JPH0312552A - Method and device for measuring transversal sound wave speed in ultrasonic wave test - Google Patents

Method and device for measuring transversal sound wave speed in ultrasonic wave test

Info

Publication number
JPH0312552A
JPH0312552A JP1147475A JP14747589A JPH0312552A JP H0312552 A JPH0312552 A JP H0312552A JP 1147475 A JP1147475 A JP 1147475A JP 14747589 A JP14747589 A JP 14747589A JP H0312552 A JPH0312552 A JP H0312552A
Authority
JP
Japan
Prior art keywords
signal
output
converting
waveform
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1147475A
Other languages
Japanese (ja)
Other versions
JP2740871B2 (en
Inventor
Mitsugi Kuramochi
貢 倉持
Minoru Imai
實 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP1147475A priority Critical patent/JP2740871B2/en
Priority to GB9004008A priority patent/GB2232487B/en
Priority to US07/483,843 priority patent/US5078013A/en
Priority to DE4006454A priority patent/DE4006454A1/en
Priority to KR1019900003647A priority patent/KR910001359A/en
Publication of JPH0312552A publication Critical patent/JPH0312552A/en
Application granted granted Critical
Publication of JP2740871B2 publication Critical patent/JP2740871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the propagation time of a transversal wave with high accuracy by converting the output of a probe for reception to a frequency range, extracting a desired frequency component from the conversion output, and converting the extracted signal into a time-series signal again and displaying the waveform. CONSTITUTION:A Fourier transforming means(FFT) 12 transforms the output of the probe 11 for reception which is obtained in time series to the frequency range to obtain a transversal wave component on a low frequency side and a longitudinal wave component on a high frequency side. Therefore, a signal processing means (low-pass filter) 13 consisting of a proper filter extracts only the low-frequency side transversal component and an inverse Fourier transforming means(IFFT) 14 which retransforms the signal in the frequency range into a time-series signal and inputs the signal to a display means(oscilloscope) 15, so that the signal waveform of only the transversal wave component is obtained. Therefore, the speed and propagation time of the transversal wave can accurately be known.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、コンクリート構造物の品質管理および劣化試
験、あるいは材木、強化プラスチックFRP等の非破壊
検査に使用される超音波測定に係り、特に、横波の音速
を正確に測定できるようにした超音波試験における横波
音速測定方法および装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to ultrasonic measurement used for quality control and deterioration testing of concrete structures, or non-destructive testing of timber, reinforced plastic FRP, etc. The present invention relates to a method and apparatus for measuring the sound velocity of transverse waves in ultrasonic tests, which enables accurate measurement of the sound velocity of transverse waves.

[従来の技術] 建築、土木の分野において、コンクリートの圧縮強度の
i91定、均一性の判定および内部欠陥の検出は通常超
音波試験により行われており、その構成は第5図に示す
ようである。第5図al  bにおいて、1は超音波パ
ルスの発振を行う送信用探触子、2は透過波、反射波を
検出する受信用探触子、3は試験の対象となっているコ
ンクリートを示す。
[Prior Art] In the fields of architecture and civil engineering, the i91 determination of the compressive strength of concrete, the determination of uniformity, and the detection of internal defects are usually performed by ultrasonic testing, the configuration of which is shown in Figure 5. be. In Figure 5 alb, 1 is a transmitting probe that oscillates ultrasonic pulses, 2 is a receiving probe that detects transmitted waves and reflected waves, and 3 is the concrete that is the subject of the test. .

