JPS6081455A - Fuel supply device in lpg engine - Google Patents

Fuel supply device in lpg engine

Info

Publication number
JPS6081455A
JPS6081455A JP58190178A JP19017883A JPS6081455A JP S6081455 A JPS6081455 A JP S6081455A JP 58190178 A JP58190178 A JP 58190178A JP 19017883 A JP19017883 A JP 19017883A JP S6081455 A JPS6081455 A JP S6081455A
Authority
JP
Japan
Prior art keywords
pressure
fuel
chamber
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58190178A
Other languages
Japanese (ja)
Other versions
JPH0251068B2 (en
Inventor
Masataka Nakano
中野 正高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP58190178A priority Critical patent/JPS6081455A/en
Publication of JPS6081455A publication Critical patent/JPS6081455A/en
Publication of JPH0251068B2 publication Critical patent/JPH0251068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0239Pressure or flow regulators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • F02M21/047Venturi mixer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To aim at stabilizing the air-fuel ratio of an LPG engine, by providing such an arrangement that the mechanism of the secondary pressure reducing chamber in a two stage pressure reducing type vaporizer is made identical to that of the primary pressure reducing chamber with the secondary chamber pressure having a positive pressure value which is lower than the pressure of the primary chamber, and the opening area of a fuel passage between the intake-air system and the secondary chamber is controlled by an actuator. CONSTITUTION:Fuel from a fuel tanks 21 is reduced in its pressure in a primary diaphragm chamber 23 in a primary pressure reducing valve 26, and then is further reduced in its pressure in a secondary chamber 34 in a secondary pressure reducing valve 37. The stage constant pressures of the secondary pressure reducing valve 37 is set by the urging force of a pressure adjusting spring 36 which presses a diaphragm 35, and is set at a value lower than a pressure set by a primary pressure adjusting spring 25. An actuator driven shut-off valve 46 and a fuel amount control valve 51 are disposed between the secondary diaphragm chamber 34 and the intake-air system, and are controlled by an electrical control device 77 in accordance with detected values from an air-flow sensor 68, and exhaust sensor 74, etc.

Description

【発明の詳細な説明】 (技イホ了分野 ) 本発明(はLPGエンジンの吸気系に燃料を供給する燃
料供給装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a fuel supply device that supplies fuel to an intake system of an LPG engine.

(従来技術) 従来、LPGエンジン用燃料供給装置の2段減圧式ベー
バワイザは混合器のスロットルバルブ上流に位置するベ
ンチュリ部の負圧2ベーパライザの2次室に導き、その
負圧が2次室のダイアフラムに加わることによる弁開閉
レバーの動きによってペーバフィザの7次室から2次室
への燃料通路を開いて燃料タンクからの燃料を気化・減
圧させて混合器に供給している。
(Prior art) Conventionally, in a two-stage pressure reducing type vaporizer of a fuel supply system for an LPG engine, the negative pressure in the venturi section located upstream of the throttle valve of the mixer is introduced into the secondary chamber of the two vaporizer, and the negative pressure is transferred to the secondary chamber of the vaporizer. The movement of the valve opening/closing lever applied to the diaphragm opens the fuel passage from the seventh chamber of the paver fizzer to the secondary chamber, vaporizes and depressurizes the fuel from the fuel tank, and supplies it to the mixer.

従って、ベンチュリ部に負圧が発生したいとき、レバー
はスプリングの付勢力で弁を閉じて7次室から2次室へ
の燃料通路を閉じ、かつ、混合器への燃料供給量を制御
する燃料流量制御部は固定式のジェット又はスクリュウ
で最適諸元を決めて、2次室と混合器を連通ずる燃料供
給通路の開口面積をセットしているが、この場合、吸気
の径、即ち、ベンチュ2す径を大キくシてエンジンの体
積効率を高め、エンジンの出方を向上させようとしても
、ベンチュリ部に生ずる負圧が小さくなることから、低
吸入空気量時或は全域において十分な燃料供給量が得ら
れなくなる。
Therefore, when it is desired to generate negative pressure in the venturi section, the lever closes the valve with the biasing force of the spring, closing the fuel passage from the seventh chamber to the secondary chamber, and controlling the amount of fuel supplied to the mixer. The flow rate control unit uses a fixed jet or screw to determine the optimum specifications and set the opening area of the fuel supply passage that communicates the secondary chamber and the mixer. Even if you try to increase the volumetric efficiency of the engine by increasing the diameter of the 2nd wheel, the negative pressure generated in the venturi will become smaller, so it will not be sufficient at low intake air amounts or throughout the entire range. Fuel supply becomes unavailable.

