JPH03126006A - Image pickup optical system - Google Patents

Image pickup optical system

Info

Publication number
JPH03126006A
JPH03126006A JP1263867A JP26386789A JPH03126006A JP H03126006 A JPH03126006 A JP H03126006A JP 1263867 A JP1263867 A JP 1263867A JP 26386789 A JP26386789 A JP 26386789A JP H03126006 A JPH03126006 A JP H03126006A
Authority
JP
Japan
Prior art keywords
aperture
image
optical system
scope
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1263867A
Other languages
Japanese (ja)
Other versions
JP2876222B2 (en
Inventor
Yoshiharu Takasugi
芳治 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1263867A priority Critical patent/JP2876222B2/en
Priority to US07/596,074 priority patent/US5270825A/en
Publication of JPH03126006A publication Critical patent/JPH03126006A/en
Application granted granted Critical
Publication of JP2876222B2 publication Critical patent/JP2876222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of moire fringes by dropping the space frequency characteristics of the case in which the intensity distribution of the image point by the different sizes of the aperture changes and the aperture is small as the optical system has spherical aberrations and the approximate shape of the aberration curve changes with a change in the aperture. CONSTITUTION:An object image is formed on the end face of an image guide 3 by an objective lens 2 of a fiber scope 1 and the transmitted image is magnified by an eyepiece lens 5 and is usually observed by naked eyes. The image pickup optical system 7 is provided in order to form the image of this fiber scope 1 on the photodetecting surface of the image pickup element 8 of the image pickup device 6. The rays passing the aperture part larger than the aperture (a) generates the smaller aberration if the scope 1 of the larger aperture is used. The ratio at which the rays emitted from certain one point on the object gather near the ideal image forming point is higher with the larger aperture when the rays gathering near the image forming point and the rays gathering to the peripheral part thereof are compared if the scope 1 having the aperture of about (a) and the scope 1 having the aperture larger than this aperture are used. The generation of the moires is prevented in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば内視鏡等のイメージガイドファイバー
などにより伝送された像を損保素子上に結像させるため
に用いられる撮像光学系に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an imaging optical system used for forming an image transmitted by an image guide fiber of an endoscope or the like onto a non-life insurance element. It is.

[従来の技術] 最近の内視鏡による診断では、内視鏡の接眼部に小型の
テレビカメラを接続してのテレビモニター観察がよく行
なわれている。しかし、内視鏡等で用いられるイメージ
ガイドファイバーは、規則的な配列構造をしており又テ
レビカメラ等に使われているCCD等の撮像素子の受光
部も規則的な構造であり、そのため互いに干渉しあって
一般にエリアシング、モアレ等と呼ばれている偽信号が
モニター上に現われる。
[Prior Art] In recent diagnosis using an endoscope, a small television camera is connected to the eyepiece of the endoscope and observation is often performed on a television monitor. However, the image guide fibers used in endoscopes, etc. have a regular array structure, and the light-receiving parts of image pickup devices such as CCDs used in television cameras, etc., also have a regular structure. Due to interference, false signals generally called aliasing, moiré, etc. appear on the monitor.

このようなモアレ縞等がモニター上に現われると、画面
全体が見にく(なるばかりが、診断の際病変部を見落と
し、誤診をするおそれがある。
When such moire fringes appear on the monitor, it becomes difficult to see the entire screen (not only that, but there is a risk that the lesion may be overlooked during diagnosis and a misdiagnosis may be made).

このようなモアレ縞を除去するためには、内視鏡のイメ
ージファイバー径により決まる像面上での空間周波数帯
域もしくは搬像素子のナイキスト周波数程度の空間周波
数におけるレスポンスを零とすればよい、これによって
イメージガイドファイバーが持つ比較的高い空間周波数
成分の低空間周波数帯域への折り返しを防ぐことが出来
るために、モアレ縞の原因となる偽信号発生を防止でき
る。
In order to remove such moiré fringes, it is sufficient to make the response in the spatial frequency band on the image plane determined by the endoscope's image fiber diameter or the spatial frequency around the Nyquist frequency of the image carrier to zero. Since it is possible to prevent the relatively high spatial frequency components of the image guide fiber from being folded back into the low spatial frequency band, it is possible to prevent the generation of false signals that cause moiré fringes.

しかし内視鏡には多くの種類があり、又内視鏡ごとにイ
メージファイバーの径や接眼レンズの倍率が異なる場合
が多く、像面上の特定空間周波数だけのレスポンをすべ
て零にすることは出来ない。
However, there are many types of endoscopes, and the diameter of the image fiber and the magnification of the eyepiece often differ depending on the endoscope, so it is impossible to eliminate all responses of a specific spatial frequency on the image plane. Can not.

また、撮像素子のナイキスト周波数程度の空間周波数の
レスポンを零にするとしても1通常イメージファイバー
は、規則的な構造を持っているため、基準となる空間周
波数は、ある方向性をもっている。つまり撮像素子の受
光部と干渉しやすい方向が幾つかあるために、モアレ縞
の発生を防ぐためには、各方向での空間周波数を零にし
なければならない。
Further, even if the response of a spatial frequency around the Nyquist frequency of the image pickup device is made zero, since a normal image fiber has a regular structure, the reference spatial frequency has a certain directionality. In other words, since there are several directions that are likely to interfere with the light receiving section of the image sensor, the spatial frequency in each direction must be set to zero in order to prevent the occurrence of moiré fringes.

そのため、一般には水晶板等の複屈折板や位相フィルタ
ー等の光学的ローパスフィルターを複数構成したものを
結像光路中に設けることによってモアレの除去を行なっ
ている。
Therefore, moiré is generally removed by providing a plurality of birefringent plates such as quartz plates and optical low-pass filters such as phase filters in the imaging optical path.

しかしこの場合も最も強くモアレが発生する場合に合わ
せなければならず、そのため光学的ローパスフィルター
の構成枚数が多くなり、光学的ローパスフィルター全体
が大きくなるために光学系をコンパクトになし得ない。
However, in this case as well, it is necessary to match the case where moiré is most likely to occur, and as a result, the number of optical low-pass filters required increases, and the overall size of the optical low-pass filter increases, making it impossible to make the optical system compact.

また多くの光学的ローパスフィルターを使用するので非
常に高価なものになる。
It also uses many optical low-pass filters, making it very expensive.

また前記のようにモアレの強いものに光学的ローパスフ
ィルターの構成を合わせることが多いために、逆にモア
レの弱いものと組合わせた時には、モアレ除去効果が大
きすぎて解像力の低下をまねく。
Furthermore, as mentioned above, since the structure of an optical low-pass filter is often matched to a filter with strong moiré, when it is combined with a filter with weak moiré, the moire removal effect is too great, resulting in a decrease in resolution.

そのために、各内視鏡に応じて、モアレ除去効果の異な
る光学的ローパスフィルターを交換して使用すれば、常
に最適な解像力を得ることが出来る。しかしこの方法で
は交換に手間がかかり、各内視鏡ごとに別々の光学的ロ
ーパスフィルターを用意しなければならない欠点を有し
ている。
For this reason, by replacing and using optical low-pass filters with different moiré removal effects depending on each endoscope, optimal resolution can always be obtained. However, this method requires time and effort to replace, and has the disadvantage that a separate optical low-pass filter must be prepared for each endoscope.