第5図aはコンクリートの圧縮強度を求めるための構成
であり、この場合、送信用探触子1はコンクリート3の
一面、例えば表面に、受信用探触子2はコンクリート3
の他面、例えば裏面にそれぞれ配置される。送信用探触
子1から発信された超音波パルスはコンクリート3をそ
のまま透過したリ、コンクリート3の中で反射したりす
るが、透過波は受信用探触子2で検出され、図示しない
オシロスコープ上に受信波形として表示される。オペレ
ータは当該受信波形から読み取った超音波パルスの音速
と、予め作成されているキャリプレーシーンカーブとか
ら圧縮強度を求めることができる。また、第5図すに示
すように、送信用探触子1および受信用探触子2を共に
コンクリート3の表面に配置した場合には、受信用探触
子2で検出した反射波をオシロスコープ上に表示し、当
該反射波形から読み取った伝播時間と、予め知られてい
る音速とから反射源の位置、即ち内部欠陥の位置を推定
することができる。
FIG. 5a shows a configuration for determining the compressive strength of concrete. In this case, the transmitting probe 1 is placed on one side of the concrete 3, for example, the surface, and the receiving probe 2 is placed on the concrete 3.
They are respectively arranged on the other side, for example, the back side. The ultrasonic pulses emitted from the transmitting probe 1 pass through the concrete 3 as they are, and are reflected within the concrete 3, but the transmitted waves are detected by the receiving probe 2 and displayed on an oscilloscope (not shown). is displayed as the received waveform. The operator can determine the compression strength from the sound velocity of the ultrasonic pulse read from the received waveform and a caliplay scene curve created in advance. Furthermore, as shown in FIG. The position of the reflection source, that is, the position of the internal defect, can be estimated from the propagation time displayed above and read from the reflected waveform and the previously known speed of sound.

[発明が解決しようとする課題] しかしながら、従来のものにおいては、次のような問題
が生じていた。つまり、超音波試験に使用される超音波
には縦波と横波があり、特に、圧縮強度の重要なファク
ターである弾性係数等を求める場合には横波の音速の情
報が不可欠である。
[Problems to be Solved by the Invention] However, the following problems have occurred in the conventional devices. In other words, there are longitudinal waves and transverse waves in the ultrasonic waves used in ultrasonic tests, and information on the sound speed of the transverse waves is especially essential when determining the elastic modulus, etc., which is an important factor in compressive strength.

従って、圧縮強度を求める場合には横波探触子を用いる
のであるが、第6図に示すように、横波探触子5は振動
子の径方向のすべり振動成分と共に、振動子の厚み方向
の振動成分が発生するので、すべり変形により横波成分
が、厚み変形により縦波成分が同時に発生することにな
る。このためオシロスコープ上に表示される受信波形は
例えば第7図に示すように横波反射波成分6と縦波反射
波成分7が干渉した波形となり、横波だけの伝播時間を
読み取ることが困難となっている。なお、第7図におい
て横軸は時間を示す。従って、音速を高精度に測定する
ことが難しいばかりか、横波だけの波形解析を行うにも
障害となっているものである。
Therefore, when determining the compressive strength, a shear wave probe is used. As shown in FIG. Since a vibration component is generated, a transverse wave component is generated due to slip deformation, and a longitudinal wave component is generated due to thickness deformation. For this reason, the received waveform displayed on the oscilloscope is, for example, a waveform in which the reflected transverse wave component 6 and the reflected longitudinal wave component 7 interfere, as shown in Fig. 7, making it difficult to read the propagation time of only the transverse wave. There is. Note that in FIG. 7, the horizontal axis indicates time. Therefore, it is not only difficult to measure the speed of sound with high precision, but also an obstacle to waveform analysis of only transverse waves.

本発明は、上記の課題を解決するものであって、横波の
伝播時間を高精度で測定することができる超音波試験に
おける横波音速測定方法および装置を提供することを目
的とするものである。
The present invention solves the above-mentioned problems, and aims to provide a transverse wave sound velocity measuring method and apparatus in an ultrasonic test that can measure the propagation time of transverse waves with high precision.

[課題を解決するための手段] 上記の目的を達成するために、本発明の超音波試験にお
ける横波音速測定方法は、受信用探触子の出力を周波数
領域に変換し、該変換出力の中の所望の周波数成分を抽
出し、該抽出した信号を再び時系列信号に変換して波形
表示することを特徴とし、また、本発明の超音波試験に
おける横波音速測定装置は、受信用探触子と、前記受信
用探触子の出力を周波数領域に変換する第1の信号変換
手段と、前記信号変換手段の出力の中、所望の周波数成
分を抽出する信号処理手段と、前記信号処理手段の出力
を時系列信号に変換する第2の信号変換手段と、前記第
2の信号変換手段の出力を波形表示する表示手段とを具
備することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the transverse wave sound velocity measurement method in ultrasonic testing of the present invention converts the output of the receiving probe into the frequency domain, and converts the output of the converted output into the frequency domain. The transverse wave sound velocity measurement device for ultrasonic testing of the present invention is characterized by extracting a desired frequency component of the signal, converting the extracted signal back into a time series signal, and displaying the waveform. a first signal converting means for converting the output of the receiving probe into a frequency domain; a signal processing means for extracting a desired frequency component from the output of the signal converting means; It is characterized by comprising a second signal conversion means for converting the output into a time-series signal, and a display means for displaying the output of the second signal conversion means in a waveform.