そこで、この燃料供給量不足を補うには2次減圧室のダ
イアフラム或は燃料供給通路の径を非常に大きくしなけ
ればならないが、現実にはそのようなことはできず、こ
のことは特開昭32−1000/2号のように電気的ア
クチュエータで燃料2制御しても同じことで、又、特開
昭57−/1.215/号は高吸入空気量時にベーパラ
イザの7次室から正圧の燃料を混合器しこ供給して、O
の問題を解決しているが1.この場合、7次室から混合
器に直接燃料を供給することによる空燃比変動等の問題
、即ち、ベーパライザを7段減圧室として7次室から燃
料を取出すと、第1図に実線で示す2次室の特性に比較
して7次室では燃料が気化することによる蒸発潜熱の影
響で第1図に点線で示すように温度変化が大きいため、
P0比重量変化が大さく々−リ、これは燃料流量制御を
通路の面桔或は開閉時間で制御する場合において、供給
燃料重量の変化が大きくなって空燃比が大巾に安住する
と云う欠点があった。
Therefore, in order to compensate for this lack of fuel supply, the diameter of the diaphragm of the secondary decompression chamber or the fuel supply passage must be made extremely large, but in reality this is not possible, and this is disclosed in Japanese Patent Application Publication No. The same thing happens when fuel 2 is controlled by an electric actuator as in No. 1000/2 of 1972, and in JP-A No. 1.215/1977, when the amount of intake air is high, the control is performed from the 7th chamber of the vaporizer. Supply fuel at pressure to the mixer and O
Although the problem of 1. In this case, problems such as air-fuel ratio fluctuations caused by supplying fuel directly to the mixer from the 7th chamber, i.e., if the vaporizer is used as a 7-stage decompression chamber and fuel is taken out from the 7th chamber, 2. Compared to the characteristics of the next chamber, the temperature change in the seventh chamber is large due to the latent heat of vaporization due to fuel vaporization, as shown by the dotted line in Figure 1.
P0 specific weight change is large.This is a disadvantage that when fuel flow rate control is controlled by the passage surface or opening/closing time, the change in supplied fuel weight becomes large and the air-fuel ratio remains stable for a wide range. was there.

(発明の目的) 本発明はΩ殺減圧式ベーパライザの2次(威圧室の機構
を7次減圧室とほぼ同様の機構として、2次室圧力を7
次室圧力より低い正圧値とし、燃料量制御部の開口面積
をアクチュエータで制御するLPGエンジンの燃料供給
装置を提供することによって、空燃比を安定させた状態
で十分々燃料量を確]呆し、エンジンの体積効率を高め
て出方を向上させるとともに、出方向上によって最終減
速比を小さくしエンジンの使用回転数を下げて、燃費の
向上を図ることにある。
(Objective of the Invention) The present invention aims to reduce the pressure in the secondary chamber of the Ω-killing pressure reducing vaporizer by using a mechanism that is almost the same as that of the 7th-order pressure reducing chamber.
By providing a fuel supply device for an LPG engine that uses a positive pressure value lower than the next chamber pressure and controls the opening area of the fuel amount control section with an actuator, a sufficient amount of fuel can be ensured while keeping the air-fuel ratio stable. The objective is to increase the volumetric efficiency of the engine to improve the output direction, and to reduce the final reduction ratio in the output direction to lower the operating speed of the engine, thereby improving fuel efficiency.

(発明の構成) 第2図は本発明の構成を明示する全体構成図であって、
本発明はLPGを気化・減圧するベーパライザ1の/次
側ダイアフラム室2と燃料タック3との間に、/次側ダ
イアプラム室2内の圧力が少なくとも/次側ダイアフラ
ム室2のダイア75ム4を押圧する調圧スプリング5で
定まる7次側設定圧力よ−り大きく々ったときに閉じる
/次側減圧弁6を設け、LPGエンジン7の吸気系8に
接続された前記ベーパライザ1の2次側ダイアフラム室
9と前記/次側ダイアフラム室2との間に、2次側ダイ
アフラム室9内の圧力が少なくとも2次側ダイアフラム
塞9のダイアフラム1oを押圧する調圧スプリング11
の付勢力で定まる前記/次側股冗圧力より低い正圧の2
次側設定圧力より大さくなったときに閉じる2次側減圧
弁12を設け、かつ、LPGエンジン7の吸気系8と2
次側ダイアフラム室9との間の燃料供給通路13に、ア
クチュエータ14駆動の開閉弁15と前記燃料供給通路
13の通路面積を変化させるアクチュエータ16駆動の
燃料量制御弁17を設けたLPGエンジンの燃料供給装
置にある。
(Structure of the invention) FIG. 2 is an overall configuration diagram clearly showing the structure of the invention,
The present invention provides a system between the diaphragm chamber 2 on the next side and the fuel tack 3 of the vaporizer 1 that vaporizes and depressurizes LPG, so that the pressure inside the diaphragm chamber 2 on the next side reaches at least the diaphragm 4 of the diaphragm chamber 2 on the next side. The secondary side of the vaporizer 1 connected to the intake system 8 of the LPG engine 7 is provided with a downstream pressure reducing valve 6 that closes when the pressure exceeds the seventh set pressure determined by the pressure regulating spring 5. A pressure regulating spring 11 is provided between the diaphragm chamber 9 and the diaphragm chamber 2 on the secondary side and the downstream side diaphragm chamber 2 so that the pressure in the secondary side diaphragm chamber 9 presses at least the diaphragm 1o of the secondary side diaphragm blocker 9.
2 of positive pressure lower than the above/next side redundant pressure determined by the urging force of
A secondary side pressure reducing valve 12 is provided which closes when the pressure becomes higher than the next side setting pressure, and the intake system 8 and 2 of the LPG engine 7 are provided.
Fuel for an LPG engine in which an on-off valve 15 driven by an actuator 14 and a fuel amount control valve 17 driven by an actuator 16 that changes the passage area of the fuel supply passage 13 are installed in the fuel supply passage 13 between the next side diaphragm chamber 9. Located in the supply device.

