JPH03125987A - Metal detector - Google Patents

Metal detector

Info

Publication number
JPH03125987A
JPH03125987A JP1263064A JP26306489A JPH03125987A JP H03125987 A JPH03125987 A JP H03125987A JP 1263064 A JP1263064 A JP 1263064A JP 26306489 A JP26306489 A JP 26306489A JP H03125987 A JPH03125987 A JP H03125987A
Authority
JP
Japan
Prior art keywords
filter
detection signal
frequency
characteristic
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1263064A
Other languages
Japanese (ja)
Inventor
Takeshi Shida
紫田 猛
Takashi Abe
阿部 俊
Takashi Suzuki
貴志 鈴木
Hachiro Shinohara
篠原 八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP1263064A priority Critical patent/JPH03125987A/en
Publication of JPH03125987A publication Critical patent/JPH03125987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To achieve a higher foreign metal detection sensitivity by removing a detec tion signal or the like of an object to be inspected itself with a digital filter having a passage band of a detection signal determined by an optimum characteristic judging means and a filter constant altering means. CONSTITUTION:An optimum filter characteristic judging means 12 comprises an equip ment characteristic judging means to determine a filter characteristic from a detection head structure or the like, a product characteristic judging means to determine a filter characteristic by a test operation of frequency characteristics of three signals - a detection signal of a product alone, a detection signal of a foreign matter alone and a detection signal of a product containing a foreign metal and a vibration charac teristic judging means to obtain a frequency characteristic of a detection signal attributed to a floor vibration or the like. A filter constant altering means 13 is made up of an increment key, an input key control circuit and a lower limit frequency and an upper limit frequency of a pass bands of digital filters 10a and 10b is graduated by 0.1Hz with the increment key to be moved to a direction of an increase in frequency while it is graduated by 0.1Hz conversely with a decrement key and moved in a direc tion of a decrease therein to determine. A means 13 is used when a filter characteristic determined by the means 12 is changed by a human judgment.

Description

【発明の詳細な説明】 〔産業上の利用分野1 この発明は、コンベア等で搬送されている被検査体中に
金属が混入しているか否かを検出する金属検出機に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a metal detector for detecting whether metal is mixed in an object to be inspected that is being conveyed by a conveyor or the like.

【従来の技術] まず、従来から使用されている金属検出機の概要につい
て第10図により説明する。この図において、1は発振
器、2は前記発振器1に接続されている送信コイル、3
a、3bはこの送信コイル2に対向して配置)れている
受信コイルで、この受信コイル3a、3bは送信コイル
2の交番磁界中におかれ、その磁極線が等しく鎖交する
ように配置されている。4a、4bは前記受信コイル3
a、abの誘起電圧e+ 、exの位相および振幅の調
整用のボリュームを示し、このボリューム4a、4bの
調整によって通常はみ、−6□=0となるように設定さ
れる。5は差動誘起電圧6゜62を増幅する増幅器、6
a、8bはそれぞれ鉄および非鉄金属を検出する同期検
波器、7a。
[Prior Art] First, an overview of a conventionally used metal detector will be explained with reference to FIG. In this figure, 1 is an oscillator, 2 is a transmitting coil connected to the oscillator 1, and 3 is a transmitting coil connected to the oscillator 1.
3a and 3b are receiving coils arranged opposite to the transmitting coil 2, and the receiving coils 3a and 3b are placed in the alternating magnetic field of the transmitting coil 2, and are arranged so that their magnetic pole lines are equally interlinked. has been done. 4a and 4b are the receiving coils 3
Volumes for adjusting the phase and amplitude of induced voltages e+ and ex of a and ab are shown, and by adjusting these volumes 4a and 4b, they are normally set so that -6□=0. 5 is an amplifier that amplifies the differential induced voltage 6°62;
a and 8b are synchronous detectors that detect ferrous and nonferrous metals, respectively; 7a;

7bは2〜20Hz程度のアナログフィルタ、8a、8
bは判別回路である。なお、9a、9bは前記同期検波
器6a、6bに供給する同期信号を形成する第1.第2
の移相器を示す。また、6r@=gは同期検波信号であ
る。
7b is an analog filter of about 2 to 20Hz, 8a, 8
b is a discrimination circuit. Note that 9a and 9b are the first synchronous signals that are supplied to the synchronous detectors 6a and 6b. Second
shows a phase shifter. Further, 6r@=g is a synchronous detection signal.

