JPH03125670A - Rear wheel steering device - Google Patents

Rear wheel steering device

Info

Publication number
JPH03125670A
JPH03125670A JP1265903A JP26590389A JPH03125670A JP H03125670 A JPH03125670 A JP H03125670A JP 1265903 A JP1265903 A JP 1265903A JP 26590389 A JP26590389 A JP 26590389A JP H03125670 A JPH03125670 A JP H03125670A
Authority
JP
Japan
Prior art keywords
hydraulic circuit
fluid
rear wheel
wheel steering
system hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1265903A
Other languages
Japanese (ja)
Inventor
Satoshi Kiku
規矩 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1265903A priority Critical patent/JPH03125670A/en
Publication of JPH03125670A publication Critical patent/JPH03125670A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the heat exchange of both heating values of a pressurizing system hydraulic circuit and a static pressure system hydraulic circuit and improve steering performance by providing a fluid chamber in part of the fluid passage of either of the circuits, and interposing a part of the fluid passage of the other circuit in the fluid chamber. CONSTITUTION:A rear wheel steering device has a pressurizing system hydraulic circuit 16 formed by connecting together a pump 10, a power cylinder 13, a pressure control valve 11 for controlling the feed and discharge of a pressurized fluid to the power cylinder 13, and a tank 15 by pipelines L1, L4, L5. Also, a static pressure system hydraulic circuit 22 formed by connecting a meter ring cylinder 21 interlocked with a steering gear mechanism 17 for steering a front wheels 20 by the steering force of a steering handle 18 to a pilot cylinder 14 for controlling the spool valve 11b of the pressure control valve 11 by pipelines L6, L7 is provided. In this case, a heat exchanging part 23 extending through the pipelines L6, L7 is provided in a fluid chamber 23b to which the pipelines L4, L5 are connected to suppress a temperature rise of the pressurized fluid in the pressurizing system hydraulic circuit 16.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、4輪操舵車両に適用する後輪操舵装置に関し
、特に、静圧系回路を介して前輪の操舵情報を得るよう
にした後輪操舵装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a rear wheel steering device applied to a four-wheel steering vehicle, and particularly to a rear wheel steering device that obtains front wheel steering information via a static pressure system circuit. It relates to a wheel steering device.

(従来の技術) 従来のこの種の後輪操舵装置としては、例えば実公昭6
0−45266号公報に記載された装置があり、第4図
のように示される。
(Prior art) As a conventional rear wheel steering device of this type, for example,
There is an apparatus described in Japanese Patent No. 0-45266, which is shown in FIG.

この従来装置は、所定圧力に加圧した流体(以下、加圧
流体P+)を吐出するポンプlと、バルブ本体2aの位
置が後輪舵角に応じて変化する圧力制御弁2と、後輪舵
角を操作するためのパワーシリンダ3と、を含む加圧系
油圧回路4を備えるとともに、前輪舵角に応じた量の流
体(以下、静圧流体P2)を吐出するメータリングシリ
ンダ5と、P2を受けて前記圧力制御弁2のスプール弁
2bの位置を調節するパイロットシリンダ6と、を含む
静圧系油圧回路7を備えるもので、圧力制御弁2のバル
ブ本体2aが前輪舵角に応じてその位置を変化させ、ま
たスプール弁2bが後輪舵角に応じてその位置を変化さ
せ、そして、これらの位置関係がバランスするようにパ
ワーシリンダ3に供給する加圧流体が制御される。
This conventional device includes a pump l that discharges fluid pressurized to a predetermined pressure (hereinafter referred to as pressurized fluid P+), a pressure control valve 2 whose position of a valve body 2a changes depending on the rear wheel steering angle, and a rear wheel A power cylinder 3 for manipulating the steering angle; and a metering cylinder 5 that includes a pressurizing hydraulic circuit 4 and discharging an amount of fluid (hereinafter referred to as static pressure fluid P2) according to the front wheel steering angle; A pilot cylinder 6 that adjusts the position of the spool valve 2b of the pressure control valve 2 in response to P2; The spool valve 2b changes its position according to the rear wheel steering angle, and the pressurized fluid supplied to the power cylinder 3 is controlled so that these positional relationships are balanced.