(実施例の構成) 次に、本発明の一実施例のf%ff ff を第3図〜
第6図によって説明する。
(Configuration of Example) Next, f%ff ff of an example of the present invention is shown in FIGS.
This will be explained with reference to FIG.

LPGエンジン20の吸気系に燃料タンク21からの燃
料を気化・減圧して供給するベーパライザ22の/次側
ダイアフラム室23と燃料タンク21に接続されたベー
パライザ22の燃料入口との間には、/次側ダイアフラ
ム室23内の圧力が/ 次+111 !イアフラム室2
3のダイアフラム24企押圧する調圧スプリング25の
付勢力で定丑る/次側設定圧力エク大きくなったときに
閉じる7次側減圧弁26、この場合、一端部をダイアフ
ラム24と一体のフック27に係合してのレバー28の
回転によってレバー28の他端邪に取付けた弁体29を
本体ケース30に形成した弁孔31の弁シートに圧接し
て弁孔61を閉じる/次側減圧弁26が取付けられ、か
つ、ダイアフラム24は本体ケース60にダブルナツト
32で取付けられたセットスクリュウ′53による荷重
調整可能な調圧/(7”リング25によって弁開の/次
側ダイアフラム室23方向に付勢されている。
Between the /next side diaphragm chamber 23 of the vaporizer 22 that vaporizes and depressurizes the fuel from the fuel tank 21 and supplies it to the intake system of the LPG engine 20 and the fuel inlet of the vaporizer 22 connected to the fuel tank 21, there is a / The pressure inside the next diaphragm chamber 23 is / next +111! Iarphragm chamber 2
A seventh pressure reducing valve 26 which is fixed by the biasing force of a pressure regulating spring 25 that presses the diaphragm 24 of No. 3 and closes when the next set pressure exceeds, in this case, a hook 27 whose one end is integral with the diaphragm 24. By engaging the lever 28 and rotating the lever 28, the valve body 29 attached to the other end of the lever 28 is brought into pressure contact with the valve seat of the valve hole 31 formed in the main body case 30, closing the valve hole 61/Next side pressure reducing valve 26 is attached, and the diaphragm 24 is attached to the diaphragm chamber 23 on the next side of the valve opening by means of a 7" ring 25. Forced.

この/次側ダイアフラム室231!:、LPGエンジン
20の吸気系に接続された前記ベーパワイザ22の2次
側ダイアフラム室64との間には、Ω次側ダイアフラム
室64内の圧力が少なくとも2次側ダイアフラム室34
のダイアフラム35を押圧する調圧スプリング36の付
勢力で定まる前記7次側設定圧力より低い正圧の2次側
設定圧力より大きくなったときに閉じるΩ次側減圧弁3
7、この場合、一端部をダイアフラム35 、!: 一
体(Dフック38に保合してのレバー39の回転によっ
てレバー39の他端部に取付けた弁体40を本体ケー7
30に形成した弁孔41の弁シートに圧接して弁孔41
を閉じる一次側減圧弁37が取付けられ、かつ、ダイア
フラム35は本体ケース30にダブルナツト42で取付
けられたセットスクリュウ4′5による荷重調整可能な
調圧スプリングろ6によって弁開の2次側ダイアフラム
室34方向に付勢され、レバー39はスプリング44に
よって弁閉方向に付勢されている。
This/next side diaphragm chamber 231! : Between the secondary side diaphragm chamber 64 of the vaporizer 22 connected to the intake system of the LPG engine 20, the pressure inside the Ω secondary side diaphragm chamber 64 is at least the secondary side diaphragm chamber 34.
Ω downstream side pressure reducing valve 3 that closes when the positive pressure becomes higher than the secondary side set pressure which is lower than the seventh side set pressure determined by the biasing force of the pressure regulating spring 36 that presses the diaphragm 35 of
7. In this case, connect one end to the diaphragm 35! : Integrally (by rotating the lever 39 while engaging the D hook 38, the valve body 40 attached to the other end of the lever 39 is attached to the main body case 7.
The valve hole 41 is pressed against the valve seat of the valve hole 41 formed in the valve hole 30.
A primary side pressure reducing valve 37 is installed to close the main body case 30, and the diaphragm 35 is connected to the secondary side diaphragm chamber to open the valve by a pressure regulating spring filter 6 whose load can be adjusted by a set screw 4'5 attached to the main body case 30 with a double nut 42. The lever 39 is urged in the valve closing direction by a spring 44.