かかる構成からなる金属検出機は、送信コイル2および
受信コイル3a、3b間に被検査体Wが通過し、該被検
査体Wに金属が混入している時はその金属の種類(鉄ま
たは非鉄)によって判別回路8a、8bに検出信号が発
生する。
In a metal detector having such a configuration, an object to be inspected W passes between the transmitting coil 2 and receiving coils 3a and 3b, and when metal is mixed in the object to be inspected, the type of metal (ferrous or non-ferrous) is detected. ) generates a detection signal in the discrimination circuits 8a and 8b.

この点を第11図(a)、(b)のベクトル図で説明す
ると、通常、受信コイル3a、3bの誘起電圧”er、
”erは増幅器5の入力側においてer−ez=oとな
るように設定されているが、鉄を含んだ被検査体Wが矢
印の方向から通過すると、まず、第11図(a)に示す
ように、受信コイル3aの誘起電圧6.がみ1に増大し
、次に受信コイル3bの誘起電圧62がδ゛2に増大す
る。
To explain this point using the vector diagrams in FIGS. 11(a) and 11(b), normally, the induced voltage "er" in the receiving coils 3a, 3b,
"er is set so that er-ez=o on the input side of the amplifier 5, but when the inspected object W containing iron passes from the direction of the arrow, first, as shown in FIG. 11(a), As shown, the induced voltage 6. of the receiving coil 3a increases to 1, and then the induced voltage 62 of the receiving coil 3b increases to δ゛2.

したがって、er  e*=eotの差動誘起電圧が同
期検波器6aに入力され、この同期検波器6aに供給さ
れている同位相の同期検波信号み、によって検出される
Therefore, the differential induced voltage of er e*=eot is input to the synchronous detector 6a, and detected by only the synchronous detection signal of the same phase supplied to the synchronous detector 6a.

一方、非鉄金属(ステンレス、アルミ等)が混入した被
検査体Wが通過すると、発振器1の交流磁界の影響を受
けて非鉄金属内に渦電流が流れる。すると、この渦電流
の影響によって受信コイ9ル3a、3bの誘起電圧e+
Hezの位相が変化することになる。
On the other hand, when the inspected object W containing non-ferrous metal (stainless steel, aluminum, etc.) passes through, an eddy current flows in the non-ferrous metal under the influence of the alternating current magnetic field of the oscillator 1. Then, due to the influence of this eddy current, the induced voltage e+ in the receiving coils 3a and 3b increases.
The phase of Hez will change.

すわなち、第11図(b)に示すように、受信コイル3
aの誘起電圧み、の位相がa″、に変化すると、差動誘
起電圧e ”* −e z = 6゜1は図示したよう
に、はぼ90”位相がずれた点に発生する。
That is, as shown in FIG. 11(b), the receiving coil 3
When the phase of the induced voltage a changes to a'', a differential induced voltage e''*-e z = 6°1 is generated at a point shifted in phase by approximately 90'', as shown.

そこで、この差動誘起電圧み。tとほぼ同相となってい
るみ、で示す同期検波信号が供給されている同期検波器
6bにおいて位相検波することにより非鉄金属を検出す
ることができる。
So, look at this differential induced voltage. Non-ferrous metals can be detected by phase detection in the synchronous detector 6b, which is supplied with the synchronous detection signal shown by t, which is approximately in phase with t.