(発明が解決しようとする課題) しかしながら、このような従来の後輪操舵装置にあって
は、加圧系油圧回路4および静圧系油圧回路7の各々の
油圧配管が、別系統で敷設されていたため、両系油圧回
路の発熱量の違いから後輪舵角が不足したり、ハンドル
操作が重(惑しられたりするといった不具合があった。
(Problem to be Solved by the Invention) However, in such a conventional rear wheel steering device, the hydraulic piping for the pressure system hydraulic circuit 4 and the static pressure system hydraulic circuit 7 are laid in separate systems. This caused problems such as insufficient rear wheel steering angle and difficult steering operation due to the difference in heat generation between the two hydraulic circuits.

すなわち、一般に油圧回路の総発生熱量HTは、次式■
で表わされる。
In other words, in general, the total amount of heat generated in a hydraulic circuit HT is calculated by the following formula ■
It is expressed as

Hy =H+  +H2+Hx   ・・・・・・■こ
こで、Hlはポンプ等の動力損失による発生熱量、H2
はリリーフバルブや絞り弁等を介してタンクに還流する
場合に生ずる発生熱量、H3は配管の太さ、曲り分岐管
の断面積変化、油もれ、管内の流体の流れ、摩擦による
圧力損失および弁類の圧力損失などによる発生熱量であ
り、なかでも、■(、(ポンプ等の動力損失による発生
熱量)の占める割合が大きいことが知られている。
Hy =H+ +H2+Hx ・・・・・・■Here, Hl is the amount of heat generated due to power loss of the pump, etc., H2
is the amount of heat generated when the flow returns to the tank via a relief valve or throttle valve, etc.; H3 is the thickness of the piping, changes in the cross-sectional area of bent branch pipes, oil leaks, fluid flow in the pipes, pressure loss due to friction, and It is the amount of heat generated due to pressure loss in valves, etc., and it is known that among them, ■(, (amount of heat generated due to power loss in pumps, etc.)) accounts for a large proportion.

したがって、加圧系油圧回路4にあってはその構成にポ
ンプ1を含むので発生熱量が大きく、これに対して、ポ
ンプ等の動力源を含まない静圧系油圧回路7の発生熱量
は小さくなり、両油圧回路の流体温度が異なるものとな
る。その結果、以下の不都合を生じるものであった。
Therefore, since the pressure system hydraulic circuit 4 includes the pump 1 in its configuration, the amount of heat generated is large, whereas the amount of heat generated in the static pressure system hydraulic circuit 7, which does not include a power source such as a pump, is small. , the fluid temperatures in both hydraulic circuits will be different. As a result, the following inconveniences occurred.

玉皿金Ω 加圧系油圧回路4内の流体温度は上記の理由から通常時
でも高いものであるが、特に、夏季の高温環境下におい
ては更に流体温度が上昇するのでポンプ効率が一層低下
し、したがって、パワーシリンダ3の動作パワーが低下
して所望の後輪舵角に対する実際の後輪制御舵角が不足
し、車両の旋回性能が変化するといった不都合を生じる
The fluid temperature in the pressure system hydraulic circuit 4 is high even in normal times for the reasons mentioned above, but especially in the high-temperature environment of summer, the fluid temperature rises further and the pump efficiency further decreases. Therefore, the operating power of the power cylinder 3 decreases, resulting in an insufficient actual rear wheel control steering angle relative to the desired rear wheel steering angle, resulting in a disadvantage that the turning performance of the vehicle changes.

玉皿金朶 一方、静圧系油圧回路7の動作流体は温度上昇を招く心
配はないが、例えば冬季の低温環境下における流体の高
粘度化の問題がある。すなわち、静圧系油圧回路7の作
動流体の粘度が高まると、静圧系油圧回路7はハンドル
操作に対する負荷として働き、このため、ハンドル操作
が重(惑しられるといった不都合を生じる。
On the other hand, although there is no concern that the temperature of the working fluid in the hydrostatic hydraulic circuit 7 will increase, there is a problem of the fluid becoming highly viscous in a low temperature environment during winter, for example. That is, when the viscosity of the working fluid in the hydrostatic hydraulic circuit 7 increases, the hydrostatic hydraulic circuit 7 acts as a load on the steering wheel operation, which causes problems such as making the steering wheel operation difficult.

