chamber as the engine load increases. A fuel supply system for an LPG engine according to scope 1.
JP1369884A 1984-01-27 1984-01-27 Fuel supply device for liquefied-petroleum-gas engine Granted JPS60159357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1369884A JPS60159357A (en) 1984-01-27 1984-01-27 Fuel supply device for liquefied-petroleum-gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1369884A JPS60159357A (en) 1984-01-27 1984-01-27 Fuel supply device for liquefied-petroleum-gas engine

Publications (2)

Publication Number Publication Date
JPS60159357A JPS60159357A (en) 1985-08-20
JPH0312657B2 true JPH0312657B2 (en) 1991-02-20

Family

ID=11840413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1369884A Granted JPS60159357A (en) 1984-01-27 1984-01-27 Fuel supply device for liquefied-petroleum-gas engine

Country Status (1)

Country Link
JP (1) JPS60159357A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081455A (en) * 1983-10-11 1985-05-09 Aisan Ind Co Ltd Fuel supply device in lpg engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109A (en) * 1977-06-02 1979-01-05 Nippon Carbureter Vaporizer of liquefied gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110221U (en) * 1976-02-17 1977-08-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109A (en) * 1977-06-02 1979-01-05 Nippon Carbureter Vaporizer of liquefied gas

Also Published As

Publication number Publication date
JPS60159357A (en) 1985-08-20

Similar Documents

Publication Publication Date Title
EP1264228A1 (en) High volume electronic gas regulator
US4058101A (en) Control apparatus for diesel engine
US4433661A (en) Device for the speed-dependent closure limitation of a carburettor main throttle
JPS6011212B2 (en) fuel injection control device
JP2885936B2 (en) Air supply system for internal combustion engines
JPS6349067B2 (en)
JPH0312657B2 (en)
JPH076426B2 (en) Load adjuster
US4342299A (en) Throttle positioning system
JPS59131730A (en) Idling-speed controlling apparatus
JPH0319908B2 (en)
JPH06213078A (en) Gas fuel supply system of engine
JPH0251068B2 (en)
US4112886A (en) Engine speed governor
JP2911372B2 (en) Gas engine regulator insulation
US4182293A (en) Exhaust gas recirculation system for an internal combustion engine
EP0075266B1 (en) Exhaust gas recirculation (egr) system with a vacuum regulator in an automotive vehicle
JPH062619A (en) Gas fuel supply system of engine
JPH0318694Y2 (en)
JPS6240104Y2 (en)
GB2043169A (en) Combustion mixture regulating apparatus for IC engines
JPH0347430A (en) Exhaust gas recirculation control device for diesel engine
JPS61167155A (en) Pressure regulator for internal-combustion engine
JPS6210446A (en) Control device for idle speed in internal-combustion engine
JPS6349540Y2 (en)