また、モアレ除去のための他の手段として、例えば特開
平1−1269465に記載されているようなデフォー
カスによるものがある。これは、像面を最良像面位置か
ら少しずらした位置に設定することによって、画像にピ
ンボケ状態を与え、モアレを除去するものである。この
方法は、例えば光学的ローパスフィルターとして水晶板
を使用した時に、水晶の複屈折性を利用して一つの像を
二つに分離させて、全体としである程度のぼけを有する
像を作り出すのと同じである。
Further, as another means for removing moire, there is a method using defocusing as described in, for example, Japanese Patent Application Laid-Open No. 1-1269465. In this method, the image plane is set at a position slightly shifted from the best image plane position, thereby giving an out-of-focus state to the image and removing moiré. This method, for example, uses the birefringence of the crystal to separate one image into two when using a quartz plate as an optical low-pass filter, creating an image with a certain degree of blur as a whole. It's the same.

このぼけ量としては、撮像素子のナイキスト周波数に対
するレスポンスを落とすか、イメージガイドファイバー
による像面上の特定空間周波数のレスポンスを落とすよ
うに設定すれば、ファイバーを伝送した画像を撮像素子
の各絵素ごとにサンプリングすることにより発生するフ
ァイバー構造の高次のスペクトルを抑えられるためにモ
アレ除去を行なうことが出来る。
The amount of blur can be reduced by reducing the response to the Nyquist frequency of the image sensor, or by reducing the response of a specific spatial frequency on the image plane of the image guide fiber. Moiré can be removed because high-order spectra of the fiber structure generated by sampling each time can be suppressed.

しかしながら、通常の光学系は、高空間周波数領域でも
かなりのレスポンスを持っており、所望の空間周波数を
おとすためには、デフォーカス量が多くなり、又デフォ
ーカスを行なったことによる像面上の応答特性も、水晶
板などの光学的ローパスフィルターを使用した場合とは
異なり直線的になる。そのために、モアレ除去のため低
空間周波数を零にしようとするとそれ以下の周波数のレ
スポンも落ち、解像力が低下する。逆に解像力が低下し
ないようにするとモアレ除去が充分でなくなる。
However, a normal optical system has a considerable response even in a high spatial frequency region, and in order to reduce the desired spatial frequency, the amount of defocus must be increased, and the The response characteristics are also linear, unlike when using an optical low-pass filter such as a quartz plate. Therefore, when trying to reduce the low spatial frequency to zero in order to remove moiré, the response at lower frequencies also drops, resulting in a decrease in resolution. On the other hand, if the resolution is not reduced, moire removal will not be sufficient.

更に前述のように内視鏡の種類が多いためそれに対応し
てデフォーカス量を設定しなければならない等の問題も
ある。
Furthermore, as mentioned above, since there are many types of endoscopes, there are also problems such as the need to set the defocus amount accordingly.

[発明が解決しようとする課題1 本発明の目的は、種々の内視鏡とテレビカメラを組合わ
せた時、特に光学的ローパスフィルター等を使用しなく
ともモアレ縞の発生を十分除去できかつ解像力の低下を
まねくことのない小型性能の良好な撮像光学系を提供す
ることにある。
[Problem to be Solved by the Invention 1] The object of the present invention is to provide a system that can sufficiently remove moiré fringes and provide high resolution when various endoscopes and television cameras are combined, without the use of an optical low-pass filter or the like. An object of the present invention is to provide a small-sized, high-performance imaging optical system that does not cause a decrease in image quality.

[課題を解決す名ための手段] 本発明の撮像光学系は、内視鏡の接眼部に取付けて、特
定の周波数帯域を含んでいる画像を撮像素子上に結像さ
せるための光学系で、特定の収差特に球面収差を有して
いて開口の変化に伴い該収差曲線の略形状が変化するた
めに開口の大小による点像の強度分布が変化して開口の
小さい場合の空間周波数特定を落すようにしたものであ
る。
[Means for Solving the Problems] The imaging optical system of the present invention is an optical system that is attached to the eyepiece of an endoscope and forms an image containing a specific frequency band on an image sensor. When the aberration curve has a specific aberration, especially spherical aberration, and the approximate shape of the aberration curve changes as the aperture changes, the intensity distribution of the point image changes depending on the size of the aperture, making it difficult to identify the spatial frequency when the aperture is small. It was designed so that it would drop.

第1図は本発明の撮像光学系を用いたものの全体構成の
概略図であって、例えば内視鏡のようにイメージガイド
ファイバーによって伝送された画像を、本発明の撮像光
学系を通して撮像素子の受光面上に結像させるものであ
る。この図において、ファイバースコープ1の対物レン
ズ2によってイメージガイド3の端面に物体像を結像さ
せる。このイメージガイドファイバー3によって伝送さ
れた画像は、接眼レンズ5によって拡大され通常肉眼観
察される。このファイバースコープlの画像を撮像装置
6の撮像素子8の受光面上に結像させるために撮像光学
系7が設けられている。
FIG. 1 is a schematic diagram of the overall configuration of an apparatus using the imaging optical system of the present invention. For example, in an endoscope, an image transmitted by an image guide fiber is transmitted through the imaging optical system of the present invention to an image sensor. It forms an image on the light receiving surface. In this figure, an object image is formed on the end surface of an image guide 3 by an objective lens 2 of a fiberscope 1. The image transmitted by the image guide fiber 3 is magnified by the eyepiece 5 and usually observed with the naked eye. An imaging optical system 7 is provided to form the image of the fiberscope 1 onto the light receiving surface of the imaging element 8 of the imaging device 6.

ここで内視鏡のイメージガイドファイバーは、穀に六方
稠密構造をなしていて規則的に配列されている。そのた
めに前述のようにモアレ縞が発生する。
The image guide fibers of the endoscope are regularly arranged in a hexagonal close-packed structure. As a result, moiré fringes occur as described above.

次に撮像光学系に特定収差を発生させてのモアレ縞の除
去について説明する。
Next, removal of moiré fringes by generating a specific aberration in the imaging optical system will be explained.

一般にソフトフォーカスといわれているもので、光学系
に特定の収差特に球面収差を発生させることによっての
画(象のぼけを利用することがある。
This is generally referred to as soft focus, and is created by generating specific aberrations, particularly spherical aberrations, in the optical system (sometimes using the image blurring effect).

球面収差は、軸上でも軸外でも存在し光軸に対して対称
であると云う特徴を有している。一般に光学系に球面収
差がある場合、光束の収差状況は、簡単のために3次の
球面収差のみを考えると、第2図に示す通りである。ガ
ラス像面近傍の像面では、第3図のように火線と交わっ
てできる円環り、と他の光束との交わりによってできる
円板状の像L2が出来る。この円環L1と像L2の大き
さが等しいところつまりFoに像面をもって来ると光束
径(錯乱円)が第3図(B)のように最も小さくなる。
Spherical aberration exists both on-axis and off-axis, and has the characteristic that it is symmetrical with respect to the optical axis. Generally, when an optical system has spherical aberration, the aberration situation of the light beam is as shown in FIG. 2, considering only the third-order spherical aberration for simplicity. On the image plane near the glass image plane, as shown in FIG. 3, a circular ring formed by intersecting the caustic line and a disk-shaped image L2 formed by the intersection with other light beams are formed. When the image plane is brought to a point where the size of the ring L1 and the image L2 are equal, that is, Fo, the beam diameter (circle of confusion) becomes the smallest as shown in FIG. 3(B).