そこで、本発明は、加圧系油圧回路と静圧系油圧回路と
の間で熱交換を行うことにより、上記不都合■および不
都合■を共に解決することを目的としている。
Therefore, an object of the present invention is to solve both the above disadvantages (1) and (2) by performing heat exchange between the pressure system hydraulic circuit and the static pressure system hydraulic circuit.

(課題を解決するための手段) 本発明は、上記目的を達成するために、ポンプで加圧し
た流体を、バルブ本体とスプール弁の何れか一方の位置
が後輪舵角に応じて変化する圧力制御弁を介して、後輪
舵角操作用のパワーシリンダに供給した後、タンクに還
流する加圧系油圧回路を備えるとともに、メータリング
シリンダからの前輪舵角に応じた量の流体をパイロット
シリンダに供給し、該パイロットシリンダにより前記圧
力制御弁のバルブ本体とスプール弁の何れか他方の位置
を変化させた後、メータリングシリンダに還流する静圧
系油圧回路を備える後輪操舵装置において、前記加圧系
油圧回路あるいは静圧系油圧回路の一方の回路の流体系
路の一部に流体室を設け、他方の回路の流体系路の一部
を該流体室内に介在させたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides fluid pressurized by a pump in which the position of either the valve body or the spool valve changes in accordance with the rear wheel steering angle. It is equipped with a pressurized hydraulic circuit that supplies fluid to the power cylinder for controlling the rear wheel steering angle via a pressure control valve and then returns to the tank, and also supplies the pilot with an amount of fluid according to the front wheel steering angle from the metering cylinder. A rear wheel steering system comprising a hydrostatic hydraulic circuit that supplies water to a metering cylinder, changes the position of either the valve body of the pressure control valve or the spool valve by the pilot cylinder, and then returns the flow to the metering cylinder. A fluid chamber is provided in a part of the fluid path of one of the pressure system hydraulic circuit or the static pressure system hydraulic circuit, and a part of the fluid system of the other circuit is interposed within the fluid chamber. shall be.

(作用) 本発明では、加圧系油圧回路と静圧系油圧回路の双方の
熱量が流体室内部で熱交換される。
(Function) In the present invention, the amount of heat in both the pressurized hydraulic circuit and the static pressure hydraulic circuit is exchanged within the fluid chamber.

したがって、加圧系油圧回路から静圧系油圧回路へと熱
が移動し、加圧系油圧回路の流体温度を低下して高温環
境下における前述の不都合■が解決される。また、静圧
系油圧回路の流体温度を上昇して低温環境下における前
述の不都合■が解決される。
Therefore, heat is transferred from the pressure system hydraulic circuit to the static pressure system hydraulic circuit, and the fluid temperature in the pressure system hydraulic circuit is lowered, thereby solving the above-mentioned disadvantage (2) in a high temperature environment. Furthermore, the above-mentioned disadvantage (2) in a low-temperature environment is solved by increasing the fluid temperature of the hydrostatic hydraulic circuit.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第1〜3図は本発明に係る後輪操舵装置の一実施例を示
す図である。
1 to 3 are diagrams showing an embodiment of a rear wheel steering device according to the present invention.

第1図において、10は所定圧力に加圧した流体(以下
、加圧流体P1)を吐出するポンプ、11はバルブ本体
11a(あるいはスプール弁11bでもよい)が後輪1
2を操舵するためのパワーシリンダ13のピストンロッ
ド13aに一体的に連結する圧力制御弁であり、圧力制
御弁11のスプール弁11b(あるいはスプール弁11
aでもよい)はパイロットシリンダ14のピストンロッ
ド14aに一体的に連結する。なお、15はタンク、L
1〜L、は流体系路をなす管路であり、ポンプ10、圧
力制御弁11、パワーシリンダ13、タンク15および
L1〜L、は加圧系油圧回路16を構成する。
In FIG. 1, 10 is a pump that discharges fluid pressurized to a predetermined pressure (hereinafter referred to as pressurized fluid P1), and 11 is a valve body 11a (or a spool valve 11b) that is connected to a rear wheel.
This is a pressure control valve that is integrally connected to the piston rod 13a of the power cylinder 13 for steering the engine.
a) is integrally connected to the piston rod 14a of the pilot cylinder 14. In addition, 15 is a tank, L
1 to L are pipelines forming a fluid system path, and a pump 10, a pressure control valve 11, a power cylinder 13, a tank 15, and L1 to L constitute a pressurization system hydraulic circuit 16.

