JPH0312562B2 - - Google Patents

Info

Publication number
JPH0312562B2
JPH0312562B2 JP57000616A JP61682A JPH0312562B2 JP H0312562 B2 JPH0312562 B2 JP H0312562B2 JP 57000616 A JP57000616 A JP 57000616A JP 61682 A JP61682 A JP 61682A JP H0312562 B2 JPH0312562 B2 JP H0312562B2
Authority
JP
Japan
Prior art keywords
heptane
kerosene
polymer
boiling
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57000616A
Other languages
Japanese (ja)
Other versions
JPS58118840A (en
Inventor
Tadashi Asanuma
Ichiro Fujikage
Tetsunosuke Shiomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61682A priority Critical patent/JPS58118840A/en
Publication of JPS58118840A publication Critical patent/JPS58118840A/en
Publication of JPH0312562B2 publication Critical patent/JPH0312562B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気特性の優れた延伸フイルム用のポ
リプロピレン樹脂に関する。 ポリプロピレンの延伸フイルムは引張強度、剛
性等が良好であり、又、耐熱性、耐油性、電気的
性質が優れているため、コンデンサー、電力ケー
ブルなどの電気関連用途に広く用いられている。 電気的特性の1つの尺度として、破壊電圧があ
りこれは膜に電圧を加えた場合、絶縁抵抗が低下
して比較的大きな電流を通ずるようになる時の電
圧を破壊電圧と呼び電圧/フイルム厚みで示され
る。従つて、高い電圧に耐えるためには、フイル
ムの厚さを厚くすれば良いが、逆に絶縁体の性能
が良ければフイルムの厚さが薄くでき、少ない材
料で良いことになり又、製品の大きさも小さくす
ることが可能となる。 従つて、フイルムの電気特性の改良が望まれる
こととなる。 本発明者らは、種々の検討を行なつた結果、特
定の物性を有するポリプロピレン樹脂が、延伸フ
イルム特に二軸延伸フイルムとした時、上記電気
特性が極めて優れた条件を満すことを見い出し本
発明を完成した。 本発明は電気特性の優れた2軸延伸フイルム用
ポリプロピレン樹脂を提供することにある。 本発明のポリプロピレン樹脂は 立体規則性触媒を用いてプロピレンを重合し、
触媒残渣を除去して得たプロピレンの立体規則性
重合体であつて、該重合体が (イ) 30℃の灯油可溶分が2wt%以下、 (ロ) 30℃の灯油不溶分の沸騰n−ヘプタン抽出残
分が92wt%以上であり、 (ハ) メルトフローインデツクスが10〜0.01g/
10minであり、かつ、 (ニ) 全灰分が20ppm以下であることを特徴とする
電気特性の改良された延伸フイルム用ポリプロ
ピレン樹脂である。 本発明で特定されるポリプロピレン樹脂につい
て以下に詳細な説明をする。 立体規則性触媒を用いてプロピレンを重合し、
触媒残渣を除去して得たプロピレンの立体規則性
重合体を例えばその10gを灯油200mlに分解し、
130〜150℃で撹拌して完全に溶解させる。この
際、例えば2,6−ジ−t−ブチル−p−クレゾ
ール等の酸化防止剤を添加しておくことが正しい
値を得るために好ましい。完全に溶解させた後、
ゆつくり温度を下げポリマーを析出させながら30
℃に5時間保つ。この後過によつて灯油可溶部
と灯油不溶部を分離する。次いで、灯油不溶部を
200mlの常温n−ヘプタンによく分散し洗液を灯
油不溶部から分離する操作を2回繰り返した。灯
油可溶部と洗液はまとめて大量のメタノール(灯
油に対して10倍以上)に投入して、ポリマーを析
出させる。得られたポリマーは80℃40mmHgで乾
燥し秤量する。これを灯油可溶ポリマーと呼ぶ。 洗液から分離した灯油不溶部は、ソツクスレー
抽出器を用い、98℃のn−ヘプタン(沸騰n−ヘ
プタン)で10時間抽出し、抽出分を大量のメタノ
ール(灯油に対して10倍以上)に投入してポリマ
ーを折出させ、過分離の後上記同様に乾燥し秤
量する。これを沸騰ヘプタン抽出ポリマーと呼
ぶ。 抽出残分も同様に乾燥し秤量する。これを沸騰
ヘプタン抽出残ポリマーと呼ぶ。 上記のように灯油可溶ポリマー、沸騰ヘプタン
抽出ポリマー及び沸騰ヘプタン抽出残ポリマーの
3つの部分に分離されたものを加えた重量が仕込
ポリマーに比較して99.5〜100.5wt%の範囲であ
ることを確認した後以下のようにして各部の割合
を決定する。 30℃の灯油可溶分=灯油可溶ポリマー重量/仕込
みポリマー重量×100 沸騰n−ヘプタン抽出残分=沸騰ヘプタン抽出残
ポリマー重量/(仕込みポリマー重量)−(灯油可溶ポ
リマー重量)×100 上記のようにして決定された、30℃の灯油可溶
分が2wt%以下、好ましくは1wt%以下であり、
しかも沸騰n−ヘプタン抽出残分が92wt%以上、
好ましくは93wt%以上(しかも98wt%未満)で
あることは本発明の樹脂に必須の条件である。沸
騰n−ヘプタン抽出残分の決定方法として上記の
方法をとらずに、重合によつて得られたパウダー
をそのまま抽出して算出した値は、樹脂の電気特
性とは必ずしも相関せず、本発明の樹脂を特定す
るには適当でない。 本発明の限定における(イ)30℃の灯油可溶分が
2wt%以上である場合は電気特性が悪いだけでは
なく、フイルムのヤング率、引張り破断強度が不
足し延伸フイルムにとつて好ましくなくさらには
フイルムとした時、オイル状のポリマーが表面に
浮き出し、外観が不良であるだけでなく、フイル
ムどうしがくつつき会うため、フイルムをロール
状にまきとると、その後フイルムを引き出すのが
困難になり好ましくない。又(ロ)沸騰n−ヘプタン
抽出残分が92wt%以下では、電気的特性、特に
破壊電圧が低く好ましくなく、98wt%以上では、
フイルムとした時に耐衝撃性の低下が大きく好ま
しくない。又(ハ)メルトフローインデツクス(JIS
K−7210)はフイルムに製膜する必要上10〜0.01
の範囲が、好ましくは8〜0.1であることが要求
される。又添加される安定剤等の添加物について
は勿論、特に本発明に云う樹脂においてその灰分
は少ない方が好ましく、特にこの値で20ppm以下
にすることが電気特性、特に破壊電圧を高くする
上で好ましい。 本発明のポリプロピレン樹脂の製造は、各種の
方法で行なわれるが、通常は高立体規則性ポリプ
ロピレンを与える触媒を用いて重合し、その後
に、極めて厳密に触媒残査を除去しさらに、n−
ヘプタン可溶分を厳密に除去することによつて得
られるが、高立体規則性触媒を用い、触媒残査の
除去とn−ヘプタン可溶分の除去を極めて良好に
管理された条件下で行う必要がある。 以下に実施例を示しさらに具体的に説明する。 本発明において用いる立体規則性触媒を用いて
プロピレンを重合し、触媒残渣を除去して得たプ
ロピレンの立体規則性重合体は、例えば、特開昭
56−90806号公報に従つて、次の参考例のように
して得た。 参考例 直径12mmの鋼球80個の入つた内容積600mlの振