[発明が解決しようとする課題] 従来の金属検出機は、上述したように、鉄(磁性体)と
非鉄金属の両方の金属をそれぞれ高感度に検出できる位
相で同期検波していた。しかしながら、被検査体Wとな
る製品が、例えばハムなどのように水分と塩分を含んで
いる場合は製品自身が導電性を有しているため、検知し
たい非鉄金属と類似の検出信号が発生し、また、製品が
海藻や砂糖等の場合は、製品自身が鉄分を含んでいるの
で、鉄(lifl性体)と類似の検出信号が発生するが
、第9図に示す一例のように、この製品自身の電磁気的
特性により発生する検出信号は、金属単独の検出信号よ
りも低周波領域にあり、さらに異物金属を含んだ製品は
上記両者の中間の周波数領域となる。
[Problems to be Solved by the Invention] As described above, conventional metal detectors perform synchronous detection with phases that enable highly sensitive detection of both iron (magnetic material) and non-ferrous metals. However, if the product to be inspected W contains moisture and salt, such as ham, the product itself is conductive, so a detection signal similar to that of the nonferrous metal to be detected may be generated. In addition, if the product is seaweed or sugar, the product itself contains iron, so a detection signal similar to that of iron (lifl type) is generated, but as shown in the example shown in Figure 9, this The detection signal generated by the electromagnetic characteristics of the product itself is in a lower frequency range than the detection signal of metal alone, and products containing foreign metals have a frequency range intermediate between the two.

さらに、製品自身の検出信号特性は、製品の形状やコン
ベアの搬送速度、送信コイル2と受信コイル3a、3b
を含む検出ヘッドの構造などにより変化する。そのため
に、従来は第10図のアナログフィルタ7a、7bの帯
域周波数を決定するためにフィルタ回路の部品を交換し
、効果測定を行うという試行錯誤を繰り返す必要があっ
た。また、金属検出機の設置場所の床振動や金属検出機
への機械的面部が検出信号に影響を及ぼすことがあるが
、この影響を取り除(ためのフィルタの通過帯域を決め
るときも、上記と同様な試行錯誤を必要とする欠点があ
った。
Furthermore, the detection signal characteristics of the product itself are determined by the shape of the product, the conveyor speed, the transmitter coil 2 and the receiver coils 3a and 3b.
It varies depending on the structure of the detection head, including the For this reason, conventionally, in order to determine the band frequencies of the analog filters 7a and 7b shown in FIG. 10, it was necessary to repeat trial and error by replacing parts of the filter circuit and measuring the effects. In addition, floor vibrations at the location where the metal detector is installed and mechanical surfaces on the metal detector may affect the detection signal, but when determining the passband of the filter to eliminate this influence, the above-mentioned It had the disadvantage of requiring similar trial and error.

また、上記試行錯誤を回避するために、従来は第9図の
ように通過帯域を2〜20Hzと大きく設定することが
あっが、異物金属以外の要因による検出信号が相対的に
大となり、異物金属検出能力が犠牲となることが多かっ
た。
In addition, in order to avoid the above trial and error, conventionally the passband was set to a large value of 2 to 20 Hz as shown in Figure 9, but the detection signal due to factors other than foreign metal becomes relatively large, Metal detection ability was often sacrificed.

この発明は、上記の問題点を軽減することを目的として
なされたもので、製品自身で発生する検出信号や振動に
よる検出信号と、異物金属の検出信号とが周波数特性に
差異があることを見出し、この知見に基づいて異物金属
の検出信号のSN比を大きくとれるようにし、しかも、
被検査体の変更に対し常に最適に容易に再設定すること
を可能とした金属検出機を提供するものである。
This invention was made with the aim of alleviating the above problems, and it was discovered that there is a difference in frequency characteristics between the detection signal generated by the product itself or the detection signal caused by vibration, and the detection signal of foreign metal. Based on this knowledge, we have made it possible to increase the signal-to-noise ratio of the foreign metal detection signal, and
The present invention provides a metal detector that can be easily and optimally reset whenever the object to be inspected changes.