この時の像面がこの場合の最良像面となり、ここから前
後に少しでもずれると光束径が大きくなる。この第2図
に示すものは、球面収差が補正不足の場合であるが、第
4図に示す補正過剰の場合も同様である。ただし球面収
差の5次、7次のような高次の項が入って来ると、前記
の火線の形状や球面収差曲線の様子も異なり、複雑にな
って来るが基本的考え方は同じである。
The image plane at this time is the best image plane in this case, and if there is even a slight deviation forward or backward from this, the beam diameter increases. What is shown in FIG. 2 is a case where the spherical aberration is under-corrected, but the same applies to the case where the spherical aberration is over-corrected as shown in FIG. However, when higher-order terms such as the 5th and 7th orders of spherical aberration are introduced, the shape of the caustic line and the appearance of the spherical aberration curve become different and become more complicated, but the basic idea remains the same.

次に内視鏡用として必要な球面収差について述べる。Next, we will discuss the spherical aberration required for endoscopes.

通常、内視鏡の接眼部に取付ける撮像光学系は、接眼部
の絞り径によって開口が決まる前置絞りタイプの光学系
になる。ところで開口が小さいスコープは、ファイバー
画像が小さいので、一般に接眼倍率が大きい、そのため
像面上のファイバー構造による特定空間周波数は低(な
る、したがって低空間周波数のレスポンス(MTF)を
おとすために必要なぼけ量は太き(なり、最良像面を基
準に考えた場合、像面のデフォーカス量が大きくする必
要がある。逆に開口が大きい場合には、接眼倍率が小さ
いので、特定空間周波数は高くなり、この高い周波数の
レスポンスをおとすために必要なぼけ量は小さくなる。
Typically, the imaging optical system attached to the eyepiece of an endoscope is a front aperture type optical system whose aperture is determined by the aperture diameter of the eyepiece. By the way, a scope with a small aperture generally has a large ocular magnification because the fiber image is small, so the specific spatial frequency due to the fiber structure on the image plane is low (therefore, it is necessary to reduce the low spatial frequency response (MTF)). The amount of blur is thick (this means that when considering the best image plane as the standard, the amount of defocus of the image plane must be large. Conversely, if the aperture is large, the eyepiece magnification is small, so the specific spatial frequency is The amount of blur required to reduce this high frequency response becomes smaller.

以上のように開口の小さいスコープでは、ぼけ量つまり
像面上での錯乱円が大きいことが必要であり、開口の大
きなスコープでは、像面上での錯乱円は小さくて済む6 内視鏡にとって必要なのは、画面全体がぼけていてモア
レ縞が発生しないが、ある程度の必要とする解像力を有
していることである。更に開口の小さいスコープと組合
わせた場合に、光学系の周波数特性をある程度低下させ
るが、開口の大きなスコープでは、その特性をあまり低
下させないことが必要である。
As mentioned above, a scope with a small aperture requires a large amount of blur, or a large circle of confusion on the image plane, whereas a scope with a large aperture requires a small circle of confusion on the image plane6. What is required is that the entire screen is blurred and no moiré fringes occur, but that it has a certain level of resolving power. Furthermore, when combined with a scope with a small aperture, the frequency characteristics of the optical system are degraded to some extent, but with a scope with a large aperture, it is necessary that the characteristics are not degraded too much.

次に第5図に示すような通常の球面収差曲線(横収差)
の場合は、開口が大きいほど光線高が大になるため収差
発生量も大になる。そのため開口の大きいスコープの方
が低空間周波数におけるレスポンスの、下が大きく、モ
アレ縞の除去効果以上に解像力の低下をまねく。
Next, a normal spherical aberration curve (lateral aberration) as shown in Figure 5
In the case of , the larger the aperture, the greater the height of the ray of light, and the greater the amount of aberration. Therefore, a scope with a larger aperture has a larger lower response at low spatial frequencies, which causes a reduction in resolution more than the moiré fringe removal effect.

又第6図に示すような球面収差の場合、ある開口aでの
収差量が最大になっている。この場合、開口の大きいス
コープを用いた場合、開口aよりも大きな開口部分を通
過する光線の収差発生量は小さい、そのため開口がa程
度のスコープと、これよりも大きい開口のスコープとを
用いた場合、物体上のある一点から出射した光線が開口
の各部分を通過して理想結像点近傍に集まるものと、そ
の周辺部に集まるものとでは、開口が大きい方が光線全
体としてみた場合、理想結像点近傍に集まる割合が大で
ある。
In the case of spherical aberration as shown in FIG. 6, the amount of aberration is maximum at a certain aperture a. In this case, when a scope with a large aperture is used, the amount of aberration generated by light rays passing through an aperture larger than aperture a is small, so a scope with an aperture of approximately a and a scope with an aperture larger than this are used. In this case, when a ray of light emitted from a point on an object passes through each part of the aperture and converges near the ideal imaging point, and another converges around the ideal image point, the one with a larger aperture is considered as a whole, A large proportion of the images gather near the ideal imaging point.

したがって開口が大きい場合でも空間周波数特性を著し
く劣化させることなく、逆に開口の小さい場合よりも特
性のよいものが得られる。つまり実際に使用しようとす
るスコープで最も開口の小さいものを用いた時に球面収
差の量が最大になるようにし、それよりも開口の大きい
ものは収差の量をなるべく小さくするようにすることが
必要である。
Therefore, even when the aperture is large, the spatial frequency characteristics do not deteriorate significantly, and on the contrary, better characteristics can be obtained than when the aperture is small. In other words, it is necessary to maximize the amount of spherical aberration when using the scope with the smallest aperture of the scope you are actually trying to use, and to minimize the amount of aberration when using a scope with a larger aperture. It is.

以上述べたように1本発明においては、光学系に球面収
差を発生させ開口の大小によりその収差曲線のおおよそ
の形状が変化することのために開口の大小による点像強
度分布が変化しそれによって開口の小さい場合の空間周
波数特性をおとすようにしたものである。
As described above, in the present invention, spherical aberration is generated in the optical system and the approximate shape of the aberration curve changes depending on the size of the aperture, so the point image intensity distribution changes depending on the size of the aperture. This is designed to reduce the spatial frequency characteristic when the aperture is small.

この発明の撮像光学系としては、開口の小さいところで
ある程の収差量を有していて、開口の大きいところでは
収差が充分に補正されている球面収差を有するものであ
ることが好ましい。
It is preferable that the imaging optical system of the present invention has a certain amount of aberration at a small aperture, and spherical aberration whose aberration is sufficiently corrected at a large aperture.