動ミル中に、塩化アルミニウムの存在下で四塩化
チタンをアルミニウムで還元、粉砕した組成がほ
ぼTiCl3・1/3AlCl3に等しい三塩化チタンと三塩
化アルミニウムの共晶体30g、ジフエニルエーテ
ル1.5gおよび四塩化チタン0.6gを挿入し、窒素
雰囲気下室温で14時間粉砕した。この内容物を窒
素雰囲気下で鋼球と分離し、三塩化チタン組成物
を得た。 この三塩化チタン組成物の20gをn−ヘプタン
200mlを用いて80℃で30分間撹拌後、デカンテー
シヨンによつてn−ヘプタンを除去した。次に、
これにn−ヘプタン100mlを添加して、三塩化チ
タン触媒スラリーとした。 内容積500のオートクレーブにn−ヘプタン
150、上記操作を繰り返し調整して得た三塩化
チタン触媒0.5Kg、ジエチルアルミニウムクロリ
ド0.9、ジ−n−ブチルエーテル0.05を加え、
70℃でプロピレンを挿入して全圧5Kg/cm2ゲー
ジ、水素7vol%で5時間重合した。重合反応後メ
タノールを100加え、100℃で1時間加熱し、次
いで水50加えて100℃で撹拌し、静置して水層
を除去した。さらに1回100の水で90℃で5回
スラリーを洗浄した。その後n−ヘプタン100
を加え80℃に加熱し、80℃で濾別し、パウダーを
80℃のn−ヘプタン100で洗浄して、触媒残渣、
アタクチツクポリプロピレンが十分に除去された
ポリプロピレンを得た。 実施例 1 参考例で得たポリプロピレンを用いて (i) n−ヘプタン抽出残分(1)は、パウダーを灯油
処理せず直ちにソツクスレー抽出器を用いて沸
騰n−ヘプタンで10時間抽出し、 抽出残分重量/抽出前重量×100として算出し、 (ii) n−ヘプタン抽出残分(2)は、前記の通り30℃
灯油可溶分を除去の後抽出した結果であり (iii) 絶縁破壊電圧は、ポリプロピレンにフエノー
ル系安定剤0.1重量%加え、直径65mmのスクリ
ユーを有するTダイ抽出機を用いて280℃溶融
押出しを行ない、次いで40℃の冷却ロールを急
冷して厚さ1mmのシートを得た後、140〜160℃
で縦方向に5倍及び横方向に6倍延伸して、
150℃で熱処理することで厚さ約40μの2軸延
伸フイルムを得た。 このものはASTM=149の方法に準じて絶縁
破壊電圧を測定しV/μの単位で示した。 実施例 2 重合の際の水素濃度を8vol%とした他は参考例
に従つて重合したポリプロピレンを用いて、実施
例1と同様に処理した。 実施例 3 重合温度を65℃とした他は実施例2と同様に実
施した。 比較例 1 メタノールの量を80とし、加熱を85℃、水洗
温度も85℃とし、n−ヘプタンを追加することな
く、70℃で濾別し、n−ヘプタンで洗浄すること
なく乾燥した他は参考例に従つて重合したポリプ
ロピレンを用いて、実施例1と同様に処理した。 比較例 2 重合の際の水素濃度を8vol%とした他は比較例
1と同様に実施した。 比較例 3 重合温度を65℃とした他は比較例2と同様に実
施した。 実施例及び比較例において得られた結果を表と
図面に示す。なお実施例に示したポリマーの灰分
は20ppm以下である。沸騰n−ヘプタン抽出残分
(2)と破壊電圧は明確に相関しており(曲線1)沸
騰n−ヘプタン抽出残分92wt%付近に彎曲点即
ち93%以上で急激に破壊電圧が向上するのがわか
る。 一方沸騰n−ヘプタン抽出残分(1)は破壊電圧と
は相関せず(曲線2)限界が明確ではない。 又30℃灯油可溶分(曲線3)は図中に示すが上
記の範囲では大差ない。 表に物性を示した実施例、比較例の各実施例ポ
リマーは、いづれも本文中に記載の方法によつて
製造したものであり、それらのポリマー物性が本
発明で限定した値を満足しない場合には、フイル
ムとしての物性が所望の電気的性質等を満たさな
いことが明らかである。
The present invention relates to a polypropylene resin for stretched films with excellent electrical properties. Stretched polypropylene films have good tensile strength and rigidity, as well as excellent heat resistance, oil resistance, and electrical properties, so they are widely used in electrical applications such as capacitors and power cables. One measure of electrical properties is breakdown voltage. When voltage is applied to a film, the voltage at which the insulation resistance decreases and a relatively large current can pass through is called breakdown voltage, and is calculated by voltage/film thickness. It is indicated by. Therefore, in order to withstand high voltage, it is better to make the film thicker, but conversely, if the insulator has good performance, the film can be made thinner, which means less material is required, and the product quality is improved. It is also possible to reduce the size. Therefore, it is desired to improve the electrical properties of the film. As a result of various studies, the present inventors discovered that a polypropylene resin having specific physical properties satisfies the conditions for extremely excellent electrical properties when made into a stretched film, particularly a biaxially stretched film. Completed the invention. An object of the present invention is to provide a polypropylene resin for biaxially stretched films with excellent electrical properties. The polypropylene resin of the present invention is produced by polymerizing propylene using a stereoregular catalyst,
A stereoregular polymer of propylene obtained by removing catalyst residue, which has (a) a kerosene soluble content of 2 wt% or less at 30°C, and (b) a kerosene insoluble content of boiling n at 30°C. - The heptane extraction residue is 92wt% or more, and (c) the melt flow index is 10 to 0.01g/