Cの2次側ダイアフワム室34 とLPGエンジン20
の吸気系との間の燃料供給通路45には、アクチュエー
タ駆動の開閉弁46、この場合、電磁ソレノイド47の
励磁によるスプリング48の付勢力に抗しての弁体49
の移動によって本体ケース30に形成した弁孔50を開
く開閉弁46と、燃料供給通路450通路面積を変化さ
せるアクチュエータ駆動の燃料量制御弁51、この場合
、ステップモータ52の正・逆回転による図示省略、例
えばナンド・スクリュウの回転−直線変慄機構を介して
のニードル53の往復動によって混合器54のベンチュ
リ部55に形成した弁孔56の流路面積、即ち、燃料供
給通路45の有効断面積を沃化させる燃料量制御弁51
とか取付けられ、又、燃料タンク21と/次ダイアプラ
ム室23との間の燃料供給通路57にはイグニッシぢン
ヌイッチ58を介してのスタータスイッチ59のオン又
はオルタネータ発電時におけるリレー60の接点61オ
ンと運転席のLPGスイッチ62のオンとで開く電磁開
閉弁63とフィルタ64が取付けられている。
C secondary diaphragm chamber 34 and LPG engine 20
In the fuel supply passage 45 between the intake system and the intake system, there is an actuator-driven on-off valve 46, in this case a valve body 49 that resists the biasing force of a spring 48 due to the excitation of an electromagnetic solenoid 47.
An on-off valve 46 that opens a valve hole 50 formed in the main body case 30 by movement of the actuator-driven fuel amount control valve 51 that changes the area of the fuel supply passage 450, in this case illustrated by forward and reverse rotation of the step motor 52. Omitted, for example, the flow path area of the valve hole 56 formed in the venturi portion 55 of the mixer 54 by the reciprocating movement of the needle 53 via the rotation-linear vibration mechanism of a Nand screw, that is, the effective cutoff of the fuel supply passage 45. Fuel amount control valve 51 for iodizing the area
In addition, the fuel supply passage 57 between the fuel tank 21 and the secondary diaphragm chamber 23 has a starter switch 59 turned on via an ignition switch 58 or a contact 61 of a relay 60 turned on when the alternator generates power. An electromagnetic on-off valve 63 and a filter 64 are installed which open when the LPG switch 62 in the driver's seat is turned on.

このx’)に形成された燃料供給装置65の電磁開閉弁
63と、開閉弁46の電磁ソレノイド47と、燃料量制
御弁51のステップモータ52とは。
The electromagnetic on-off valve 63 of the fuel supply device 65, the electromagnetic solenoid 47 of the on-off valve 46, and the step motor 52 of the fuel amount control valve 51 are formed in x').

燃料供給通路45に取付けられて燃料温度に対応した出
力を発生させる燃料温度センサ66と、吸気管67に取
付けられて吸入空気量に対応した出力を発生させる吸入
空気量センサ68と、吸気管67に取付けられて吸入空
気温度に対応した出力を発生させる吸入空気温センサ6
9と、吸気管67のスロットルバルブ70全閉付近の下
流位置に形成された負圧通路71のスロットルがルブ7
0踏込みにともな9負圧変化を検出する負圧スイッチ7
2と、排気管75に取付けられて理論空燃比近傍で出力
を変化させる排気センサ74と、ディストリビュータ7
5に取付けられてエンジン20の回転数に対応した出力
を発生させる回転数センサ76とのそれぞれからの入力
信号に対応してエンジン20に対する燃料供給を最適制
御する電気制御装置77からの出力によって制御される
A fuel temperature sensor 66 is attached to the fuel supply passage 45 and generates an output corresponding to the fuel temperature, an intake air amount sensor 68 is attached to the intake pipe 67 and generates an output corresponding to the intake air amount, and an intake pipe 67 An intake air temperature sensor 6 is attached to the intake air temperature sensor 6 and generates an output corresponding to the intake air temperature.
9, and the throttle of the negative pressure passage 71 formed in the downstream position near the fully closed throttle valve 70 of the intake pipe 67 is
0 Negative pressure switch 7 that detects negative pressure change as the pedal is pressed
2, an exhaust sensor 74 that is attached to the exhaust pipe 75 and changes the output near the stoichiometric air-fuel ratio, and a distributor 7
5 and a rotation speed sensor 76 that generates an output corresponding to the rotation speed of the engine 20, and an output from an electric control device 77 that optimally controls fuel supply to the engine 20 in response to input signals from each of them. be done.