一般に正レンズの場合に発生する球面収差は、補正不足
の状態であり、光線高の増加に伴い球面収差は単調に増
加する。
Generally, the spherical aberration that occurs in the case of a positive lens is under-corrected, and the spherical aberration monotonically increases as the ray height increases.

第5図は3次の球面収差を示したもので、実際にはこの
3次の球面収差の他に高次の球面収差が含まれている。
FIG. 5 shows third-order spherical aberration, and in reality, higher-order spherical aberrations are included in addition to this third-order spherical aberration.

ここで球面収差曲線をある所望の形状にしようとする場
合、5次や7次の高次の項が必要になって来る。この時
球面収差以外の収差に影響を与えずに球面収差を変える
には、光学系を球面レンズだけで構成するよりも非球面
レンズを用いた方がよい。
If the spherical aberration curve is to have a certain desired shape, higher-order terms such as the 5th and 7th orders become necessary. At this time, in order to change the spherical aberration without affecting aberrations other than the spherical aberration, it is better to use an aspherical lens than to configure the optical system only with spherical lenses.

通常、球面収差は、光学系を通過する光線の光線高が高
いほど大であり又光学系の焦点距離が短いほど発生量が
大きい。それは、正の単レンズに光線が入射する時、光
軸からレンズの周辺部に行(にしたがって光線の屈折作
用が徐々に大きくなるためである。したがっである光線
高において発生している球面収差の量を更に大きくしよ
うとする場合には、この光線高でのレンズの屈折作用を
一層大きくしつまりレンズ面での屈折作用を一層大きく
すればよい、このレンズ面の屈折作用を太き(するため
には、この面の曲率半径を小さくすればよいが、その場
合他の光線高の光線に対する収差量も変化してしまう、
そのために各光線高の光線に対して所望の収差量になる
ようにするためには、非球面を用いることが好ましい、
つまり非球面を用いることにより通常の球面よりも高次
の収差を発生させやすい。又球面レンズだけで高次の収
差を発生させるにはレンズ系全体の構成や各レンズの形
状が大きく変ってしまいレンズの加工性が悪くなったり
、他の収差の補正が困難になることがある。
Generally, the higher the height of the ray of light passing through the optical system, the greater the spherical aberration, and the shorter the focal length of the optical system, the greater the amount of spherical aberration produced. This is because when a ray of light enters a positive single lens, the refraction of the ray gradually increases as it moves from the optical axis to the periphery of the lens.Therefore, spherical aberration occurs at a certain ray height. If you want to further increase the amount of rays, you can increase the refraction of the lens at this ray height, that is, increase the refraction of the lens surface. In order to achieve this, the radius of curvature of this surface can be made smaller, but in that case, the amount of aberration for light rays at other ray heights will also change.
Therefore, in order to obtain the desired amount of aberration for the rays at each ray height, it is preferable to use an aspheric surface.
In other words, by using an aspherical surface, higher-order aberrations are more likely to occur than with a normal spherical surface. Furthermore, in order to generate high-order aberrations using only a spherical lens, the structure of the entire lens system and the shape of each lens must change significantly, which may impair the machinability of the lens and make it difficult to correct other aberrations. .

ここでいう屈折作用を大きくするということは、正レン
ズの場合はその収束作用つまりレンズの正のパワーを強
くすることであり、負レンズの場合は、その発散作用つ
まりレンズの負のパワーを強くすることである。
Increasing the refractive effect here means, in the case of a positive lens, increasing its converging effect, or the positive power of the lens, and in the case of a negative lens, increasing its diverging effect, or the negative power of the lens. It is to be.

また前述のように、球面収差の発生量は、光学系の焦点
距離、レンズの屈折作用さらに非球面を設けた場合の各
光線高における基準球面からのずれ量に関係している。
Further, as described above, the amount of spherical aberration generated is related to the focal length of the optical system, the refractive effect of the lens, and the amount of deviation from the reference spherical surface at each ray height when an aspherical surface is provided.

尚基準球面とは光軸近傍で非球面と接する球面のことで
ある。また光軸を基準にして高さ1.のどころでの球面
からのずれ量Δ2は、非球面が基準球面から光線の進行
方向へずれた場合を正、逆方向へずれた場合を負とする
。ここでずれ量が符号が同じ負の値であってもレンズの
パワーの変化が異なることがある0例えば第7図のよう
にずれ量は負であるが周辺部のレンズのパワーは弱くな
るが第8図のようにずれ工は負であるが周辺部のレンズ
のパワーは強くなる。このことは負レンズにおいても同
じである。つまり非球面をレンズの物体側に設けるか像
側に設けるか、又基準面が物体側に凹面を向けた面であ
るか凸面を向けた面であるかによって、ずれる方向が同
じであっても(ΔZの符号が同じであっても)レンズの
パワーの変化は必ずしも同じにはならなl/X。
Note that the reference spherical surface is a spherical surface that touches an aspherical surface near the optical axis. Also, the height is 1.5 mm with respect to the optical axis. The amount of deviation Δ2 from the spherical surface at the beginning is positive when the aspherical surface deviates from the reference spherical surface in the direction in which the light ray travels, and negative when it deviates in the opposite direction. Here, even if the amount of deviation is a negative value with the same sign, the change in the lens power may be different. For example, as shown in Figure 7, although the amount of deviation is negative, the power of the lens in the peripheral area becomes weaker. As shown in FIG. 8, although the deviation is negative, the power of the lens in the peripheral area becomes stronger. This also applies to negative lenses. In other words, depending on whether the aspheric surface is provided on the object side or the image side of the lens, and whether the reference surface is a surface with a concave surface facing the object side or a surface with a convex surface, even if the direction of deviation is the same, The change in lens power is not necessarily the same (even if the sign of ΔZ is the same) l/X.

一般に非球面は次の式で表わすことができる。Generally, an aspherical surface can be expressed by the following formula.

z = Cy”/(1+ r「■v?) + By” 
+ Ey’ + Fy’ + ・・−ここでz、yは光
軸をZ軸にとり像の方向を正方向とし、非球面と光軸と
の交点を原点としてZ軸に直交する方向をy軸にした座
標系の座標値、Cは光軸近傍でこの非球面と接する円の
曲率半径の逆数、Pは非球面の形状を表わすパラメータ
B、E、F、・・・は夫々2次、4次、6次、・・・の
非球面係数である。尚P=lでB、E、F、・・・がす
べて0の場合は、上記の式は球面を表わす。
z = Cy"/(1+ r"■v?) + By"
+ Ey' + Fy' + ...-Here, z and y have the optical axis as the Z axis, the direction of the image as the positive direction, and the intersection of the aspherical surface and the optical axis as the origin, and the direction perpendicular to the Z axis as the y axis. , C is the reciprocal of the radius of curvature of the circle that touches this aspherical surface near the optical axis, P is the parameter representing the shape of the aspherical surface, and parameters B, E, F, ... are quadratic, 4 These are the aspherical coefficients of order, sixth order, etc. If P=l and B, E, F, . . . are all 0, the above equation represents a spherical surface.