一方、17はステアリングギア機構であり、ステアリン
グギア機構17は操舵ハンドル18に入力された操舵力
をステアリングロッド19の車幅方向の動きに変換し、
前輪20を操舵する。ステアリングギア機構17のステ
アリングロッド19はメータリングシリンダ21のピス
トンロッド21aに一体的に連結され、メータリングシ
リンダ21のケース21bはステアリングギア機構17
のケース17aに同定されている。なお、L6、L、は
流体系路としての管路であり、Lh、Ll、メータリン
グシリンダ21および前述のバイロフトシリンダ14は
静圧系油圧回路22を構成する。
On the other hand, 17 is a steering gear mechanism, and the steering gear mechanism 17 converts the steering force input to the steering wheel 18 into movement of the steering rod 19 in the vehicle width direction.
The front wheels 20 are steered. The steering rod 19 of the steering gear mechanism 17 is integrally connected to the piston rod 21a of the metering cylinder 21, and the case 21b of the metering cylinder 21 is connected to the steering gear mechanism 17.
Case 17a is identified. Note that L6, L are pipes as fluid lines, and Lh, Ll, the metering cylinder 21, and the above-mentioned biloft cylinder 14 constitute a hydrostatic hydraulic circuit 22.

ここで、23は熱交換部であり、熱交換部23の具体的
構成例は第2図に示される。第2図において、熱交換部
23はケース体23 aの内部を流体室23bとし、ケ
ース体23aの長手方向両端部に入力ボート23cおよ
び出力ポート23.1を設け、入力ボート23Cに前記
のし4を接続し、出力ポート23dに前記のし、を接続
するとともに、ケース体23aの長手方向内部に前記L
6 、L?を挿通して構成する。
Here, 23 is a heat exchange section, and a specific configuration example of the heat exchange section 23 is shown in FIG. In FIG. 2, the heat exchange section 23 has a fluid chamber 23b inside a case body 23a, an input boat 23c and an output port 23.1 are provided at both ends of the case body 23a in the longitudinal direction, and the input boat 23C has the above-mentioned structure. 4 is connected to the output port 23d, and the L is connected to the output port 23d.
6, L? Insert and configure.

このように構成すると、入力ボート23cから流れ込む
加圧系油圧回路I6の加圧流体は、ケース体23a内を
通過した後、出力ポート23dからタンク15へと還流
するが、その際、加圧流体は静圧系油圧回路22のり、
およびL7の管壁に触れながら流れることになる。した
がって、ポンプ10等の発生熱量によって比較的に高温
状態にある加圧系油圧回路16の加圧流体と、低温状態
にある静圧系油圧回路22の流体との間で円滑な熱交換
が行われ、また、ケース体23aの外周雰囲気との間で
も熱交換が行われるから、畜温側の加圧流体の温度が下
降するとともに低温側の静圧流体の温度が上昇する結果
、両流体の温度が接近し若しくは均衡する。
With this configuration, the pressurized fluid of the pressurized hydraulic circuit I6 flowing from the input boat 23c passes through the case body 23a and then flows back to the tank 15 from the output port 23d. is the static pressure system hydraulic circuit 22 glue,
It flows while touching the pipe wall of L7. Therefore, smooth heat exchange is performed between the pressurized fluid in the pressurizing hydraulic circuit 16, which is in a relatively high temperature state due to the amount of heat generated by the pump 10, and the fluid in the static pressure hydraulic circuit 22, which is in a low temperature state. In addition, since heat exchange is also performed with the outer peripheral atmosphere of the case body 23a, the temperature of the pressurized fluid on the temperature storage side decreases and the temperature of the static pressure fluid on the low temperature side increases, resulting in a decrease in the temperature of both fluids. Temperatures approach or balance.

これにより、高温環境下における前述の不都合■を解決
できるとともに、低温環境下における前述の不都合■を
解決できる。
This makes it possible to solve the above-mentioned disadvantage (2) in a high-temperature environment, and also to solve the above-mentioned disadvantage (2) in a low-temperature environment.