[課題を解決するための手段] この発明にかかる金属検出機は、異物金属を容易に高感
度に検出するために、ディジタルフィルタと、最適フィ
ルタ特性判断手段と、フィルタ定数変更手段を設けたも
のである。
[Means for Solving the Problems] A metal detector according to the present invention is provided with a digital filter, an optimum filter characteristic determining means, and a filter constant changing means in order to easily detect foreign metals with high sensitivity. It is.

〔作用〕[Effect]

この発明においては、検出ヘッドで得られた検出信号は
、最適フィルタ特性判断手段とフィルタ定数変更手段に
より決定された検出信号の通過帯域を有するディジタル
フィルタにより、製品自身による検出信号や床振動と機
械的面部により発生する検出信号などの無効信号を除去
することができるので、容易、かつ効果的に異物金属の
検出感度が向上する。
In this invention, the detection signal obtained by the detection head is processed by a digital filter having a passband of the detection signal determined by the optimum filter characteristic determining means and the filter constant changing means. Since invalid signals such as detection signals generated by the target surface can be removed, the detection sensitivity of foreign metals can be easily and effectively improved.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すもので、10a、1
0bはこの発明の要部であるディジタルフィルタで、l
la、11bはA/Dコンバータ、12は最適フィルタ
特性判断手段、13はフィルタ定数変更手段である。そ
の他は第10図の従来例と同じである。
FIG. 1 shows an embodiment of the present invention, in which 10a, 1
0b is a digital filter which is the main part of this invention, l
1a and 11b are A/D converters, 12 is optimum filter characteristic determining means, and 13 is filter constant changing means. The rest is the same as the conventional example shown in FIG.

第2図は、第1図のディジタルフィルタ10a、10b
の詳細を示す構成例で、ローパスフィルタ101,10
2.バイパスフィルタ103゜104の4段の各ディジ
タルフィルタで構成され、個々のフィルタはいずれも第
3図に示す構成となっている。また、LPFはローパス
フィルタ、HPFはバイパスフィルタを示す。
FIG. 2 shows the digital filters 10a and 10b of FIG.
This is a configuration example showing details of low-pass filters 101 and 10.
2. It is composed of four stages of digital filters including bypass filters 103 and 104, each of which has the configuration shown in FIG. Further, LPF indicates a low-pass filter, and HPF indicates a bypass filter.

第3図において、111,112は加算器、113〜1
17は乗算器、118,119は遅延器であり、各乗算
器113〜117の値A。。
In FIG. 3, 111 and 112 are adders, 113 to 1
17 is a multiplier, 118 and 119 are delay devices, and the value A of each multiplier 113-117. .

A、、A、、Bl、B*を変えることによりカットオフ
周波数、LPFかHPFの別、ゲイン等を変化させるこ
とができる。
By changing A, , A, , Bl, and B*, the cutoff frequency, LPF or HPF, gain, etc. can be changed.

第6図はこの発明に用いるディジタルフィルタ10a、
10bの帯域幅の一例を示す図である。
FIG. 6 shows a digital filter 10a used in this invention.
10b is a diagram illustrating an example of a bandwidth of 10b.

この例では、サンプリング周波数が200Hzで、通過
帯域が5〜8Hzのディジタルフィルタ10a、10b
の場合である。
In this example, digital filters 10a and 10b have a sampling frequency of 200Hz and a passband of 5 to 8Hz.
This is the case.