本発明の光学系において非球面を設けた場合、次の条件
fll を満足することが望ましい。
When an aspherical surface is provided in the optical system of the present invention, it is desirable that the following condition fll be satisfied.

fil   l X 10−5< lΔ21/f< 5
 X 10−まただしΔ2は開口が最大のときの前記非
球面を通人 遇するマージナル光線の線高における非球面の基準球面
からの光軸方向のずれ量、fは全系の焦点距離である。
fil X 10-5<lΔ21/f<5
X 10 - where Δ2 is the amount of deviation of the aspheric surface from the reference spherical surface in the optical axis direction at the line height of the marginal ray passing through the aspheric surface when the aperture is maximum, and f is the focal length of the entire system. .

前述のように球面収差の発生量は、一般に光線高が高く
なると大になるが、本発明においては、特に開口の大き
い場合、つまり光線高が高いところでの球面収差を抑え
る必要がある。
As mentioned above, the amount of spherical aberration generated generally increases as the height of the ray increases, but in the present invention, it is necessary to suppress the spherical aberration especially when the aperture is large, that is, at a place where the height of the ray is high.

条件fil の下限を越えると非球面による球面収差の
補正が十分でない。又この条件の上限を越えると収差補
正を行ないすぎることになり好ましくない。
If the lower limit of the condition fil is exceeded, the correction of spherical aberration by the aspheric surface will not be sufficient. Moreover, if the upper limit of this condition is exceeded, the aberration correction will be performed too much, which is not preferable.

[実施例] 次に本発明の撮像光学系の各実施例を示す。[Example] Next, embodiments of the imaging optical system of the present invention will be described.

実施例1 f=1.ooOF15.3  2ω= 12.966゜
I  H= 0.112 rl=美(絞り) d1=0.口l口1 r2=■ da= 0.0338    jl、= 1.5163
3r3= ■ d、= 0.1387 r4=■ d4=0.0274    Q、= 1.51633r
5=■ d、= 0.0947 1”6= −o、 5160  (非球面)d、= 0
.0338   71.= 1.65160ν、  =
64.15 ν2 =64.15 ν、  =58.52 r、= 0.2372 d7=0.0609     n4=1.71736 
   v、  =29.51ra=0.4516 d、t= 0.1827 re=1.7262 do” 0.1218    n−= 1.73400
   1/6  = 51.49r、。 =−0,53
82 d、。 =0.0169 r++  ”−51,7006 d、、  =0.169I  n5=1.74400 
   v、=44.73r+z  =−0,2970 d、2= 0.044On−= 1.78472   
vt = 25.71「+、 =−1,4354 d、3 =0.0271 rl == o。
Example 1 f=1. ooOF15.3 2ω = 12.966°I H = 0.112 rl = beauty (aperture) d1 = 0. Mouth l mouth 1 r2=■ da= 0.0338 jl,= 1.5163
3r3 = ■ d, = 0.1387 r4 = ■ d4 = 0.0274 Q, = 1.51633r
5=■ d, = 0.0947 1”6= -o, 5160 (Aspherical surface) d, = 0
.. 0338 71. = 1.65160ν, =
64.15 ν2 =64.15 ν, =58.52 r, = 0.2372 d7=0.0609 n4=1.71736
v, =29.51ra=0.4516 d,t=0.1827 re=1.7262 do” 0.1218 n-=1.73400
1/6 = 51.49r. =-0,53
82 d. =0.0169 r++ ”-51,7006 d,, =0.169I n5=1.74400
v,=44.73r+z=-0,2970 d,2=0.044On-=1.78472
vt = 25.71 "+, = -1,4354 d, 3 = 0.0271 rl == o.

d、4 ”0.0605  na=1.51633  
  v、=64.15rls  :OO 非球面係数 P=1.0000  、 B=0.10209E = 
0.29207 x 10  、 F = −0,18
885x 10”Δ Z =0.000948 実施例2 f  = 1.0000     F/14.2I H
= 0.071 2 ω=7.92@ r、=艶(絞り) d、= 0.0072 r2=■ d、: 0.0362   旧= 1.51633rs
= ■ d、= 0.1183 r4= 0.2077 (非球面) d 4= 0 、0821    n x = 1 、
71300r5ニー2.3524 d、= 0.0644 ra=−0,3082 d、= 0.0532    Q3= 1.75520
ry= 0.1928 d?= 0.1193 ra=0.7072 da= 0.0687    n−= 1.59270
=64.15 ν、  =53.84 ν、  =27.51 ν4 =35.29 re=−0.4648 r5: 3.1152 d.= 0.1132 d,= Q.0643 rs=−0.2677 d+o = 0.0362 ns=1.51633 ν5 =64.15 da= 0.053t nz=1.75520 ν3 =27.51 ry”0.1876 非球面係数 d,= o.1192 p  = i.oooo B = 0.14089 r,= 0.7285 E = 0.55469 ×10 F =−0.37135x 10’ ds:o.0687 n4= 1.59270 ν4 =35.29 Δ Z  =−0.000185 r.=−0.4113 実施例3 d.= 0.1131 f  = 1.000 F/14.2 2 ω=7.92” r+o ■ H=0.071 d,。
d, 4”0.0605 na=1.51633
v,=64.15rls :OO Aspheric coefficient P=1.0000, B=0.10209E=
0.29207 x 10, F = -0,18
885x 10”Δ Z =0.000948 Example 2 f = 1.0000 F/14.2I H
= 0.071 2 ω = 7.92 @ r, = luster (aperture) d, = 0.0072 r2 = ■ d,: 0.0362 old = 1.51633rs
= ■ d, = 0.1183 r4 = 0.2077 (aspherical surface) d 4 = 0, 0821 n x = 1,
71300r5 knee 2.3524 d, = 0.0644 ra = -0,3082 d, = 0.0532 Q3 = 1.75520
ry=0.1928d? = 0.1193 ra=0.7072 da= 0.0687 n-= 1.59270
=64.15 ν, =53.84 ν, =27.51 ν4 =35.29 re=-0.4648 r5: 3.1152 d. = 0.1132 d, = Q. 0643 rs=-0.2677 d+o=0.0362 ns=1.51633 ν5=64.15 da=0.053t nz=1.75520 ν3=27.51 ry”0.1876 Aspheric coefficient d,=o. 1192 p = i.oooo B = 0.14089 r, = 0.7285 E = 0.55469 ×10 F = -0.37135x 10' ds:o.0687 n4 = 1.59270 ν4 =35.29 Δ Z = −0.000185 r.=−0.4113 Example 3 d.=0.1131 f=1.000 F/14.2 2 ω=7.92” r+o ■ H=0.071 d,.