次に、第を図は電気制御装置77の電気回路図であって
、記憶部78のプログラムに従って制御されるCPU7
9には、スタータスイッチ59と負圧スイッチ72、回
転数センサ76からの信号が入力インターフェイス81
を介して入力烙れる他、空’A 1j1センサ68と吸
入空気温センサ69と燃料温度センサ66と排気センサ
74からの信号が入力インターフェイス81 、!=A
/Dコノバータ82を介して入力され、前記開閉弁46
の電磁ソレノイド47と燃料量制御弁51のステップモ
ータ52には用カインターフエイヌ83とそれぞれの駆
動回路84.85を介してCPU79からの出力が供給
される。
Next, Figure 7 is an electric circuit diagram of the electric control device 77, in which the CPU 7 is controlled according to the program in the storage section 78.
9, signals from the starter switch 59, negative pressure switch 72, and rotation speed sensor 76 are input to an input interface 81.
In addition to the input signals from the air 'A1j1 sensor 68, the intake air temperature sensor 69, the fuel temperature sensor 66, and the exhaust sensor 74, the input interface 81,! =A
/D converter 82 and the on-off valve 46
The electromagnetic solenoid 47 and the step motor 52 of the fuel amount control valve 51 are supplied with an output from the CPU 79 via a counter interface 83 and respective drive circuits 84 and 85.

(実施例の作用) 次に、本実施例の作用を第5図のプロ・−チャートに従
って説明する。
(Operation of the embodiment) Next, the operation of the embodiment will be explained with reference to the pro-chart of FIG.

エンジン20始動前のイブニラシロンスイッチ積の初期
設定位置にセラFされる他、開閉弁46は閉状態に保持
され、この状態で0PU79には各スイッチ59.72
と各センサ68,76.6966.74からエンジン2
0の状態に対応した信号が入力され、ステップ102で
、エンジン20が設定回転数以上かどうかでエンジン2
0が運転状態が停止状態かを判定し、設定回転数以下で
あればステップ109でスタータスイッチ59オンかど
うかを判定する。ステップ109でスタータスイッチ5
9オンであればステップ101に戻る。
In addition to being set to the initial setting position of the Ibnirasilon switch product before starting the engine 20, the on-off valve 46 is held in the closed state, and in this state, each switch 59.
and each sensor 68, 76.6966.74 to engine 2
A signal corresponding to the state of 0 is input, and in step 102, the engine 2
0 determines whether the operating state is a stopped state, and if the rotation speed is below the set rotation speed, it is determined in step 109 whether the starter switch 59 is on. Starter switch 5 in step 109
If 9 is on, the process returns to step 101.

スタータスインチ59オンであればエンジン始動のため
の燃料量制御弁51のニード/1153の目標位置を0
PU79が算出する。さらにリレー60の接点61オン
とLPGスイッチ62のオンによって’を破開閉弁63
が開いて燃料タンク21からの液化LPGの燃料がペー
パライザ22の7次側ダイアフワム室23に7次減圧弁
を介して気化・減圧され、2次減圧弁を介し再び減圧さ
れステップ111でペーパライザ22に取付けられた開
閉弁46が開となり混合器54への燃料供給が開始され
る。ステップ112でステップ110で算出された信号
がステップモータ52に送うれニード/l’53が目標
位置に制御され、始動に適した燃料をエンジン20に送
る。
If the starter inch 59 is on, the target position of the fuel amount control valve 51/1153 for engine starting is set to 0.
Calculated by PU79. Further, by turning on the contact 61 of the relay 60 and turning on the LPG switch 62, the opening/closing valve 63 is opened.
is opened, and the liquefied LPG fuel from the fuel tank 21 is vaporized and depressurized into the seventh diaphragm chamber 23 of the paperizer 22 via the seventh pressure reducing valve, and is again depressurized via the secondary pressure reducing valve and transferred to the paperizer 22 in step 111. The attached on-off valve 46 is opened and fuel supply to the mixer 54 is started. In step 112, the signal calculated in step 110 is sent to the step motor 52, the needle/l' 53 is controlled to the target position, and fuel suitable for starting is sent to the engine 20.

ステップ112が終了するとステップ102に戻り再び
エンジン20が運転状態であるか否かを判定する。エン
ジンが運転状態であるとルなめられる設定回転数以上で
あるとステップ103に移る。
When step 112 is completed, the process returns to step 102 and it is again determined whether the engine 20 is in an operating state. If the engine speed is equal to or higher than the set rotation speed, the process moves to step 103.

ステップ103では負圧スイッチ72オンのアイド/l
/運転域であると@はステップ104でエンジン回転数
が減速時の燃料カット設定回転数以上かどうかを判定し
設定回転数以上であればエンジン20が減速状態である
と判定されステップ105で電磁ソレノイド47の開閉
弁46を閉じる。ヌテッブ103で負圧スイッチ72が
オフ、ステップ104でエンジン回転数が設定回転数以
下であると判定された場合は、エンジン20が通常運転
又はアイドル運転であることからステップ108で電磁
ソレノイド47の開閉弁47は開とされる。
In step 103, the negative pressure switch 72 is turned on at idle/l.
/ operation range, @ determines in step 104 whether the engine speed is equal to or higher than the set speed for fuel cut during deceleration, and if it is above the set speed, it is determined that the engine 20 is in the deceleration state, and in step 105 the electromagnetic Close the on-off valve 46 of the solenoid 47. If it is determined that the negative pressure switch 72 is off in the Nuteb 103 and that the engine speed is below the set rotation speed in step 104, the electromagnetic solenoid 47 is opened or closed in step 108 because the engine 20 is in normal operation or idle operation. Valve 47 is opened.