10 min, and (iv) a polypropylene resin for stretched films with improved electrical properties, characterized in that the total ash content is 20 ppm or less. The polypropylene resin specified in the present invention will be described in detail below. Polymerizing propylene using a stereoregular catalyst,
For example, 10 g of the stereoregular propylene polymer obtained by removing the catalyst residue is decomposed into 200 ml of kerosene,
Stir at 130-150℃ to completely dissolve. At this time, it is preferable to add an antioxidant such as 2,6-di-t-butyl-p-cresol in order to obtain correct values. After completely dissolving the
While slowly lowering the temperature to precipitate the polymer,
Keep at ℃ for 5 hours. After this, kerosene soluble parts and kerosene insoluble parts are separated by filtration. Next, the kerosene insoluble part
The procedure of thoroughly dispersing in 200 ml of room temperature n-heptane and separating the washing liquid from the kerosene-insoluble part was repeated twice. The kerosene-soluble part and the washing liquid are put together in a large amount of methanol (more than 10 times the amount of kerosene) to precipitate the polymer. The obtained polymer is dried at 80°C and 40mmHg and weighed. This is called kerosene soluble polymer. The kerosene-insoluble portion separated from the washing liquid is extracted with n-heptane (boiling n-heptane) at 98°C for 10 hours using a Soxhlet extractor, and the extracted portion is dissolved in a large amount of methanol (more than 10 times the amount of kerosene). The polymer is precipitated, and after excessive separation, it is dried and weighed in the same manner as above. This is called boiling heptane extracted polymer. The extraction residue is similarly dried and weighed. This is called boiling heptane extraction residue polymer. As mentioned above, the weight of the kerosene soluble polymer, boiling heptane extracted polymer, and boiling heptane extracted residual polymer separated into three parts is in the range of 99.5 to 100.5 wt% compared to the charged polymer. After checking, determine the proportion of each part as follows. Kerosene soluble content at 30℃ = Kerosene soluble polymer weight / Charged polymer weight x 100 Boiling n-heptane extraction residue = Boiling heptane extraction residue polymer weight / (Prepared polymer weight) - (Kerosene soluble polymer weight) x 100 Above The kerosene soluble content at 30°C is 2wt% or less, preferably 1wt% or less, determined as follows,
Moreover, the boiling n-heptane extraction residue is over 92wt%.
It is an essential condition for the resin of the present invention that the content is preferably 93 wt% or more (and less than 98 wt%). The value calculated by directly extracting the powder obtained by polymerization without using the above-mentioned method for determining the boiling n-heptane extraction residue does not necessarily correlate with the electrical properties of the resin, and the present invention It is not suitable for specifying the resin. (a) In the limitations of the present invention, the kerosene soluble content at 30℃ is