= 0.0361 ns=1.51633 ν5 =64.15 (絞り) r++ d.=0.0072 非球面係数 r2=■ P = 1.0000 B = 0.38924 XIO−’ d2= 0.0361 n+=1.51633 ν1 =64.15 E =−0.53838x 10 F : 0.37115 × 104 r3= (3) Δ Z = 0.000050 d.=0.1182 実施例4 r.= 0.2124 (非球面) f  = 1.0000 F/2.1 2 ω=13° d.= 0.0820 nt= 1.71300 ν2 : 53.84 ■ H=0.113 r+” ■ (絞り) =−1.1935 d+=0.0263 dll = 0.0392 r2=閃 r+t = 3.1698 d2= 0.0876 = 1.51633 ν鳳 = 64.15 d+2 = 0.0788 11.= 1.69680 ν6 =55.52 rs= (資) r+s = −1.4952 dz=0.1927 d13 : 0.2134 r4= ■ r+4 d.= 0.0876 n,= 1.51633 ν2 =64.15 d+4 = 0.0964 nt= 1.52000 νフ = 74.00 rs=■ r+s ds”0.0964 dl8 : 0.0175 ra=0.6745 (非球面) r+a d.= 0.1734 n−= 1.78590 ν3 =44.18 d+8 =0.1209 jla= 1.54869 ν8 = 45.55 rt=5.9213 r1テ d,= 0.0436 aCt =0.1577 n9= 1.54869 ν9 =45.55 r.=−1.1230 r+a d.= 0.0701 n4= 1.78472 ν4 = 25.71 dlll : 0.1323 neo = 1.54869 ν+o=45.55 ro=0.6375 r19 d.= 0.0816 dl9 =0.0175 rIo =3.4100 rgo dlG = 0.1165 jl,= 1.88300 ν5 =40.78 d2o : 0.3153 nl+ = 1.80610 ν++=40.95 「2 ra: o.7068 (非球面) (1+ : 0.0350 n+z = 1.51633 ?1■= 64.15 d.= 0.1734 ns” 1.78590 ν3 =44.18 r22 rt=5.8596 非球面係数 d,= 0.0438 P  = t.oooo B  = 0.76013 x lO〜 rlI: 1.6385 E == 0.35469 F = 0.63098 d.= 0.0700 ロ,= 1.78470 ν4 = 28.22 △ Z  =: 0.005588 r*=0.7826 実施例5 d.= 0.0832 f  = 1.000 F/2.1 2 ω=13.Ol゜ r+o =2.8652 ■ H=0.ll3 dIa = 0.1165 n,= 1.88300 ν5 = 40.78 (絞り) =−1.2074 d,=0.0263 dll = 0.0394 r2= ■ rI2 = −7.6465 d2= 0.0876 n,= 1.51633 ν1 =64.15 d+z = 0.0788 ns= 1.70154 ν6 =41.24 rz= ■ r+s  = 1.2684 dz=o.I926 d+z = 0.2097 r4= ■ rI4 d4= 0.0876 Q2= 1.51633 ν2 =64.15 dl4 : G.0963 nt= 1.52000 νフ = 74.00 「,= ■ rl6 ds”0.0963 dl+s = 0.0175 rs”■ dte = 0.4106 na=1.54869 ν8 =45.55 da= o.1926 r+y r4= 00 d+7 =0.0175 d.= 0.0876 n!= 1.51633 ν2 =64.15 rl8 rs=■ d+a =0.3152 fi,= 1.80610 ν9 = 40.95 d.= 0.0963 ra=0.6241 dI9 : 0.0350 = 1.51633 ν1。=64.15 d.= 0.1734 ns=1.78590 νコ : 44.18 r20 rt=−1.9996 非球面係数 d,= 0.0438 P = t.oooo E= 0.30802 ra=−0.8841 F  = o.16161 XIO ds”0.0700 n.= 1.78472 ν4 = 25.71 Δ Z  =−0.000698 re=0.6177 実施例6 d.= 0.0832 f  = 1.000 F/2.1 2 ω= 12.978’ r+o = −5.4879 ■ H=0.ll3 dlo = 0.1165 ns=1.88300 ν5 =40.78 (絞り) r++ =−1.0629 d.= 0.0263 dll =0.0394 r2=(資) rl1 = −29.7088 d.= 0.0876 nl = 1.51633 ν1 =64.tS d+2 = 0.0787 n,: IJ9700 ν6 =48.51 r+3 =−0,9127 ただしrl+ r!+・・・はレンズ各面の曲率半径、
d。
= 0.0361 ns = 1.51633 ν5 = 64.15 (aperture) r++ d. =0.0072 Aspherical coefficient r2=■ P = 1.0000 B = 0.38924 × 104 r3= (3) Δ Z = 0.000050 d. =0.1182 Example 4 r. = 0.2124 (aspherical surface) f = 1.0000 F/2.1 2 ω=13° d. = 0.0820 nt = 1.71300 ν2 : 53.84 ■ H = 0.113 r+” ■ (Aperture) = -1.1935 d+ = 0.0263 dll = 0.0392 r2 = Flash r + t = 3.1698 d2 = 0.0876 = 1.51633 ν = 64.15 d+2 = 0.0788 11. = 1.69680 ν6 = 55.52 rs = (fund) r+s = -1.4952 dz = 0.1927 d13: 0. 2134 r4= ■ r+4 d.= 0.0876 n,= 1.51633 ν2 = 64.15 d+4 = 0.0964 nt= 1.52000 νfu= 74.00 rs=■ r+s ds”0.0964 dl8: 0 .0175 ra=0.6745 (aspherical surface) r+a d. = 0.1734 n-= 1.78590 ν3 = 44.18 d+8 = 0.1209 jla= 1.54869 ν8 = 45.55 rt=5.9213 r1te d,= 0.0436 aCt =0.1577 n9= 1.54869 ν9 =45.55 r. =-1.1230 r+a d. = 0.0701 n4 = 1.78472 ν4 = 25.71 dlll : 0.1323 neo = 1.54869 ν+o=45.55 ro=0.6375 r19 d. = 0.0816 dl9 = 0.0175 rIo = 3.4100 rgo dlG = 0.1165 jl, = 1.88300 ν5 = 40.78 d2o: 0.3153 nl+ = 1.80610 ν++ = 40.95 "2 ra: o.7068 (Aspheric surface) (1+: 0.0350 n+z = 1.51633 ?1■= 64.15 d.= 0.1734 ns” 1.78590 ν3 =44.18 r22 rt=5.8596 Aspheric coefficient d, = 0.0438 P = t.oooo B = 0.76013 x lO~ rlI: 1.6385 E = = 0.35469 F = 0.63098 d. = 0.0700 b, = 1.78470 ν4 = 28 .22 △ Z =: 0.005588 r*=0.7826 Example 5 d.= 0.0832 f = 1.000 F/2.1 2 ω=13.Ol゜r+o =2.8652 ■ H=0 .ll3 dIa = 0.1165 n, = 1.88300 ν5 = 40.78 (aperture) = -1.2074 d, = 0.0263 dll = 0.0394 r2 = ■ rI2 = -7.6465 d2 = 0. 0876 n,= 1.51633 ν1 =64.15 d+z = 0.0788 ns= 1.70154 ν6 =41.24 rz= ■ r+s = 1.2684 dz=o.I926 d+z = 0.2097 r4= ■ rI4 d 4 = 0.0876 Q2= 1.51633 ν2 =64.15 dl4: G.0963 nt= 1.52000 νfu= 74.00 ",= ■ rl6 ds"0.0963 dl+s = 0.0175 rs"■ dte = 0.4106 na=1.54869 ν8 =45.55 da= o.1926 r+y r4= 00 d+7 =0.0175 d.= 0.0876 n!= 1.51633 ν2 =64.15 rl8 rs=■ d+a = 0.3152 fi,= 1.80610 ν9 = 40.95 d.= 0.0963 ra=0.6241 dI9: 0.0350 = 1.51633 ν1.=64.15 d.= 0.1734 ns=1. 78590 ν: 44.18 r20 rt=-1.9996 Aspheric coefficient d,= 0.0438 P=t. oooo E=0.30802 ra=-0.8841 F=o. 16161 ω = 12.978' r+o = -5.4879 ■ H = 0.ll3 dlo = 0.1165 ns = 1.88300 ν5 = 40.78 (aperture) r++ = -1.0629 d. = 0.0263 dll = 0.0394 r2 = (fund) rl1 = -29.7088 d. = 0.0876 nl = 1.51633 ν1 = 64.tS d+2 = 0.0787 n,: IJ9700 ν6 = 48.51 r+3 = -0,9127 However, rl+r!+... is the radius of curvature of each lens surface,
d.