ステップ105 、108の終了後は何れの場合もステ
ップ106でエンジン20運転時の目標空燃比となる燃
料量制御弁51のニードIv53位置を算出し、ステッ
プ107でステップモータ52へ信号を出力する。
After steps 105 and 108 are completed, in either case, step 106 calculates the need Iv53 position of the fuel amount control valve 51 that provides the target air-fuel ratio during operation of the engine 20, and a signal is output to the step motor 52 in step 107.

この燃料量制御弁51による空燃比制御において、ペー
パライザ22から正圧で燃料を混合器54に供給するこ
とができるため、混合器54の吸気部径を大きくしても
十分に燃料を供給することができ、その結果、エンジン
20の体積効率を高めて出力を向上させることができる
とともに、出力の向上で減速比を小さくしてエンジン2
0の使用回転域を下げ、これによって燃費の向上をも図
ることができる。
In the air-fuel ratio control by the fuel quantity control valve 51, fuel can be supplied from the paperizer 22 to the mixer 54 under positive pressure, so even if the diameter of the intake part of the mixer 54 is increased, sufficient fuel can be supplied. As a result, the volumetric efficiency of the engine 20 can be increased and the output can be improved.
By lowering the operating speed range of 0, it is also possible to improve fuel efficiency.

即ち、/次側ダイアフワム室23圧力ニυも低い正圧に
2次側ダイアフラム室34圧力を制御する効果は次のと
おりである。
That is, the effect of controlling the pressure in the secondary diaphragm chamber 34 to a positive pressure where the pressure in the secondary diaphragm chamber 23 is also low is as follows.

燃料タンク21内燃料圧力は燃料成分、温度によって必
然的に変化し、ペーパライザ22の調圧機構から/次側
ダイアフラム室23圧力も変化するが、2段減圧して2
次側ダイアフワム室34を正圧とした状態で燃料タンク
21内圧力が変化した場合、/次側ダイアフワム室23
圧力の変化率よりも2次側ダイアフラム室34圧力の変
化率を小さくできることである。
The fuel pressure inside the fuel tank 21 inevitably changes depending on the fuel components and temperature, and the pressure in the next side diaphragm chamber 23 also changes due to the pressure regulating mechanism of the paperizer 22.
When the pressure inside the fuel tank 21 changes while the next side diaphragm chamber 34 is under positive pressure, /the next side diaphragm chamber 23
The rate of change in pressure in the secondary diaphragm chamber 34 can be made smaller than the rate of change in pressure.

これは燃料タンク21の圧力変化をΔF、/次側ダイア
フワム室23の圧力液化をΔP1.2次側ダイアフワム
室34の圧力ヂ〆をP2としたと。
This assumes that the pressure change in the fuel tank 21 is ΔF, the pressure liquefaction in the secondary diaphragm chamber 23 is ΔP1, and the pressure change in the secondary diaphragm chamber 34 is P2.

き、/次側ダイアフラム室23の圧力変化率は第3図に
、へ線で示すように、 ΔP1t−eyK、×ΔF −=−= (1)ここで、
Klはペーパライザ22の設計諸元によって定まる値で
に1く1の関係にある。
Then, the rate of pressure change in the downstream diaphragm chamber 23 is as shown by the horizontal line in FIG.
Kl is a value determined by the design specifications of the paperizer 22 and has a relationship of 1 to 1.

更に、2次側ダイアフラム室34の圧力沃化率は第を図
に実線で示す工9に、 ΔP2〜に2 XΔP1・・・・・・ (2)ここでに
2く1 以上の(1)(2)式が調圧機構から成立し、これによ
って燃料タンク21内圧力が液化してもペーパフィザ2
2から混合器54への燃料供給圧力が安定し、燃料流汰
の制御精度な向上させるCとができる、 又、本実施例は燃料流量制御をステップモータ52によ
る通路開口面積の制御によって行うことで従来の欠点、
即ち、固定式ジェット或はニードルでは理論的に吸入空
気散が小さくなるに従って混合気が過濃となってエンジ
ンの運転が不可能になると云う従来の欠点を解決するこ
とができ、一方、ガソリンエンジンでは公知の燃料噴射
弁をLPGの燃料流量制御に用いても、LPGでは燃料
を気体で供給するため、噴射弁を非常に大形化するか或
は複数筒用い々いと十分な供給量を確保でき々い。
Furthermore, the pressure iodization rate of the secondary diaphragm chamber 34 is shown by the solid line in Figure 9. Equation (2) is established from the pressure regulating mechanism, so that even if the internal pressure of the fuel tank 21 liquefies, the paper fizzer 2
The fuel supply pressure from 2 to the mixer 54 is stabilized, and the control accuracy of fuel flow can be improved.Furthermore, in this embodiment, the fuel flow rate is controlled by controlling the passage opening area by the step motor 52. The traditional drawbacks,
In other words, with fixed jets or needles, it is possible to theoretically solve the conventional drawback that as the intake air dispersion becomes smaller, the air-fuel mixture becomes too rich and engine operation becomes impossible.On the other hand, gasoline engines Even if a known fuel injection valve is used to control the fuel flow rate of LPG, since LPG supplies fuel as a gas, it is necessary to make the injection valve very large or use multiple cylinders to ensure a sufficient supply amount. I can do it.