第6図で横軸は周波数で、縦軸に検出信号の出力を示す
。この図の実線の曲線工で示す被検査体W自身の検出信
号は、点線の曲線■で示す異物金属混入の被検査体Wに
よる検出信号より低い周波数帯域に属している。そして
、曲線I、IIは被検査体Wの種類や形状により変化す
るものであって、決して固定したものではない。すなわ
ち、被検査体W、つまり製品ごとにディジタルフィルタ
10a、10bの通過帯域を設定し直さなくてはならな
い。
In FIG. 6, the horizontal axis represents the frequency, and the vertical axis represents the output of the detection signal. The detection signal of the object W to be inspected itself, shown by the solid curved line in this figure, belongs to a lower frequency band than the detection signal from the object W to be inspected containing foreign metal, shown by the dotted curve 2. The curves I and II change depending on the type and shape of the object W to be inspected, and are not fixed at all. That is, the passbands of the digital filters 10a and 10b must be reset for each object W to be inspected, that is, each product.

この場合、第3図に示したディジタルフィルタ10a、
10bを構成する各乗算器113〜117の値A0〜A
、、B、、B、を調節することで簡単に周波数の設定を
変更することができる。
In this case, the digital filter 10a shown in FIG.
Values A0 to A of each multiplier 113 to 117 configuring 10b
, ,B, ,By adjusting ,B,, the frequency setting can be easily changed.

具体的には、ディジタルフィルタ10a、10bの周波
数を変えて被検査体Wを流し、被検査体Wの影響の大き
さと金属混入の被検査体Wの影響の大きさを比較し、被
検査体Wのみのときと金属混入の被検査体Wのときとの
検出信号差が一番大きくなる周波数に合わせればよい。
Specifically, the frequency of the digital filters 10a and 10b is changed to pass the object W to be inspected, and the magnitude of the influence of the object W to be inspected and the influence of the object W contaminated with metal are compared. The frequency may be adjusted to the frequency at which the difference in the detection signal between the case of only W and the case of the object to be inspected W containing metal is the largest.

最適フィルタ特性判断手段12は、第4図のように、検
出ヘッド構造とコンベア搬送速度からフィルタ特性を決
める装置特性判断手段121と、製品のみの検出信号と
異物金属のみの検出信号と異物金属を含んだ製品の検出
信号の3種の信号の周波数特性をテスト運転を行って得
ることによりフィルタ特性を決める製品特性判断手段1
22と1.床振動や金属検出機への機械的面部の影響に
よる検出信号の周波数特性を測定により得て決める振動
特性判断手段123よから構成される。
As shown in FIG. 4, the optimum filter characteristic determining means 12 includes an apparatus characteristic determining means 121 that determines filter characteristics from the detection head structure and conveyor conveyance speed, and a device characteristic determining means 121 that determines the filter characteristics from the detection head structure and conveyor conveyance speed, and a device characteristic determining means 121 that determines the filter characteristics based on the detection head structure and conveyor conveyance speed, and the apparatus characteristic determining means 121 that determines the filter characteristics from the detection head structure and conveyor conveyance speed, and the device characteristic determining means 121 that determines the filter characteristics from the detection head structure and conveyor conveyance speed, and the device characteristic determining means 121 that determines the filter characteristics from the detection head structure and conveyor conveyance speed, and the device characteristic determination means 121 which determines the filter characteristics from the detection head structure and conveyor conveyance speed, and the device characteristic determination means 121 which determines the filter characteristics from the detection head structure and the conveyor conveyance speed. Product characteristic determining means 1 for determining filter characteristics by performing test operation to obtain the frequency characteristics of three types of signals of detection signals of products containing the product.
22 and 1. It consists of a vibration characteristic determining means 123 that obtains and determines the frequency characteristics of the detection signal due to floor vibration and the influence of the mechanical surface on the metal detector by measurement.