d2.・・・は各レンズの肉厚および空気間隔、n +
 +nz、・・・は各レンズの屈折率、シ1.シ2.・
・・は各レンズのアラへ数である。
d2. ... is the wall thickness and air spacing of each lens, n +
+nz, . . . are the refractive index of each lens, and si1. C2.・
. . is the number for each lens.

実施例1は、第9図に示すように負のレンズ群と正のレ
ンズ群とからなる2群構成である。この実施例では光学
系の負のレンズ群の第1面(r6)を非球面にしている
。球面収差の発生量は、光線高が高い方が大きいが、こ
の実施例のように開口絞り近傍に非球面を設けることに
よって光線の対称性をとり特に非点収差がなるべく発生
しないようにしている。つまり非点収差や像面湾曲等が
大であると、像面位置を決めてもそこでの錯乱円か大き
くなり、球面収差がいかに適切なものになっていても、
所望のモアレ除去効果と解像力を得ることが出来なくな
る。
Embodiment 1 has a two-group configuration consisting of a negative lens group and a positive lens group, as shown in FIG. In this embodiment, the first surface (r6) of the negative lens group of the optical system is made an aspherical surface. The amount of spherical aberration generated is greater when the ray height is higher, but by providing an aspherical surface near the aperture stop as in this example, the rays are symmetrical and astigmatism is particularly prevented from occurring as much as possible. . In other words, if astigmatism, field curvature, etc. are large, the circle of confusion at the image plane position will become large, no matter how appropriate the spherical aberration is.
It becomes impossible to obtain the desired moire removal effect and resolution.

この実施例では、最大開口の時に球面収差が0になって
おり、開口比が約0.7のところで球面収差が最大にな
っている。
In this example, the spherical aberration is 0 at the maximum aperture, and the spherical aberration becomes maximum when the aperture ratio is approximately 0.7.

実施例2.3は夫々第10図、第11図のように正のレ
ンズ群、負のレンズ群、正のレンズ群からなるトリプレ
ットクイブの光学系である。
Embodiments 2 and 3 are triplet quive optical systems consisting of a positive lens group, a negative lens group, and a positive lens group as shown in FIGS. 10 and 11, respectively.

実施例2は、非球面を光学系の第1面(r4)に設けて
あり球面収差は負に発生しており、非球面の形状は、光
軸から離れるにしたがって徐々にゆるくなっている。
In Example 2, an aspherical surface is provided on the first surface (r4) of the optical system, and negative spherical aberration occurs, and the shape of the aspherical surface gradually becomes looser as it moves away from the optical axis.

実施例3は、実施例2と類似の構成であるが、球面収差
を正に発生させたために非球面の形状が実施例2とは逆
である。つまり光軸から離れるにしたがって徐々にきつ
くなっている。
Example 3 has a configuration similar to Example 2, but the shape of the aspherical surface is opposite to Example 2 because spherical aberration is generated exactly. In other words, it gradually becomes tighter as you move away from the optical axis.

実施例4.5は、夫々第12図、第13図のように正の
レンズ群、負のレンズ群、正のレンズ群圧のレンズ群の
4群4枚構成で、光学系の第1面(「6)が非球面であ
る。
Embodiment 4.5 has a four-element configuration in four groups: a positive lens group, a negative lens group, and a lens group with positive lens group pressure, as shown in FIGS. 12 and 13, respectively, and the first surface of the optical system is ('6) is an aspherical surface.

実施例4は、球面収差を負に発生させており、実施例5
は、球面収差を逆に発生させている。
Example 4 generates negative spherical aberration, and Example 5
conversely causes spherical aberration.

いずれの実施例も、最大開口に対して0.65〜0.7
程度のところで球面収差が最大になるようにしている。
In any of the examples, 0.65 to 0.7 with respect to the maximum aperture
The spherical aberration is maximized at a certain point.

次に実施例6は、第1.4図に示す通りで非球面を用い
ずに球面レンズのみで構成したものである。
Next, Example 6 is as shown in FIG. 1.4, and is composed only of spherical lenses without using an aspherical surface.

これら実施例では、最大開口の0.7程度のところで球
面収差が最大になるようにしているが、必要に応じて第
21図に示すように開口のもつと小さいところで最大収
差量になるようにすればよい、またもっと高次の球面収
差を発生させて、例えば第22図や第23図に示すよう
な球面収差を発生させてもよい。
In these embodiments, the spherical aberration is maximized at about 0.7 of the maximum aperture, but if necessary, as shown in FIG. Alternatively, higher-order spherical aberration may be generated, for example, as shown in FIGS. 22 and 23.

一層開口の小さいスコープを用いる場合には、それに応
じて球面収差曲線の最大収差発生時の開口をもっと低く
設定すればよい。
When using a scope with a smaller aperture, the aperture when the maximum aberration of the spherical aberration curve occurs may be set lower accordingly.

上記各実施例において光学系の前後に配置しである薄い
平行乎面根は、カバーガラスである。又実施例4,5の
像側に配置されている平行平面板は、撮像素子が赤外域
に感度を持つために設けた赤外光をカットするフィルタ
ーや、レーザー治療時に不要なレーザー光の波長をカッ
トするためのフィルター等を示している。
In each of the above embodiments, the thin parallel plane roots placed before and after the optical system are cover glasses. In addition, the parallel plane plate placed on the image side in Examples 4 and 5 is a filter that cuts infrared light that is provided so that the image sensor has sensitivity in the infrared region, and a filter that cuts unnecessary laser light during laser treatment. It shows filters etc. for cutting.

勿論本発明の撮像光学系に光学的ローパスフィルターを
組合わせての使用も可能であり、デフォーカスと併用す
ることも可能である。
Of course, it is also possible to use the imaging optical system of the present invention in combination with an optical low-pass filter, and it is also possible to use it in combination with defocusing.

更に本発明の撮像光学系は、撮像素子と一体のテレビカ
メラとして取扱うことも又テレビカメラの撮像素子側あ
るいは撮像素子と光学系を含んでいるテレビカメラと接
続して用いるアタブター光学系として構成してもよい。
Further, the imaging optical system of the present invention can be handled as a television camera integrated with an imaging device, or can be configured as an attacher optical system connected to the imaging device side of a television camera or a television camera that includes an imaging device and an optical system. You can.