なお、本実施例における燃料量制御弁51用ステップモ
ータ52はリニアソレノイド等の任意のアクチュエータ
に代えることができ、又、電磁開閉弁63は任意のアク
チュエータ駆動の開閉弁とすること≠5できる他、燃料
量制御弁57に!破開閉弁63の機能を持たせることも
でき、又、吸入空気片センサ68に代えて吸気圧センサ
を用いて吸入空気片を検出することがでさる他、制御の
精度を向上させるため本実施例に用いたセンサの他、燃
料流層センサ、スロットル開度センサ、燃料タンク圧力
センサ等の任意のセンサを用いることもでき、又、本実
施例の燃料供給装置65はLPG専用専用エツジ20、
ガソリンとの併用式エンジンにも用いることができる。
Note that the step motor 52 for the fuel amount control valve 51 in this embodiment can be replaced with any actuator such as a linear solenoid, and the electromagnetic on-off valve 63 can be an on-off valve driven by any actuator. , to the fuel amount control valve 57! It is also possible to provide the function of a rupture opening/closing valve 63, and to detect the intake air particles using an intake pressure sensor instead of the intake air particle sensor 68. In addition to the sensor used in the example, any other sensor such as a fuel flow layer sensor, throttle opening sensor, or fuel tank pressure sensor can be used.Furthermore, the fuel supply device 65 of this example is an LPG dedicated edge 20,
It can also be used in engines that run in combination with gasoline.

(発明の効果) 本発明i−i、2段減圧式ベーパライザの一次減圧室の
機構を7次減圧室とほぼ同様の機1苛として、2次室圧
力を/火室圧力エリ低い正圧値とし、燃料量制御部の開
口面積をアクチュエータで制御することによって、空燃
比を安定感せた状態で十分な燃料量を確保し、エンジン
の体積効率を高めて出力を向上させるとともに、出方向
上に↓つて最終減速比を小さくしエンジンの使用回転数
を下げて燃費の向上を図ることができる効果がある。
(Effects of the invention) The present invention ii, the mechanism of the primary decompression chamber of the two-stage decompression vaporizer is almost the same as the seventh decompression chamber, and the secondary chamber pressure / firebox pressure area is a low positive pressure value. By controlling the opening area of the fuel amount control section with an actuator, a sufficient amount of fuel is secured with a stable air-fuel ratio, increasing the engine's volumetric efficiency and output, and increasing the output direction. ↓This has the effect of reducing the final reduction ratio and lowering the number of revolutions used by the engine, thereby improving fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来実施例の比較特性図、第2図は本発明の構
成を明示する全体構成図%第3図は本発明の一実施例の
説明図、第1図はその電気回路図、第S図はそのブロー
チヤード図、第乙図はその特性図である。 1・・・ベーバフィザ 2・・・/次側ダイアフラム室
3・・・燃料タンク 4,1o・・・ダイアフラム5.
11・−・調圧スプリング6・・・/次側減圧弁7・・
・LPGエンジン 8・・・吸気系9・・・2次側ダイ
アフラム% 12−2次側減圧弁13・・・燃料供給通
路 14.16・・・アクチュエータ15・・・開閉弁
 17・・・燃料量制御弁出願人 愛三工業株式会社 代理人 弁理士岡田英 彦 −X −=日 へφF □ べ 恨寵恐賛−ジ窺!ち・眞 第5図 箒 6 図
Fig. 1 is a comparative characteristic diagram of a conventional embodiment, Fig. 2 is an overall configuration diagram clearly showing the structure of the present invention, Fig. 3 is an explanatory diagram of an embodiment of the present invention, Fig. 1 is an electric circuit diagram thereof, Figure S is its broach yard diagram, and Figure O is its characteristic diagram. 1... Baber fuser 2.../Next side diaphragm chamber 3... Fuel tank 4, 1o... Diaphragm 5.
11.--Pressure regulating spring 6.../Next side pressure reducing valve 7...
・LPG engine 8...Intake system 9...Secondary side diaphragm% 12-Secondary side pressure reducing valve 13...Fuel supply passage 14.16...Actuator 15...Opening/closing valve 17...Fuel Quantity control valve applicant: Aisan Kogyo Co., Ltd. Agent: Patent attorney Hidehiko Okada Chi Makoto Figure 5 Broom Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1) LPGを気化・減圧するペーパフィザの7次側
ダイアプラム室とベーパフィザの燃料入口との間に、/
次側ダイアフラム室内の圧力が少なくトモ/次側ダイア
フヲム室のダイアフラムヲ押圧する調圧スプリングの付
勢力で定する7次側設定圧力より大きくなったときに閉
じる/次側減圧弁を設け、LPGエンジンの吸気系に接
続された前記ベーパフィザの2次側ダイアプラム室と前
記7次側ダイアプラム室との間に、2次側ダイア−フラ
ム室内の圧力が少なくとも2次側ダイアプラム室のダイ
アフラムを押圧する調圧スプリングの付勢力で定する前
記7次側設定圧力より低い正圧のΩ次側設定圧力より大
きく々ったときに閉じる一次側減圧弁を設け、かつ、L
PGエンジンの吸気系と2次側ダイアプラム室との間の
燃料供給通路に、アクチュエータ駆動の開閉弁と前記燃
料供給通路の通路面積を変化させるアクチュエータ駆動
の燃料量制御弁とを設けることを特徴とするLPGエン
ジンの燃料供給装置。
(1) A /
Closes when the pressure in the next diaphragm chamber is low and exceeds the seventh set pressure determined by the urging force of the pressure regulating spring that presses the diaphragm in the next diaphragm chamber. A pressure regulator is provided between the secondary diaphragm chamber and the seventh diaphragm chamber of the vapor fuser connected to the intake system of A primary side pressure reducing valve is provided which closes when the positive pressure lower than the seventh set pressure determined by the biasing force of a spring is greater than the set pressure on the next side, and
The fuel supply passage between the intake system and the secondary diaphragm chamber of the PG engine is provided with an actuator-driven on-off valve and an actuator-driven fuel amount control valve that changes the passage area of the fuel supply passage. Fuel supply system for LPG engine.
(2)開閉弁駆動のアクチュエータが電磁石装置である
ことを特徴とする特許請求の範囲第1項に記載のLPG
エンジンの燃料供給装置。
(2) The LPG according to claim 1, wherein the actuator for driving the on-off valve is an electromagnetic device.
Engine fuel supply system.
(3)燃料量制御弁駆動のアクチュエータがステップモ
ータであることを特徴とする特許請求の範囲第1項に記
載のLPGエンジンの燃料供給@置。
(3) The fuel supply @ for an LPG engine according to claim 1, wherein the actuator for driving the fuel amount control valve is a step motor.
JP58190178A 1983-10-11 1983-10-11 Fuel supply device in lpg engine Granted JPS6081455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190178A JPS6081455A (en) 1983-10-11 1983-10-11 Fuel supply device in lpg engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190178A JPS6081455A (en) 1983-10-11 1983-10-11 Fuel supply device in lpg engine