なお、熱交換部の構成は第2図の例に限定されるもので
はなく、例えば第3図に他の態様例を示すように、いく
つかのケース体(例では、3つのケース体A、B、C)
を管路La、Lbで連結し、両端のケース体A、Cに加
圧系油圧回路16の管路り、 、L、を接続するととも
に、ケース体A、B、Cの内部に静圧系油圧回路22の
管路L6、L7を挿通するようにしてもよい。ケース体
の数を増やすことにより熱交換効率を容易に向上できる
。また、各々のケース体の配置に自在性があるので、車
両への搭載性が向上する。
Note that the configuration of the heat exchange section is not limited to the example shown in FIG. 2; for example, as shown in another embodiment in FIG. 3, several case bodies (in the example, three case bodies A, B, C)
are connected by pipes La and Lb, and the pipes, L, of the pressure system hydraulic circuit 16 are connected to the case bodies A and C at both ends, and the static pressure system is connected inside the case bodies A, B, and C. The pipes L6 and L7 of the hydraulic circuit 22 may be inserted therethrough. Heat exchange efficiency can be easily improved by increasing the number of case bodies. Furthermore, since each case body can be arranged flexibly, the mountability on a vehicle is improved.

さらに、上記の各熱交換部はそのケース体の実装位置を
加圧系油圧回路16のり、とり、の間、すなわち、タン
ク15に最も近い位置としているが、加圧系油圧回路1
6の発生熱量のかなりの割合をポンプ10が占めること
を考慮すれば、特に上記の実装位置に限定されるもので
はなく、ポンプ10とタンク15との間の流体系路上で
あれば、どこに実装しても所望の熱交換機能を果すこと
ができる。
Furthermore, each of the above-mentioned heat exchange parts is mounted on the case body between the glue and the groove of the pressure system hydraulic circuit 16, that is, the position closest to the tank 15, but the pressure system hydraulic circuit 1
Considering that the pump 10 accounts for a considerable proportion of the heat generated by the pump 6, it is not limited to the above-mentioned mounting position, but can be mounted anywhere on the fluid system between the pump 10 and the tank 15. However, the desired heat exchange function can be achieved.

(効果) 本発明によれば、加圧系油圧回路と静圧系油圧回路との
間で熱交換を行うように構成したので、高温環境下にお
ける後輪舵角不足の不具合(前述の不都合■)および低
温環境下におけるハンドル操作が重くなる不具合(前述
の不都合の)を共に解決することができる。
(Effects) According to the present invention, since heat exchange is performed between the pressurized hydraulic circuit and the static pressure hydraulic circuit, the problem of insufficient rear wheel steering angle in a high temperature environment (disadvantages mentioned above) ) and the problem that the steering wheel becomes difficult to operate in a low-temperature environment (the above-mentioned problem) can be solved together.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明に係る後輪操舵装置の一実施例を示
す図であり、第1図はそのシステム構成図、第2図はそ
の熱交換部の一例の構成図、第3図はその熱交換部の他
の例の構成図、第4図は従来例のシステム構成図である
。 10・・・・・・ポンプ、 11・・・・・・圧力制御弁、 11a・・・・・・バルブ本体、 11b・・・・・・スプール弁、 工3・・・・・・パワーシリンダ、 13a・・・・・・ピストンロッド、 14・・・・・・パイロットシリンダ、14a・・・・
・・ピストンロッド、 15・・・・・・タンク、 16・・・・・・加圧系油圧回路、 21・・・・・・メータリングシリンダ、21a・・・
・・・ピストンロッド、 2i・・・・・・ケース、 22・・・・・・静圧系油圧回路、 23・・・・・・熱交換部、 23a・・・・・・ケース体、 23b・・・・・・流体室。
1 to 3 are diagrams showing one embodiment of the rear wheel steering device according to the present invention, in which FIG. 1 is a system configuration diagram thereof, FIG. 2 is a configuration diagram of an example of its heat exchange section, and FIG. 4 is a configuration diagram of another example of the heat exchange section, and FIG. 4 is a system configuration diagram of a conventional example. 10...Pump, 11...Pressure control valve, 11a...Valve body, 11b...Spool valve, Work 3...Power cylinder , 13a... Piston rod, 14... Pilot cylinder, 14a...
... Piston rod, 15 ... Tank, 16 ... Pressure system hydraulic circuit, 21 ... Metering cylinder, 21a ...
... Piston rod, 2i ... Case, 22 ... Static pressure system hydraulic circuit, 23 ... Heat exchange section, 23a ... Case body, 23b ...Fluid chamber.