口作用コ 本発明においては、受信用探触子で得られた字形列信号
を周波数領域に変換することにより縦波成分と横波成分
とを明確に分離できるので、容易に横波成分のみを抽出
することができ、以て横波の音速、伝播時間を正確に知
ることができるものである。
In the present invention, the longitudinal wave component and the transverse wave component can be clearly separated by converting the character sequence signal obtained by the receiving probe into the frequency domain, so only the transverse wave component can be easily extracted. This allows us to accurately know the sound speed and propagation time of transverse waves.

[実施例コ 上述したように、横波探触子はどうしても縦波成分をも
生じてしまうので、本発明では探触子はそのままにして
受信用探触子の出力を信号処理することにより縦波成分
と横波成分とを分離しようとするものである。つまり、
縦波と横波とでは周波数成分が異なるので、受信用探触
子の出力である時系列の信号を周波数領域に変換し、横
波成分、または縦波成分のみを得ようとするものである
[Embodiment] As mentioned above, a transverse wave probe inevitably generates a longitudinal wave component, so in the present invention, the longitudinal wave component is generated by signal processing the output of the receiving probe while leaving the probe as it is. The purpose is to separate the transverse wave component and the transverse wave component. In other words,
Since longitudinal waves and transverse waves have different frequency components, the time-series signal output from the receiving probe is converted into the frequency domain to obtain only transverse wave components or longitudinal wave components.

以下、図面を参照しつつ実施例を説明する。Examples will be described below with reference to the drawings.

第1図は本発明に係る超音波試験における横波音速測定
方法の1実施例の構成を示す図であり、図中、11は受
信用探触子、12はFFT (高速フーリエ変換器)等
のフーリエ変換手段、13は信号処理手段、14はIF
FT(逆高速フーリエ変換器)等の逆フーリエ変換手段
、15はオシロスコープ等の表示手段を示す。
FIG. 1 is a diagram showing the configuration of one embodiment of the transverse wave sound velocity measurement method in an ultrasonic test according to the present invention. In the figure, 11 is a receiving probe, 12 is a FFT (fast Fourier transformer), etc. Fourier transform means, 13 signal processing means, 14 IF
Inverse Fourier transform means such as FT (inverse fast Fourier transformer), and 15 indicate display means such as an oscilloscope.

第1図の構成において、受信用探触子11で検出される
信号中には、縦波成分と横波成分が含まれていることは
上述したところから明かである。
In the configuration shown in FIG. 1, it is clear from the above description that the signal detected by the reception probe 11 includes longitudinal wave components and transverse wave components.

従って、受信用探触子11で検出した信号をそのままオ
シロスコープに表示すると例えば第7図に示すように横
波成分6と縦波成分7とが干渉した波形となる。そこで
、本発明においては、時系列で得られる受信用探触子1
の出力をフーリエ変換手段12によりフーリエ変換して
周波数領域に変換する。第7図に示す時系列の信号をフ
ーリエ変換手段12により周波数領域に変換すると、そ
の出力は第2図に示すように、低周波側に横波成分16
が得られ、高周波側に縦波成分17が得られる。従って
、低域濾波器等の適当なフィルタからなる信号処理手段
13により第3図に示すように、低周波側の横波成分1
6のみを取り出し、更に、逆フーリエ変換手段14で周
波数領域の信号を時系列の信号に戻して表示手段15に
入力すれば、第4図に示すように横波成分6のみの信号
波形を得ることができる。なお、第2図および第3図の
横軸は周波数である。
Therefore, if the signal detected by the receiving probe 11 is displayed as it is on an oscilloscope, it will result in a waveform in which the transverse wave component 6 and the longitudinal wave component 7 interfere, as shown in FIG. 7, for example. Therefore, in the present invention, the receiving probe 1 obtained in time series is
The output is Fourier transformed by the Fourier transform means 12 and converted into the frequency domain. When the time series signal shown in FIG. 7 is converted into the frequency domain by the Fourier transform means 12, the output is as shown in FIG.
is obtained, and a longitudinal wave component 17 is obtained on the high frequency side. Therefore, as shown in FIG.
By extracting only the transverse wave component 6, and then converting the frequency domain signal back into a time series signal using the inverse Fourier transform means 14 and inputting it to the display means 15, a signal waveform of only the transverse wave component 6 can be obtained as shown in FIG. I can do it. Note that the horizontal axis in FIGS. 2 and 3 represents frequency.