If it is more than 2wt%, not only will the electrical properties be bad, but the Young's modulus and tensile strength of the film will be insufficient, making it unfavorable for stretched films.Furthermore, when the film is made, oil-like polymers will rise to the surface and the appearance will deteriorate. Not only is this defective, but the films also stick together, which makes it difficult to pull out the film after the film is rolled up, which is undesirable. (b) If the boiling n-heptane extraction residue is less than 92wt%, the electrical properties, especially the breakdown voltage, are low and undesirable; if it is more than 98wt%,
When made into a film, the impact resistance is greatly reduced, which is undesirable. Also, (c) melt flow index (JIS
K-7210) is 10 to 0.01 as it is necessary to form a film.
is preferably in the range of 8 to 0.1. Regarding additives such as stabilizers, it is of course preferable that the ash content is low, especially in the resin referred to in the present invention, and in particular, it is desirable to keep this value below 20 ppm in order to increase the electrical properties, especially the breakdown voltage. preferable. The polypropylene resin of the present invention can be produced by various methods, but usually it is polymerized using a catalyst that gives highly stereoregular polypropylene, and then the catalyst residue is removed very strictly, and then n-
It is obtained by strictly removing heptane soluble components, but using a highly stereoregular catalyst, the removal of catalyst residue and n-heptane soluble components are performed under extremely well-controlled conditions. There is a need. Examples will be shown below and more specifically explained. The stereoregular propylene polymer obtained by polymerizing propylene using the stereoregular catalyst used in the present invention and removing the catalyst residue is, for example,
It was obtained according to the following reference example according to Publication No. 56-90806. Reference example Titanium tetrachloride was reduced and ground with aluminum in the presence of aluminum chloride in a vibrating mill with an internal volume of 600 ml containing 80 steel balls with a diameter of 12 mm . 30 g of a eutectic of titanium chloride and aluminum trichloride, 1.5 g of diphenyl ether, and 0.6 g of titanium tetrachloride were added, and the mixture was pulverized at room temperature under a nitrogen atmosphere for 14 hours. The contents were separated from the steel balls under a nitrogen atmosphere to obtain a titanium trichloride composition. 20g of this titanium trichloride composition was mixed with n-heptane.
After stirring for 30 minutes at 80° C. using 200 ml, n-heptane was removed by decantation. next,
100 ml of n-heptane was added to this to prepare a titanium trichloride catalyst slurry. n-heptane in an autoclave with an internal volume of 500
150, add 0.5 kg of titanium trichloride catalyst obtained by repeating the above operation, 0.9 kg of diethyl aluminum chloride, and 0.05 di-n-butyl ether,
At 70°C, propylene was introduced and polymerization was carried out for 5 hours at a total pressure of 5 kg/cm 2 gauge and 7 vol% hydrogen. After the polymerization reaction, 100% of methanol was added and heated at 100°C for 1 hour, then 50% of water was added, stirred at 100°C, left to stand, and the aqueous layer was removed. The slurry was further washed 5 times at 90° C. with 100 g of water. Then n-heptane 100
Add and heat to 80℃, filter at 80℃ and remove the powder.
Wash with n-heptane 100 °C at 80 °C to remove catalyst residue,
Polypropylene from which atactic polypropylene was sufficiently removed was obtained. Example 1 Using the polypropylene obtained in Reference Example (i), the n-heptane extraction residue (1) was extracted by immediately extracting the powder with boiling n-heptane for 10 hours using a Soxhlet extractor without treating the powder with kerosene. Calculated as weight of residue/weight before extraction x 100, (ii) n-heptane extraction residue (2), as described above, at 30°C
This is the result of extraction after removing the kerosene soluble content (iii) The breakdown voltage is obtained by adding 0.1% by weight of a phenolic stabilizer to polypropylene and melt extruding at 280°C using a T-die extractor with a screw of 65 mm in diameter. Then, after rapidly cooling with a cooling roll at 40°C to obtain a sheet with a thickness of 1 mm, it was heated to 140 to 160°C.
Stretched 5 times in the longitudinal direction and 6 times in the transverse direction,
A biaxially stretched film with a thickness of about 40 μm was obtained by heat treatment at 150°C. The dielectric breakdown voltage of this product was measured according to the method of ASTM=149 and expressed in units of V/μ. Example 2 Polypropylene polymerized according to Reference Example was used and treated in the same manner as in Example 1, except that the hydrogen concentration during polymerization was 8 vol %. Example 3 The same procedure as Example 2 was carried out except that the polymerization temperature was 65°C. Comparative Example 1 The amount of methanol was 80, the heating was 85°C, the water washing temperature was 85°C, the sample was filtered at 70°C without adding n-heptane, and it was dried without washing with n-heptane. The same treatment as in Example 1 was carried out using polypropylene polymerized according to the reference example. Comparative Example 2 The same procedure as Comparative Example 1 was carried out except that the hydrogen concentration during polymerization was 8 vol%. Comparative Example 3 The same procedure as Comparative Example 2 was carried out except that the polymerization temperature was 65°C. The results obtained in Examples and Comparative Examples are shown in tables and drawings. Note that the ash content of the polymer shown in the examples is 20 ppm or less. Boiling n-heptane extraction residue
(2) and the breakdown voltage are clearly correlated (curve 1), and it can be seen that the breakdown voltage sharply increases at a bending point near 92wt% of boiling n-heptane extraction residue, that is, at 93% or more. On the other hand, the boiling n-heptane extraction residue (1) does not correlate with the breakdown voltage (curve 2), and the limit is not clear. The kerosene soluble content at 30°C (curve 3) is shown in the figure, but there is no significant difference within the above range. The polymers of Examples and Comparative Examples whose physical properties are shown in the table are all manufactured by the method described in the text, and if the physical properties of the polymer do not satisfy the values specified in the present invention. It is clear that the physical properties of the film do not satisfy the desired electrical properties.

【表】 出
[Front] Out

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例(表に示されたもの以外を含む)
において用いられたポリプロピレン樹脂における
物性値相互の関係(破壊電圧/沸騰n−ヘプタン
抽出残分(2)、破壊電圧/沸騰n−ヘプタン抽出残
分(1)、30℃灯油可溶分/沸騰n−ヘプタン抽出残
分(2))を示したものである。
The drawings are examples (including those not shown in the table)
Relationship between physical properties of polypropylene resin used in polypropylene resin (breakdown voltage/boiling n-heptane extraction residue (2), breakdown voltage/boiling n-heptane extraction residue (1), 30℃ kerosene soluble content/boiling n -Heptane extraction residue (2)).

Claims (1)

【特許請求の範囲】 1 立体規則性触媒を用いてプロピレンを重合
し、触媒残渣を除去して得たプロピレンの立体規
則性重合体であつて、該重合体が (イ) 30℃の灯油可溶分が2wt%以下、 (ロ) 30℃の灯油不溶分の沸騰n−ヘプタン抽出残
分が92wt%以上であり、 (ハ) メルトフローインデツクスが10〜0.01g/
10minであり、かつ、 (ニ) 全灰分が20ppm以下であることを特徴とする
電気特性の改良された延伸フイルム用ポリプロ
ピレン樹脂。
[Scope of Claims] 1. A stereoregular polymer of propylene obtained by polymerizing propylene using a stereoregular catalyst and removing the catalyst residue, which polymer is (a) compatible with kerosene at 30°C. The soluble content is 2wt% or less, (b) the residue after boiling n-heptane extraction of kerosene insolubles at 30°C is 92wt% or more, and (c) the melt flow index is 10 to 0.01g/
10 min, and (iv) a polypropylene resin for stretched films with improved electrical properties, characterized in that the total ash content is 20 ppm or less.
JP61682A 1982-01-07 1982-01-07 Polypropylene resin composition for oriented film having improved electrical properties Granted JPS58118840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61682A JPS58118840A (en) 1982-01-07 1982-01-07 Polypropylene resin composition for oriented film having improved electrical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61682A JPS58118840A (en) 1982-01-07 1982-01-07 Polypropylene resin composition for oriented film having improved electrical properties

Publications (2)

Publication Number Publication Date
JPS58118840A JPS58118840A (en) 1983-07-15
JPH0312562B2 true JPH0312562B2 (en) 1991-02-20

Family

ID=11478658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61682A Granted JPS58118840A (en) 1982-01-07 1982-01-07 Polypropylene resin composition for oriented film having improved electrical properties

Country Status (1)

Country Link
JP (1) JPS58118840A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124610A (en) * 1983-12-12 1985-07-03 Mitsui Toatsu Chem Inc Polypropylene film having good stretchability
JPS60217133A (en) * 1984-04-13 1985-10-30 Toray Ind Inc Biaxially oriented polyolefin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575411A (en) * 1978-12-05 1980-06-06 Mitsubishi Petrochem Co Ltd Preparation of catalyst component for polymerizing olefin
JPS562307A (en) * 1979-06-20 1981-01-12 Sumitomo Chem Co Ltd Preparation of highly crystalline olefin polymer
JPS5672001A (en) * 1979-11-16 1981-06-16 Mitsubishi Petrochem Co Ltd Production of olefin polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575411A (en) * 1978-12-05 1980-06-06 Mitsubishi Petrochem Co Ltd Preparation of catalyst component for polymerizing olefin
JPS562307A (en) * 1979-06-20 1981-01-12 Sumitomo Chem Co Ltd Preparation of highly crystalline olefin polymer
JPS5672001A (en) * 1979-11-16 1981-06-16 Mitsubishi Petrochem Co Ltd Production of olefin polymer

Also Published As

Publication number Publication date
JPS58118840A (en) 1983-07-15

Similar Documents

Publication Publication Date Title
EP0030664B1 (en) Pourable sinter powder with particular properties based on tetrafluorethylene polymers, and process for their preparation
DE2714743C2 (en) Low density polyethylene and process for its manufacture
GB1574975A (en) Tetrafluoroethylene copolymer fine powder resin
EP1712569A1 (en) Method for producing isobutylene resin powder
CA1068447A (en) Crystalline polymers and copolymers of propylene and process for preparing same
DE1520544A1 (en) MOLDED POLYTETRAFLUORAETHYLENE POWDER AND PROCESS FOR THE PREPARATION
DE3416561A1 (en) METHOD FOR PRODUCING MIXED ETHYLENE POLYMER
DE1694451A1 (en) Polymer mass
JPH0312562B2 (en)
DE2947921A1 (en) METHOD FOR PRODUCING AN AETHYLENE-ALPHA-OLEFIN COPOLYMER
DE1595184B1 (en) Process for the polymerization of a conjugated diene
DE3520103A1 (en) Process for the treatment of catalysts and/or residues of initiator-containing polymers or solutions thereof
DE1570737A1 (en) Process for the production of polyepoxides
DE1595842A1 (en) Polymer molding compound
EP0227300B1 (en) Electrically insulating material comprising stretched polypropylene film
Iwasaki Stereospecific polymerization of isobutyl vinyl ether at elevated temperatures
US3119797A (en) Process for refining polyolefins
JP3973248B2 (en) Capacitor insulation film
CA1334599C (en) Propylene-ethylene copolymer composition and process for producing the same
DE1192407B (en) Process for working up solutions of olefin polymers and olefin copolymers
EP1947136A1 (en) Process for producing particulate resin
US2991279A (en) Treatment of olefin polymers
DE2233983A1 (en) IMPROVED HIGH DENSITY ETHYLENE POLYMER BLEND AND POLYMERIZATION PROCESS FOR THEIR PRODUCTION
DE3220974A1 (en) A random propylene copolymer
DE2039494C3 (en) Process for the production of polyisoprene