勿論非球面を用いない構成にしてもよく、又他の収差例
えば非点収差、像面湾曲などを補正するために非球面を
2面以上用いる構成にしてもよい。
Of course, a configuration may be adopted in which no aspherical surface is used, or a configuration in which two or more aspherical surfaces are used to correct other aberrations such as astigmatism and field curvature may be adopted.

また用いる非球面レンズは、内視鏡としての耐性や加工
性、コストなどの点から光学ガラスをモールド化したも
ので構成することが好ましいが。
Further, the aspherical lens used is preferably formed by molding optical glass from the viewpoints of durability, workability, cost, etc. as an endoscope.

必要に応じてプラスチックなどの材料を用いてもよい。Materials such as plastic may be used as necessary.

[発明の効果J 本発明によれば、内視鏡などのイメージガイドファイバ
ーによる画像を撮像素子上に結像させる際に、異なる種
類の種々の内視鏡と組合わせ使用する際でも、特に光学
的ローパスフィルターを用いることなしにモアレの発生
を防止することが出来、かつ解像力を落さずに小型で良
好な撮像光学系になし得る。
[Effect of the Invention J According to the present invention, when an image is formed by an image guide fiber such as an endoscope on an image sensor, even when used in combination with various endoscopes of different types, the optical The occurrence of moiré can be prevented without using a low-pass filter, and a compact and good imaging optical system can be achieved without reducing resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の撮像光学系を備えた装置全体の構成を
示す図、第2図は補正不足の球面収差を光学系による光
線収束状況を示す図、第3図は上記光学系の錯乱円を示
す図、第4図は補正過剰の球面収差を有する光学系の光
束の収束状況を示す図、第5図は通常の球面収差(横収
差)の概略図、第6図は他の球面収差の概略図、第7図
、第8図は非球面と基準球面の関係を示す図、第9図乃
至第14図は夫々本発明の実施例1乃至実施例6の断面
図、第15図乃至第20図は上記実施例1乃至実施例6
の収差曲線図、第21図乃至第23図は本発明の光学系
で発生される球面収差状況の他の例を示す概略図である
Figure 1 is a diagram showing the overall configuration of an apparatus equipped with the imaging optical system of the present invention, Figure 2 is a diagram showing how the optical system converges spherical aberrations due to insufficient correction, and Figure 3 is a diagram showing the state of ray convergence by the optical system due to the confusion of the optical system. Figure 4 is a diagram showing the convergence of a light beam in an optical system with overcorrected spherical aberration, Figure 5 is a schematic diagram of normal spherical aberration (lateral aberration), and Figure 6 is a diagram showing other spherical aberrations. Schematic diagrams of aberrations; FIGS. 7 and 8 are diagrams showing the relationship between an aspherical surface and a reference spherical surface; FIGS. 9 to 14 are cross-sectional views of Examples 1 to 6 of the present invention, respectively; FIG. 15 Figures 20 to 20 show the above embodiments 1 to 6.
The aberration curve diagrams of FIGS. 21 to 23 are schematic diagrams showing other examples of spherical aberration situations generated in the optical system of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 内視鏡の接眼部に取付けて特定の空間周波数帯域を含ん
でいる画像を撮像素子上に結像させるための光学系で、
特定の収差特に球面収差を発生させて前記光学系の開口
の変化に伴い収差曲線の略形状が変化して開口の大小に
より点像強度分布が変化しそれによって開口が小さい場
合の空間周波数特性を落すようにした撮像光学系。
An optical system that is attached to the eyepiece of an endoscope and forms an image containing a specific spatial frequency band on an image sensor.
By generating specific aberrations, especially spherical aberrations, the approximate shape of the aberration curve changes as the aperture of the optical system changes, and the point image intensity distribution changes depending on the size of the aperture, thereby changing the spatial frequency characteristics when the aperture is small. Imaging optical system designed to be dropped.
JP1263867A 1989-10-12 1989-10-12 Imaging optical system Expired - Lifetime JP2876222B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1263867A JP2876222B2 (en) 1989-10-12 1989-10-12 Imaging optical system
US07/596,074 US5270825A (en) 1989-10-12 1990-10-11 Imaging optical system having a moire elimination effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263867A JP2876222B2 (en) 1989-10-12 1989-10-12 Imaging optical system

Publications (2)

Publication Number Publication Date
JPH03126006A true JPH03126006A (en) 1991-05-29
JP2876222B2 JP2876222B2 (en) 1999-03-31

Family

ID=17395350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263867A Expired - Lifetime JP2876222B2 (en) 1989-10-12 1989-10-12 Imaging optical system

Country Status (1)

Country Link
JP (1) JP2876222B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509812A (en) * 1994-12-06 1998-09-22 ホーグランド、ジャン Integrated optical system for endoscopes
JP2006053218A (en) * 2004-08-10 2006-02-23 Olympus Corp Camera head
WO2014017031A1 (en) * 2012-07-23 2014-01-30 富士フイルム株式会社 Endoscope objective lens and endoscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509812A (en) * 1994-12-06 1998-09-22 ホーグランド、ジャン Integrated optical system for endoscopes
JP2006053218A (en) * 2004-08-10 2006-02-23 Olympus Corp Camera head
JP4700304B2 (en) * 2004-08-10 2011-06-15 オリンパス株式会社 Camera head
WO2014017031A1 (en) * 2012-07-23 2014-01-30 富士フイルム株式会社 Endoscope objective lens and endoscope
JP5706590B2 (en) * 2012-07-23 2015-04-22 富士フイルム株式会社 Endoscope objective lens and endoscope
US9442283B2 (en) 2012-07-23 2016-09-13 Fujifilm Corporation Endoscopic objective lens and endoscope

Also Published As

Publication number Publication date
JP2876222B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
JP3765500B2 (en) Endoscope objective lens
CN108254859B (en) Catadioptric optical system and imaging apparatus
US9753246B2 (en) Eyepiece optical system, optical apparatus and method for manufacturing the eyepiece optical system
JPH0827429B2 (en) Objective lens for endoscope
JPH0933803A (en) Image forming lens
JPH1078543A (en) Optical system
JPWO2019054358A1 (en) Manufacturing method of eyepiece optical system, optical equipment and eyepiece optical system
WO2017022670A1 (en) Eyepiece optical system and electronic viewfinder
JPH07294808A (en) Image forming lens
JP4101992B2 (en) Compact high-magnification wide-angle zoom lens
JP2582435B2 (en) Imaging optical system
US5852515A (en) Microscope objective and single objective type binocular stereomicroscope system
JPH05323186A (en) Endoscope
JP2582144B2 (en) Shooting lens
US11221459B2 (en) Imaging optical system and imaging apparatus
US5684643A (en) Fast wide-angle lens system
JPH05341185A (en) Objective optical system for endoscope
JPH06337347A (en) Optical system including distributed refractive index type optical element
JPH03126006A (en) Image pickup optical system
JPH05288985A (en) Objective for endoscope
JPH01307712A (en) Photographic lens
JPH10197787A (en) Objective lens
JPH09101451A (en) Ultraviolet wide-angle lens
JP2002328300A (en) Front diaphragm image pickup optical system
JPS62235914A (en) Telephoto lens system