以上、本発明の1実施例を説明したが、本発明は上記の
実施例に限定されるものではな(、種々の変形が可能で
ある。例えば、時系列信号を周波数領域に変換する手段
、およびその逆変換手段はフーリエ変換に限らず同様の
機能を有し、高速に動作するものであれば使用すること
ができる。また、上記実施例では横波成分を抽出する例
を説明したが、縦波を抽出する必要があるのであれば信
号処理手段13として高域濾波器を使用すればよいもの
である。更に、上記実施例ではコンクリートの試験を例
にとったが、材木、FRP等の非破壊検査にも適用でき
るものであることは明かであろう。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment (and various modifications are possible. For example, means for converting a time series signal into a frequency domain, The inverse transform means is not limited to Fourier transform, but can be used as long as it has a similar function and operates at high speed.In addition, in the above embodiment, an example of extracting a transverse wave component was explained, but the If it is necessary to extract waves, a high-pass filter may be used as the signal processing means 13.Furthermore, in the above embodiment, a concrete test was taken as an example, but it is also possible to It is clear that this method can also be applied to destructive inspections.

[発明の効果コ 以上の説明から明らかなように、本発明によれば、超音
波試験において、受信用探触子で検出された信号を縦波
成分と横波成分とに分離できるので横波の伝播時間を高
い精度で読み取ることができるものである。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, in an ultrasonic test, a signal detected by a receiving probe can be separated into a longitudinal wave component and a transverse wave component, thereby reducing the propagation of transverse waves. It allows you to read the time with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超音波試験における横波音速11
定方法および装置の1実施例の構成を示す図、第2図は
受信用探触子の出力をフーリエ変換して得られる信号を
示す図、第3図は信号処理手段の出力を示す図、第4図
は逆フーリエ変換手段の出力を示す図、第5図は超音波
試験の一般的な構成を示す図、第6図は横波探触子の振
動を説明する図、第7図は従来の測定で得られる信号波
形の例を示す図である。 11・・・受信用探触子、12−・・フーリエ変換手段
、13・・・信号処理手段、14・・・逆フーリエ変換
手段、15・・・オシロスコープ。 第1図 第2図 出  願  人 清水建設株式会社
Figure 1 shows the transverse wave sound velocity 11 in the ultrasonic test according to the present invention.
Fig. 2 is a diagram showing a signal obtained by Fourier transforming the output of the receiving probe; Fig. 3 is a diagram showing the output of the signal processing means; Figure 4 is a diagram showing the output of the inverse Fourier transform means, Figure 5 is a diagram showing the general configuration of an ultrasonic test, Figure 6 is a diagram explaining the vibration of a transverse wave probe, and Figure 7 is a diagram showing the conventional FIG. 3 is a diagram showing an example of a signal waveform obtained by measurement. DESCRIPTION OF SYMBOLS 11... Receiving probe, 12... Fourier transform means, 13... Signal processing means, 14... Inverse Fourier transform means, 15... Oscilloscope. Figure 1 Figure 2 Applicant: Shimizu Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)受信用探触子の出力を周波数領域に変換し、該変
換出力の中の所望の周波数成分を抽出し、該抽出した信
号を再び時系列信号に変換して波形表示することを特徴
とする超音波試験における横波音速測定方法。
(1) The output of the receiving probe is converted into the frequency domain, a desired frequency component is extracted from the converted output, and the extracted signal is converted back into a time series signal and displayed as a waveform. Transverse wave sound velocity measurement method in ultrasonic testing.
(2)受信用探触子と、前記受信用探触子の出力を周波
数領域に変換する第1の信号変換手段と、前記信号変換
手段の出力の中、所望の周波数成分を抽出する信号処理
手段と、前記信号処理手段の出力を時系列信号に変換す
る第2の信号変換手段と、前記第2の信号変換手段の出
力を波形表示する表示手段とを具備することを特徴とす
る超音波試験における横波音速測定装置。
(2) A receiving probe, a first signal converting means for converting the output of the receiving probe into a frequency domain, and signal processing for extracting a desired frequency component from the output of the signal converting means. an ultrasonic wave device comprising: a second signal converting means for converting the output of the signal processing means into a time-series signal; and a display means for displaying the output of the second signal converting means in a waveform. Transverse wave sound velocity measuring device used in testing.
JP1147475A 1989-06-09 1989-06-09 Method and apparatus for measuring shear wave velocity in ultrasonic test Expired - Fee Related JP2740871B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1147475A JP2740871B2 (en) 1989-06-09 1989-06-09 Method and apparatus for measuring shear wave velocity in ultrasonic test
GB9004008A GB2232487B (en) 1989-06-09 1990-02-22 Ultrasonic measuring apparatus including a high-damping probe
US07/483,843 US5078013A (en) 1989-06-09 1990-02-23 Ultrasonic measuring apparatus using a high-damping probe
DE4006454A DE4006454A1 (en) 1989-06-09 1990-03-01 STRONG DAMPING MEASURING PART AND ULTRASONIC MEASURING DEVICE
KR1019900003647A KR910001359A (en) 1989-06-09 1990-03-19 High damping transducer and ultrasonic measuring device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1147475A JP2740871B2 (en) 1989-06-09 1989-06-09 Method and apparatus for measuring shear wave velocity in ultrasonic test