Claims (1)

【特許請求の範囲】 ポンプで加圧した流体を、バルブ本体とスプール弁の何
れか一方の位置が後輪舵角に応じて変化する圧力制御弁
を介して、後輪舵角操作用のパワーシリンダに供給した
後、タンクに還流する加圧系油圧回路を備えるとともに
、 メータリングシリンダからの前輪舵角に応じた量の流体
をパイロットシリンダに供給し、該パイロットシリンダ
により前記圧力制御弁のバルブ本体とスプール弁の何れ
か他方の位置を変化させた後、メータリングシリンダに
還流する静圧系油圧回路を備える後輪操舵装置において
、前記加圧系油圧回路あるいは静圧系油圧回路の一方の
回路の流体系路の一部に流体室を設け、他方の回路の流
体系路の一部を該流体室内に介在させたことを特徴とす
る後輪操舵装置。
[Claims] Fluid pressurized by a pump is passed through a pressure control valve in which the position of either the valve body or the spool valve changes in accordance with the rear wheel steering angle to generate power for controlling the rear wheel steering angle. A pressurizing system hydraulic circuit is provided which supplies fluid to the cylinder and then returns to the tank, and supplies an amount of fluid from the metering cylinder to a pilot cylinder according to the front wheel steering angle, and the pilot cylinder uses the valve of the pressure control valve. In a rear wheel steering device equipped with a hydrostatic hydraulic circuit that returns the flow to the metering cylinder after changing the position of the other of the main body and the spool valve, one of the pressurizing hydraulic circuit or the static hydraulic circuit A rear wheel steering device characterized in that a fluid chamber is provided in a part of a fluid system path of a circuit, and a part of a fluid system path of the other circuit is interposed in the fluid chamber.
JP1265903A 1989-10-12 1989-10-12 Rear wheel steering device Pending JPH03125670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1265903A JPH03125670A (en) 1989-10-12 1989-10-12 Rear wheel steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1265903A JPH03125670A (en) 1989-10-12 1989-10-12 Rear wheel steering device

Publications (1)

Publication Number Publication Date
JPH03125670A true JPH03125670A (en) 1991-05-29

Family

ID=17423703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1265903A Pending JPH03125670A (en) 1989-10-12 1989-10-12 Rear wheel steering device

Country Status (1)

Country Link
JP (1) JPH03125670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060107920A (en) * 2005-04-11 2006-10-16 가부시키가이샤 히타치세이사쿠쇼 Power steering apparatus
CN104053588A (en) * 2012-01-17 2014-09-17 Zf操作系统有限公司 Steering centering means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060107920A (en) * 2005-04-11 2006-10-16 가부시키가이샤 히타치세이사쿠쇼 Power steering apparatus
CN104053588A (en) * 2012-01-17 2014-09-17 Zf操作系统有限公司 Steering centering means

Similar Documents

Publication Publication Date Title
US4420934A (en) Automotive vehicle hydraulic system
JPS6246724B2 (en)
EP2196704A1 (en) Hydraulic pressure supply device for industrial vehicle
JPS621508Y2 (en)
JPH045841B2 (en)
US3355994A (en) Hydraulic system
GB1591328A (en) Closed-centre controller for fluid pressure operated devices
US4517800A (en) Hydraulic control system for off-highway self-propelled work machines
JPH0459483B2 (en)
US3915253A (en) Load sensing steering system
CN114401872A (en) Modular hydraulic valve assembly for work vehicle
US20070227135A1 (en) Integrated load-sensing hydraulic system
JPH03125670A (en) Rear wheel steering device
CN109624950B (en) Brake control oil circuit, tractor front axle brake control system and tractor
US3077901A (en) Divided flow, control valve system
US6131687A (en) Process for actuating the steering cylinders of mobile plant and steering system therefor
CN203847457U (en) Hydraulic device for fixed-displacement booster pumps
US3955474A (en) Fluid pressure system having pumps and valves
GB2042443A (en) Hydraulic powerassisted steering system
US3210939A (en) Flow control device
ITTO970846A1 (en) HYDRAULIC SYSTEM.
US2581430A (en) Fluid pressure control valve and associated parts
CN210634627U (en) Hydraulic steering device and engineering vehicle
GB1205151A (en) Improvements in or relating to hydraulic power steering systems
US4308787A (en) Priority flow divider