また、フィルタ定数変更手段13は、第5図に示すよう
に、アップキー131とダウンキー132の2個と入力
キー制御回路133から構成され、ディジタルフィルタ
10a、10bの通過帯域の下限周波数おiび上限周波
数を、アップキー131ではO,lHzきざみで周波数
を増加方向に移動させ、ダウンキー132では逆にO,
lHzきざみで周波数を減少方向に移動させて決定する
ものである。このフィルタ定数変更手段13は最適フィ
ルタ特性判断手段12により決定したフィルタ特性を人
間の判断により変更する場合に使われるが、最適フィル
タ特性判断手段12を併存しない場合でも、フィルタ通
過帯域の変更がキー操作のみで容易に変更可能であると
いう利点により、十分にその効果を有することはいうま
でもない。
Further, as shown in FIG. 5, the filter constant changing means 13 is composed of two keys, an up key 131 and a down key 132, and an input key control circuit 133, and is configured to adjust the lower limit frequency of the pass band of the digital filters 10a and 10b. The up key 131 moves the frequency in increments of O, lHz in the direction of increase, and the down key 132 conversely moves the frequency up to O, lHz.
The frequency is determined by moving the frequency in a decreasing direction in 1Hz steps. This filter constant changing means 13 is used when changing the filter characteristics determined by the optimum filter characteristic determining means 12 based on human judgment, but even when the optimum filter characteristic determining means 12 is not present, changing the filter passband is key. Needless to say, it has the advantage that it can be easily changed only by operation, and therefore has sufficient effects.

次に、被検査体Wを搬送するときの搬送速度に変更があ
る場合のディジタルフィルタ10a。
Next, the digital filter 10a is used when there is a change in the transport speed when transporting the inspected object W.

10bの周波数設定方法について説明する。The frequency setting method of 10b will be explained.

搬送速度が変化した場合の異物金属の検出信号の周波数
の変化例を第7図に示す。すなわち、搬送速度の大小に
よって受信コイル3a、3bに得られる誘起電圧e H
、e *の周波数特性も変化するので、これに合わせデ
ィジタルフィルタ10a、iobの周波数も、例えば2
〜20Hzの範囲内で設定を変更し、最高検出感度を保
てるようにする。このように搬送速度(ベルトコンベア
の速度)を変更する場合でも、この発明によれば直ちに
対応することが可能となる。
FIG. 7 shows an example of how the frequency of the foreign metal detection signal changes when the conveyance speed changes. That is, the induced voltage e H obtained in the receiving coils 3a and 3b depending on the magnitude of the conveyance speed
, e*, the frequency characteristics of the digital filters 10a and iob change accordingly, for example, 2.
Change the settings within the range of ~20Hz to maintain the highest detection sensitivity. Even when the conveyance speed (speed of the belt conveyor) is changed in this way, according to the present invention, it is possible to immediately adapt to the change.

第8図は設定場所による床振動による誤差を防止する方
法の説明図である。すなわち、従来は前述したようにア
ナログフィルタを使用していたため、周波数は固定であ
り、広帯域にせざるを得なかったので、床振動による誘
起電圧が第8図の曲線III −、III bのように
発生すると、検出感度が低下することは避けられなかた
。そのため、従来は他の装置で振動の周波数特性を測定
し、それよりアナログフィルタを変更するか、アナログ
フィルタの異なったプリント板を何種類か付は変えてみ
て、一番良いアナログフィルタを選択するなどしていた
FIG. 8 is an explanatory diagram of a method for preventing errors caused by floor vibration depending on the setting location. In other words, in the past, analog filters were used as described above, so the frequency was fixed and had to be wideband, so the induced voltage due to floor vibration would be as shown in curves III- and III-b in Figure 8. Once this occurs, it is inevitable that the detection sensitivity will decrease. Therefore, conventional methods have been to measure the frequency characteristics of vibrations using another device, and then change the analog filter, or try using several types of printed circuit boards with different analog filters, and then select the best analog filter. etc.

しかし、この発明によれば、曲線m、、mゎの間に入る
ようにディジタルフィルタ10a、10bの周波数を、
例えば2〜20Hzの範囲内で設定するだけでこのよう
な床振動による感度低下は防止できる。
However, according to the present invention, the frequencies of the digital filters 10a and 10b are set so that they fall between the curves m, .
For example, by simply setting the frequency within the range of 2 to 20 Hz, such a decrease in sensitivity due to floor vibration can be prevented.

なお、上記第6図、第7図、第8図のそれぞれが重なり
合う場合においては、基本的には第4図を優先させ、次
いで、°第7図、第8図の問題も解決できるように、デ
ィジタルフィルタ10a。
In addition, if the above figures 6, 7, and 8 overlap, basically, give priority to figure 4, and then solve the problems in figures 7 and 8. , digital filter 10a.

10bの周波数設定を上述したように行う。10b is set as described above.

〔発明の効果〕〔Effect of the invention〕

この発明は以上詳細に説明したように、受信コイルで得
られた信号から最適フィルタ特性判断手段とフィルタ定
数変更手段により決定された検出信号の通過帯域を有す
るディジタルフィルタにより被検査体自体の検出信号や
、床振動と機械的面部により発生する検出信号が除去さ
れることにより、容易、かつ効果的に異物金属の検出感
度を向上させることができる利点を有する。
As described in detail above, the present invention uses a digital filter having a detection signal pass band determined from the signal obtained by the receiving coil by the optimum filter characteristic determining means and the filter constant changing means to generate the detected signal of the object to be inspected itself. Also, by removing detection signals generated by floor vibrations and mechanical surfaces, there is an advantage that the detection sensitivity of foreign metals can be easily and effectively improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すブロック図、第2図
(a)、(b)は、第1図のディジタルフィルタの詳細
の構成を示すブロック図、第3図はディジタルフィルタ
を構成する個々のフィルタの構成を示す図、第4図は、
第1図の最適フィルタ特性判断手段の構成の詳細を示す
ブロック図、第5図は同じくフィルタ定数変更手段の構
成の詳細を示すブロック図、第6図はこの発明に用いる
ディジタルフィルタの周波数設定例を示す図、第7図は
同じく搬送速度を変えたときの周波数設定例を示す図、
第8図は同じく床振動のあるときの周波数設定例を示す
図、第9図は従来の検出信号の周波数と検出感度との関
係を示す図、第10図は従来の金属検出機の構成を示す
ブロック図、第11図(a)、(b)は、第10図の検
出動作を説明するための図である。 図中、1は発振器、2は送信コイル、3a。 3bは受信コイル、4a、4bはボリューム、5は増幅
器、6a、6bは同期検波器、7a、7bはアナログフ
ィルタ、8a、8bは判別回路、9a、9bは第1.第
2の移相器、10a、10bはディジタルフィルタ、l
la、llbはA/Dコンバータ、12は最適フィルタ
特性判断手段、13はフィルタ定数変更手段である。 第 1 図 第 図 第 図 3 第 図 第 図 第 図 −111m軟 第 図 −*i叡 第 8 図 第 図 一国Z数(Hz) 第 1゜ 図 第 1 図 (a) (b)
FIG. 1 is a block diagram showing one embodiment of the present invention, FIGS. 2(a) and (b) are block diagrams showing the detailed configuration of the digital filter in FIG. 1, and FIG. 3 is a block diagram showing the configuration of the digital filter. FIG. 4 is a diagram showing the configuration of each individual filter.
FIG. 1 is a block diagram showing details of the configuration of the optimum filter characteristic determining means, FIG. 5 is a block diagram showing details of the configuration of the filter constant changing means, and FIG. 6 is an example of frequency setting of the digital filter used in the present invention. Figure 7 is a diagram showing an example of frequency setting when changing the conveyance speed.
Figure 8 is a diagram showing an example of frequency setting when there is floor vibration, Figure 9 is a diagram showing the relationship between the frequency of a conventional detection signal and detection sensitivity, and Figure 10 is a diagram showing the configuration of a conventional metal detector. The block diagrams shown in FIGS. 11(a) and 11(b) are diagrams for explaining the detection operation in FIG. 10. In the figure, 1 is an oscillator, 2 is a transmitting coil, and 3a. 3b is a receiving coil, 4a, 4b are volumes, 5 is an amplifier, 6a, 6b are synchronous detectors, 7a, 7b are analog filters, 8a, 8b are discrimination circuits, 9a, 9b are first... The second phase shifter, 10a, 10b is a digital filter, l
1a and 11b are A/D converters, 12 is optimum filter characteristic determining means, and 13 is filter constant changing means. Fig. 1 Fig. Fig. 3 Fig. Fig. Fig. 111m soft chart - *i Ei Fig. 8 Fig. Z number per country (Hz) Fig. 1° Fig. 1 Fig. (a) (b)

Claims (1)

【特許請求の範囲】[Claims] 交番磁界を発生する送信コイルと、この交番磁界を受け
る受信コイルとの間に被検査体を通過させ前記受信コイ
ルに得られる検出信号の大きさを判別回路で判別して異
物金属の検出を行う金属検出機において、ディジタルフ
ィルタと、最適フィルタ特性判断手段と、フィルタ定数
変更手段とを備えてなり、前記受信コイルに得られる異
物金属の検出信号のみ通過させることを特徴とする金属
検出機。
The object to be inspected is passed between a transmitting coil that generates an alternating magnetic field and a receiving coil that receives this alternating magnetic field, and a discrimination circuit discriminates the magnitude of the detection signal obtained from the receiving coil to detect foreign metal. What is claimed is: 1. A metal detector comprising a digital filter, an optimum filter characteristic determining means, and a filter constant changing means, the metal detector being characterized in that it passes only a foreign metal detection signal obtained by the receiving coil.
JP1263064A 1989-10-11 1989-10-11 Metal detector Pending JPH03125987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263064A JPH03125987A (en) 1989-10-11 1989-10-11 Metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263064A JPH03125987A (en) 1989-10-11 1989-10-11 Metal detector

Publications (1)

Publication Number Publication Date
JPH03125987A true JPH03125987A (en) 1991-05-29

Family

ID=17384346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263064A Pending JPH03125987A (en) 1989-10-11 1989-10-11 Metal detector

Country Status (1)

Country Link
JP (1) JPH03125987A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960277A (en) * 1982-09-30 1984-04-06 Anritsu Corp Metal detector
JPS63193073A (en) * 1987-02-05 1988-08-10 Nec Corp Signal detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960277A (en) * 1982-09-30 1984-04-06 Anritsu Corp Metal detector
JPS63193073A (en) * 1987-02-05 1988-08-10 Nec Corp Signal detector

Similar Documents

Publication Publication Date Title
US8207731B2 (en) Apparatus and method for automatic product effect compensation in radio frequency metal detectors
CA2752962C (en) Method for operating of a metal detection system and metal detection system
JPS62500683A (en) Method and device for detecting surface defects using eddy currents
JP6577974B2 (en) Metal detector
JP2882856B2 (en) Eddy current flaw detector
WO2002025318A1 (en) Metal detector
JPS6341502B2 (en)
JPH03125987A (en) Metal detector
WO1995004285A1 (en) Dynamic air gap detector
JPS642904B2 (en)
JPS637634B2 (en)
JP2007510145A (en) Process and apparatus for distinguishing parts affecting alternating electromagnetic fields
US4837510A (en) Device for suppression and/or separation of signals due to magnetic oxide scales in hot cast billets
WO2019151422A1 (en) Inspection device
JPH10111363A (en) Metal detector
JPH0821880A (en) Magnetic substance detector
JPS6355456A (en) Flaw discriminating device for eddy current flaw detector
US4945307A (en) Electronic device for detecting irregularities in a surface of a solid object
CN111830572A (en) Method for operating a metal detector and metal detector
JPS6314904B2 (en)
JPS637633B2 (en)
JP3324840B2 (en) Metal detector
JP7187407B2 (en) metal detector
KR101921913B1 (en) Method and device for testing the material of a test object in a nondestructive manner
RU2743340C1 (en) Ferrometer for measuring characteristics of thin magnetic films