Publications (2)

Publication Number Publication Date
JPS6081455A true JPS6081455A (en) 1985-05-09
JPH0251068B2 JPH0251068B2 (en) 1990-11-06

Family

ID=16253740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190178A Granted JPS6081455A (en) 1983-10-11 1983-10-11 Fuel supply device in lpg engine

Country Status (1)

Country Link
JP (1) JPS6081455A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100012A (en) * 1976-02-18 1977-08-22 Nissan Motor Co Ltd Exhaust gas purificting lpg engine
JPS5484425U (en) * 1977-11-29 1979-06-15
JPS60159357A (en) * 1984-01-27 1985-08-20 Aisan Ind Co Ltd Fuel supply device for liquefied-petroleum-gas engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100012A (en) * 1976-02-18 1977-08-22 Nissan Motor Co Ltd Exhaust gas purificting lpg engine
JPS5484425U (en) * 1977-11-29 1979-06-15
JPS60159357A (en) * 1984-01-27 1985-08-20 Aisan Ind Co Ltd Fuel supply device for liquefied-petroleum-gas engine

Also Published As

Publication number Publication date
JPH0251068B2 (en) 1990-11-06

Similar Documents

Publication Publication Date Title
EP0064373A1 (en) Gaseous fuel carburetion
JPS63302161A (en) Idling engine speed control device
JP2885936B2 (en) Air supply system for internal combustion engines
WO2002031337A1 (en) Mixer for gas fuel
JPS6081455A (en) Fuel supply device in lpg engine
US4572134A (en) Double carburetor
US4347817A (en) Idle circuit shut-off valve
JP2959312B2 (en) Gas fuel combined system for diesel engine
JPS6233096Y2 (en)
JP2882222B2 (en) Vaporizer pressure regulator
JP7383998B2 (en) Bi-fuel car fuel injection system
JP2884925B2 (en) Fuel tank pressure controller
JPS60159357A (en) Fuel supply device for liquefied-petroleum-gas engine
JPS5888445A (en) Fuel-preceding electronically-controlled carburetter
JPH062619A (en) Gas fuel supply system of engine
JP3333808B2 (en) Gas fueled engine with pressure regulator
JPH0243026B2 (en)
JPS6324138B2 (en)
JPH0326304Y2 (en)
WO1998021463A9 (en) Gaseous fuel supply control and fuel vaporiser
WO1998021463A1 (en) Gaseous fuel supply control and fuel vaporiser
JPH0724608Y2 (en) Engine fuel controller
KR100240390B1 (en) Air fuel ratio adjusting device for gas fuel vehicle
JPS61106958A (en) Fuel supply method of lpg engine
JPS6149158A (en) Fuel cut control device of internal-combustion engine