Publications (2)

Publication Number Publication Date
JPH0312552A true JPH0312552A (en) 1991-01-21
JP2740871B2 JP2740871B2 (en) 1998-04-15

Family

ID=15431231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1147475A Expired - Fee Related JP2740871B2 (en) 1989-06-09 1989-06-09 Method and apparatus for measuring shear wave velocity in ultrasonic test

Country Status (1)

Country Link
JP (1) JP2740871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113428A (en) * 1991-10-23 1993-05-07 Kajima Corp Method for detecting defect in concrete wall body
JP2008229378A (en) * 2008-05-21 2008-10-02 Iris Ohyama Inc Chest

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113428A (en) * 1991-10-23 1993-05-07 Kajima Corp Method for detecting defect in concrete wall body
JP2008229378A (en) * 2008-05-21 2008-10-02 Iris Ohyama Inc Chest

Also Published As

Publication number Publication date
JP2740871B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
Alleyne et al. A two-dimensional Fourier transform method for the measurement of propagating multimode signals
Krause et al. Elastic wave modes for the assessment of structural timber: ultrasonic echo for building elements and guided waves for pole and pile structures
US5078013A (en) Ultrasonic measuring apparatus using a high-damping probe
CN109596252A (en) Axial stress mornitoring method inside steel member based on shear wave phase spectrum
CN104181234B (en) A kind of lossless detection method based on multiple signal treatment technology
KR101251204B1 (en) Ultrasonic nondestructive inspection device and ultrasonic nondestructive inspection method
Peterson A method for increased accuracy of the measurement of relative phase velocity
Carino et al. Pulse‐echo method for flaw detection in concrete
JP2740872B2 (en) Method of measuring compressive strength of concrete using ultrasonic waves
Lee Measurements of multimode leaky Lamb waves propagating in metal sheets
Bouden et al. Hilbert Huang Transform for enhancing the impact-echo method of nondestructive testing
JP2740871B2 (en) Method and apparatus for measuring shear wave velocity in ultrasonic test
US4733963A (en) Method of measuring a sound pressure distribution in a solid body due to a ultrasonic probe by using photoelasticity
JPH0353137A (en) Stress measuring method
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor
KR20050042542A (en) Nondestructive acoustic evaluation device and method by using nonlinear acoustic responses
JPS6282350A (en) Ultrasonic flaw detecting device
RU2246724C1 (en) Method of ultrasonic testing of material quality
Loveday et al. Measurement of ultrasonic guided waves in plates using low-cost equipment
JPH07248317A (en) Ultrasonic flaw detecting method
JP2001343366A (en) Crystal grain measuring method and device for metal sheet
JPS61114160A (en) Ultrasonic measuring instrument
JPH06242086A (en) Ultrasonic inspection system
Wooh et al. Spectrotemporal analysis of guided-wave pulse-echo signals: Part 1. Dispersive systems
Wooh et al. Spectrotemporal analysis of guided-wave pulse-echo signals: Part 2. Numerical and experimental investigations

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees