JPH03124003A - Magnetic powder, manufacture thereof, magnetic recording medium and magnetic recording method - Google Patents

Magnetic powder, manufacture thereof, magnetic recording medium and magnetic recording method

Info

Publication number
JPH03124003A
JPH03124003A JP1262377A JP26237789A JPH03124003A JP H03124003 A JPH03124003 A JP H03124003A JP 1262377 A JP1262377 A JP 1262377A JP 26237789 A JP26237789 A JP 26237789A JP H03124003 A JPH03124003 A JP H03124003A
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetic
powder
formula
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1262377A
Other languages
Japanese (ja)
Inventor
Eiji Moro
英治 茂呂
Shigeo Sato
重夫 佐藤
Tetsuto Yoneyama
米山 哲人
Shohei Mimura
三村 升平
Haruyuki Takahashi
高橋 東幸
Atsushi Makimura
牧村 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Toppan Infomedia Co Ltd
Original Assignee
Tokyo Magnetic Printing Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Magnetic Printing Co Ltd, TDK Corp filed Critical Tokyo Magnetic Printing Co Ltd
Priority to JP1262377A priority Critical patent/JPH03124003A/en
Priority to PCT/JP1989/001133 priority patent/WO1990005367A1/en
Priority to US07/536,661 priority patent/US5229219A/en
Priority to DE68920993T priority patent/DE68920993T2/en
Priority to EP89912135A priority patent/EP0397885B1/en
Publication of JPH03124003A publication Critical patent/JPH03124003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To acquire a magnetic recording medium of even frequency characteristics which is hard to erase after recorded using a magnetic powder having a good Curie point, high coercive force, high squareness ratio and stable properties by manufacturing and using a magnetic powder whose grain diameter and composition are specific. CONSTITUTION:Required materials are mixed, calcined, and ground by a vibrating mill, etc.; and burnt by an electric furnace, etc. Jet mill grinding is carried out to manufacture a magnetic powder of displacement M-type ferrite in a composition shown by an expression I, which is composed of a grain by 65% or more of an entire whose grain diameter is (0.5 to 5) X average grain diameter. Use of the magnetic powder of good Curie point, high coercive force, high squareness ratio and stable properties realizes a magnetic recording medium having even frequency characteristics which is hard to erase after recorded. In the expression, Me is one or more of Ba, Sr, Pb, Ca; and n, x, y: 4.5<=n<=6, x>=0, y>=0, x/3+y/4+z/6>=1/6, x/6+y/10+z/11<=1/6.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、磁性粉と、その製造方法と、それを用いた磁
気記録媒体と、それを用いた磁気記録方法とに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to magnetic powder, a method for producing the same, a magnetic recording medium using the same, and a magnetic recording method using the same.

〈従来の技術〉 磁気テープの接触転写法として熱転写法が知られている
(例えば昭和46年度電子通信学会全国大会59−7、
IEEE TRANSA(:Tl0N ONMAGNE
TICS、  VOL、  MAG−20,NO,1,
JANUARY 1984P19−P23等)。
<Prior art> A thermal transfer method is known as a contact transfer method for magnetic tape (for example, at the 1971 National Conference of the Institute of Electronics and Communication Engineers 59-7,
IEEE TRANSA(:Tl0N ONMAGNE
TICS, VOL, MAG-20, NO, 1,
JANUARY 1984P19-P23, etc.).

熱転写法では、マスターテープとしてγ−F e 20
 sテープ等を用い、これとCrO□テープを高速度接
触走行させながら、150℃程度に加熱し、熱転写によ
り信号を転写する。
In the thermal transfer method, γ-F e 20 is used as the master tape.
Using a CrO□ tape or the like, the tape is heated to about 150° C. while running in contact with the CrO□ tape at high speed, and the signal is transferred by thermal transfer.

〈発明が解決しようとする課題〉 しかし、従来のCr O*テープは、転写信号の周波数
特性が平坦ではな(、マスターテープの記録時に、エン
ファシスをほどこす必要がある。
<Problems to be Solved by the Invention> However, in the conventional CrO* tape, the frequency characteristics of the transfer signal are not flat (it is necessary to apply emphasis when recording the master tape.

また、CrO□テープでは、Cr 02粒子の保磁力H
aが0.4〜0.7kOeと低いため、通常の磁気ヘッ
ドで消去できてしまい、取り扱いにくいという不都合が
ある。
In addition, in the CrO□ tape, the coercive force H of Cr02 particles
Since a is as low as 0.4 to 0.7 kOe, it cannot be erased with a normal magnetic head, making it difficult to handle.

そこで、本発明者らは、熱磁気転写や熱磁気記録に際し
て、周波数特性が平坦で、−旦記録したあと消去しにく
い磁気記録媒体用の磁性粉として、下記式で示される組
成を有するものを提案している(特願昭63−2816
79号、特願平1−144709号) 式  MeO・n[Fez−X−y−zGaxcryA
ffizo3](上記式中、Meは、Ba、Sr、Pb
およびCaのうちの1種以上を表わす。
Therefore, the present inventors developed a magnetic powder having the composition shown by the following formula as a magnetic powder for magnetic recording media that has flat frequency characteristics and is difficult to erase after recording during thermomagnetic transfer and thermomagnetic recording. (Patent application No. 63-2816)
No. 79, Japanese Patent Application No. 1-144709) Formula MeO・n[Fez-X-y-zGaxcryA
ffizo3] (In the above formula, Me is Ba, Sr, Pb
and Ca.

また、4.5≦n≦6、X≧O,y≧012≧0、 x / 3 + y / 4 + Z / 6≧1/6
、x/6+y/l O+z/11≦1/6である。) この磁性粉のHcは3〜1okoeと高く、通常の消去
ヘッドでは消去できず、取り扱いの点で便利である。
Also, 4.5≦n≦6, X≧O, y≧012≧0, x/3 + y/4 + Z/6≧1/6
, x/6+y/l O+z/11≦1/6. ) This magnetic powder has a high Hc of 3 to 1 okoe and cannot be erased with a normal erasing head, making it convenient to handle.

そして、キュリー点Tcが120〜180°Cであり、
良好な熱磁気転写や熱磁気記録を行うことができる。
And the Curie point Tc is 120 to 180°C,
Good thermomagnetic transfer and thermomagnetic recording can be performed.

また、熱磁気転写や熱磁気記録に際しての周波数特性は
きわめて平坦となる。
Furthermore, the frequency characteristics during thermomagnetic transfer and thermomagnetic recording are extremely flat.

ところで、このような磁性粉を製造するには、量産性の
点で、一般に以下のようにすることが好ましい。
By the way, in order to manufacture such magnetic powder, it is generally preferable to do the following from the point of view of mass production.

すなわち、まず原料を配合し、仮焼きしたのち粉砕し、
これを焼成する。
In other words, the raw materials are first mixed, calcined, and then crushed.
Fire this.

次いで、これを通常、アトライター等により湿式粉砕し
、乾燥後解砕して磁性粉を得る。
Next, this is usually wet-pulverized using an attritor or the like, dried, and then crushed to obtain magnetic powder.

しかしながら、このような方法で得られた磁性粉は粒度
分布がブロードで、特に角形比の点で不十分であるとい
う欠点がある。
However, the magnetic powder obtained by such a method has a drawback that the particle size distribution is broad and the squareness ratio is particularly insufficient.

また、湿式粉砕に際して、粉砕に用いるメディアからF
e等が粉体中に混入し、この結果Tcが増大してしまう
In addition, during wet pulverization, F from the media used for pulverization is
e and the like are mixed into the powder, resulting in an increase in Tc.

さらに、製造条件の変動により、磁性粉の特性がバラツ
いてしまう。
Furthermore, the characteristics of the magnetic powder vary due to variations in manufacturing conditions.

本発明の目的は、良好なキュリー点と高い保磁力とを示
し、角形比が高く、特性が安定しており、熱磁気転写や
熱磁気記録に際して、周波数特性が平坦で、−旦記録し
たあと消去しにくい磁気記録媒体が実現する磁性粉と、
その製造方法と、その磁性粉を用いた磁気記録媒体と、
その媒体を用いた磁気記録方法を提供することにある。
The objects of the present invention are to exhibit a good Curie point and high coercive force, a high squareness ratio, stable characteristics, flat frequency characteristics during thermomagnetic transfer and thermomagnetic recording, and a Magnetic powder realizes magnetic recording media that are difficult to erase,
A manufacturing method thereof, a magnetic recording medium using the magnetic powder,
The object of the present invention is to provide a magnetic recording method using the medium.

く課題を解決するための手段〉 このような目的は、下記(1)〜(8)の本発明によっ
て達成される。
Means for Solving the Problems> Such objects are achieved by the present invention described in (1) to (8) below.

(1)下記式で示される組成を有し、平均粒径をJとし
たとき、O,5■〜1.5Jの粒径の粒子の個数が全体
の65%以上であることを特徴とする磁性粉。
(1) It has a composition represented by the following formula, and is characterized in that the number of particles with a particle size of 0.5 to 1.5 J is 65% or more of the total, where J is the average particle size. magnetic powder.

式  MeO・n[Fez−x−y−zGaxcryA
jzo3](上記式中、Meは、Ba、Sr、Pbおよ
びCaのうちの1種以上を表わす。
Formula MeO・n[Fez-x-y-zGaxcryA
jzo3] (In the above formula, Me represents one or more of Ba, Sr, Pb and Ca.

また、4.5≦n≦6、X;ii:O,y≧0、Z≧0
、 x / 3 + y / 4 + z / 6≧1/6
、x / 6 + y / 10 + z / 11≦
1/6である。) (2)下記式で示される組成を有し、粒子表面のFe含
有量が粒子内部のFe含有量と実質的に等しいことを特
徴とする磁性粉。
Also, 4.5≦n≦6, X;ii:O, y≧0, Z≧0
, x / 3 + y / 4 + z / 6≧1/6
, x / 6 + y / 10 + z / 11≦
It is 1/6. ) (2) A magnetic powder having a composition represented by the following formula and characterized in that the Fe content on the particle surface is substantially equal to the Fe content inside the particle.

式  MeO−n[Fez−++−y−zGaxcr、
ALO31(上記式中、Meは、Ba、Sr、Pbおよ
びCaのうちの1種以上を表わす。
Formula MeO-n[Fez-++-y-zGaxcr,
ALO31 (In the above formula, Me represents one or more of Ba, Sr, Pb and Ca.

また、4.5≦n≦6、X≧0、y≧O1Z≧0、 x / 3 + y / 4 +z / 6≧1/6、
x / 6 + 3/ / 10 + z / 11≦
1/6である。) (3)平均粒径を]としたとき、0.5;T〜1.5丁
の粒径の粒子の個数が全体の65%以上である上記(2
)に記載の磁性粉。
Also, 4.5≦n≦6, X≧0, y≧O1Z≧0, x/3 + y/4 +z/6≧1/6,
x / 6 + 3 / / 10 + z / 11≦
It is 1/6. ) (3) When the average particle size is ], the number of particles with a particle size of 0.5;
) Magnetic powder described in .

(4)原料粉末を供給ガスにより粉砕室に噴射するとと
もに、ガス噴射ノズルからこの粉砕室内に前記供給ガス
を高速気流として噴射し、前記粉砕室内の高速気流中に
て前記原料粉末を粉砕するか、衝突板と強制的に衝突さ
せることにより粉砕して下記式で示される組成を有する
磁性粉を得ることを特徴とする磁性粉の製造方法。
(4) The raw material powder is injected into the crushing chamber by a supply gas, and the supplied gas is injected as a high-speed airflow into the crushing chamber from a gas injection nozzle, and the raw material powder is crushed in the high-speed airflow inside the crushing chamber. . A method for producing magnetic powder, which comprises pulverizing it by forcibly colliding with a collision plate to obtain magnetic powder having a composition represented by the following formula.

式  MeO−n[Fez−X−y−zGaxcryA
jzoal(上記式中、Meは、Ba、Sr、Pbおよ
びCaのうちの1種以上を表わす。
Formula MeO-n[Fez-X-y-zGaxcryA
(In the above formula, Me represents one or more of Ba, Sr, Pb and Ca.

また、4.5≦n≦6、X≧0、y≧0、Z≧O1 x / 3 + y / 4 + z / 6≧1/6
、x / 6 + y / 10 + z / 11≦
1/6である。) (5)原料粉末を粉砕後、表面をエツチング除去して下
記式で示される組成を有する磁性粉を得ることを特徴と
する磁性粉の製造方法。
Also, 4.5≦n≦6, X≧0, y≧0, Z≧O1 x/3 + y/4 + z/6≧1/6
, x / 6 + y / 10 + z / 11≦
It is 1/6. ) (5) A method for producing magnetic powder, which comprises pulverizing raw material powder and then removing the surface by etching to obtain magnetic powder having a composition represented by the following formula.

式  MeO・n[Fez−x−y−zGaxCryA
jzOx](上記式中、Meは、Ba%Sr、Pbおよ
びCaのうちの1種以上を表わす。
Formula MeO・n[Fez-x-y-zGaxCryA
jzOx] (In the above formula, Me represents one or more of Ba%Sr, Pb, and Ca.

また、4.5≦n≦6、X≧o、y≧012≧01 x / 3 + y / 4 + z / 6≧1/6
、x / 6 + 3F / 10 + z / 11
≦1/6である。) (6)バインダ中に、上記(1)ないしく3)のいずれ
かに記載の磁性粉を含有する磁性層を有することを特徴
とする磁気記録媒体。
Also, 4.5≦n≦6, X≧o, y≧012≧01 x/3 + y/4 + z/6≧1/6
, x/6 + 3F/10 + z/11
≦1/6. (6) A magnetic recording medium comprising a magnetic layer containing the magnetic powder described in any one of (1) to (3) above in a binder.

(7)上記(6)に記載の磁性層に熱磁気記録を行う磁
気記録方法。
(7) A magnetic recording method for performing thermomagnetic recording on the magnetic layer according to (6) above.

(8)上記(6)に記載の磁性層に熱磁気転写を行う磁
気記録方法。
(8) A magnetic recording method in which thermomagnetic transfer is performed on the magnetic layer according to (6) above.

く作用〉 本発明の磁性粉のHcは3〜12 koeと高(、通常
の消去ヘッドでは消去できず、取り扱いの点でも便利で
ある。
Effects> The magnetic powder of the present invention has a high Hc of 3 to 12 koe (it cannot be erased with a normal erasing head and is convenient in handling).

また、100〜180℃の安定なTcを示し、良好な熱
磁気転写や熱磁気記録を行うことができる。
Further, it exhibits a stable Tc of 100 to 180°C, and can perform good thermomagnetic transfer and thermomagnetic recording.

その際、熱磁気転写や熱磁気記録に際しての周波数特性
はきわめて平坦となる。
At this time, the frequency characteristics during thermomagnetic transfer and thermomagnetic recording become extremely flat.

そして、高い角形比を示す。It also exhibits a high squareness ratio.

〈具体的構成〉 以下、本発明の具体的構成について詳細に説明する。<Specific configuration> Hereinafter, a specific configuration of the present invention will be explained in detail.

本発明に用いる磁性粉は、上記式で示される組成を有す
る置換M型フェライトである。
The magnetic powder used in the present invention is a substituted M-type ferrite having a composition represented by the above formula.

上記式において、Meは、Ba、Sr%PbおよびCa
のうちの1種以上であり、これらの2種以上から構成さ
れるとき、その量比は任意であるが、特にBa、Srお
よびpbのうちの1種以上を必須成分として含むものが
好ましい。
In the above formula, Me represents Ba, Sr%Pb and Ca
When it is composed of two or more of these, the quantitative ratio is arbitrary, but it is particularly preferable that it contains one or more of Ba, Sr, and Pb as an essential component.

このM型)、エライトを置換する元素は、Ga%Crお
よびAI2のうちの1種以上である。
In this M type), the element substituting the elite is one or more of Ga%Cr and AI2.

そして、それぞれの置換量x、y、zについては上記の
関係が存在する。
The above relationships exist for the respective substitution amounts x, y, and z.

すなわち、x、yおよびZは、x、y、Z≧Oにて、 x / 3 + y / 4 + z / 6≧1/6
かつ、x/6+y/10+z/11≦1/6 である。
That is, x, y, and Z are x/3 + y/4 + z/6≧1/6, where x, y, Z≧O
And x/6+y/10+z/11≦1/6.

これは x / 3 + y / 4 + z / 6 < 1
 / 6では、キュリー点Tcが高く、また x / 6 + y / 10 + z / 11 >
 l / 6では、飽和磁化O3が低下し、またTcが
低すぎてしまい、実用的でないからである。
This is x/3 + y/4 + z/6 < 1
/ 6, the Curie point Tc is high, and x / 6 + y / 10 + z / 11 >
This is because at l/6, the saturation magnetization O3 decreases and Tc is too low, which is not practical.

この場合、Ga、Cr、Aρのうち、その総計の40a
t%以下を、In、Sc、Ti、Zn、Sn%Cr、T
a、Sb、Bi、■、Y、Mn、Co、Ni等の1種以
上で置換してもよい。
In this case, the total 40a of Ga, Cr, Aρ
t% or less, In, Sc, Ti, Zn, Sn%Cr, T
It may be replaced with one or more of a, Sb, Bi, ■, Y, Mn, Co, Ni, etc.

また、nは、4.5〜6、特に5〜6であるが、これ以
外の値となるとσSが低下したり、Few 04相が析
出してしまう。
Further, n is 4.5 to 6, particularly 5 to 6, but if it is a value other than this, σS will decrease or the Few 04 phase will precipitate.

このような組成を有する磁性粉は、六万品構造の六角板
状ないし破砕片状の粉体である。
The magnetic powder having such a composition is a hexagonal plate-like or crushed piece-like powder with a 60,000-piece structure.

そして、粉体のSEM像を観察したとき、視野下での各
粒子の最大径を平均(数平均)した平均粒径Jは0.3
〜3戸、特に0.5〜2戸であることが好ましい。
When observing the SEM image of the powder, the average particle diameter J, which is the average (number average) of the maximum diameter of each particle under the field of view, is 0.3.
It is preferable that the number of houses is 3 to 3, particularly 0.5 to 2.

Jが0.3μs未満となると、分散性が悪くなるため塗
布した場合、塗膜の均一性に問題があり、Jが3鱗をこ
えると、著しくHcが低下することになる。
If J is less than 0.3 μs, the dispersibility will be poor and there will be a problem in the uniformity of the coating when applied, and if J is more than 3 scales, Hc will drop significantly.

一方、第1図に示されるように、粉体の粒度分布はシャ
ープなものである。
On the other hand, as shown in FIG. 1, the particle size distribution of the powder is sharp.

そして、0.51〜1.5Jの範囲の粒子径の粒子の個
数が、全体の65%以上、より好ましくは80%以上存
在するものである。
The number of particles having a particle diameter in the range of 0.51 to 1.5 J is 65% or more, more preferably 80% or more of the total.

このようなシャープな粒度分布とすることにより、角形
比が増大し、入出力特性が著しく向上する。
By creating such a sharp particle size distribution, the squareness ratio increases and the input/output characteristics are significantly improved.

なお、粉体な構成する各粒子の粒子径(D大粒子径)は
、公知の方法によりSEM像を画像処理して求めること
ができる。
The particle diameter (D large particle diameter) of each particle constituting the powder can be determined by image processing a SEM image using a known method.

このような粒度分布は、後述のジェットミル粉砕によっ
て有効に達成することができる。
Such a particle size distribution can be effectively achieved by jet milling as described below.

なお、各粒子における平均グレインサイズは、0.3〜
3、〇−程度とすることが好ましい。
Note that the average grain size of each particle is 0.3 to
It is preferable to set it to about 3,0-.

さらに、このような磁性粉を構成する各粒子の粒子表面
のFe含有量Csは、粒子内部のFe含含有量C上実質
的に同一であることが好ましい。
Furthermore, it is preferable that the Fe content Cs on the particle surface of each particle constituting such magnetic powder is substantially the same as the Fe content C inside the particle.

これらC8およびCLは粉体をイオンエツチングしなが
ら、オーシュ分析やESCAの測定を行えばよく、初期
のFeのカウントなCs、イオンエツチング所定時間経
過後のFeのカウントなCiとして求めたとき、Cs 
/ Ciが0.9〜1.1であることが好ましい。
These C8 and CL can be measured by Ouch analysis or ESCA while ion etching the powder, and when calculated as the initial Fe count Cs and the Fe count Ci after a predetermined time of ion etching, Cs
/Ci is preferably 0.9 to 1.1.

前述のとおり、通常の方法では、粉砕用のメディア等か
ら、粒子表面にFeが混入するものであるが、後述のよ
うに、粉砕後粒子表面をエツチングしたり、粉砕をジェ
ットミルによって行ったりすることによって、粒子表面
へのFeの混入を防止ないし除去することができる。
As mentioned above, in the usual method, Fe is mixed into the particle surface from the grinding media, etc., but as described later, the particle surface is etched after grinding, or the grinding is carried out using a jet mill. By doing so, it is possible to prevent or remove Fe from being mixed into the particle surface.

本発明の磁性粉は以下のようにして製造される。The magnetic powder of the present invention is produced as follows.

まず、原料として、例えば5rCO− AI2i 03  Crz Ox  Gas 0sFe
20s  BaCO5pbo等の0.3〜2.0−程度
の粒径の粉体を用意する。
First, as a raw material, for example, 5rCO- AI2i 03 Crz Ox Gas 0sFe
Prepare a powder such as 20s BaCO5pbo with a particle size of about 0.3 to 2.0.

次に、これをボールミルアトライター等により配合し、
これを成形し、空気中で1000〜1300℃、2〜4
時間時間板焼きする。
Next, this is blended using a ball mill attritor etc.
This is molded in air at 1000-1300℃, 2-4
Grill for hours.

次いで、これを2〜10戸程度の粒径に振動ミル、ボー
ルミル、アトライター等を用いて粉砕する。
Next, this is pulverized to a particle size of about 2 to 10 particles using a vibrating mill, a ball mill, an attritor, or the like.

次いで、これを焼成する。Next, this is fired.

焼成には電気炉等を用い、空気中にて、1350〜14
50℃、2〜4時間程度焼成する。
For firing, use an electric furnace or the like in air at a temperature of 1350 to 14
Bake at 50°C for about 2 to 4 hours.

その後、振動ミル等により2〜5−程度に粗砕したのち
好ましくはジェットミル粉砕を行う。
Thereafter, the mixture is coarsely pulverized to about 2 to 5 particles using a vibration mill or the like, and then pulverized by a jet mill.

このジェットミル粉砕は、例えば第2図に示されるよう
なジェットミル粉砕機10を用いて行われる。
This jet mill pulverization is performed using a jet mill 10 as shown in FIG. 2, for example.

まず、2〜10%の平均粒径の粗粉の焼成粉末1を、ジ
ェットミル粉砕機10のホッパ2に充填する。
First, the hopper 2 of the jet mill pulverizer 10 is filled with coarse calcined powder 1 having an average particle size of 2 to 10%.

一方、ガス供給口3からは空気が供給され、ホッパ2か
らの焼成粉末1を、供給ノズル4を経て、超音速にて粉
砕室6に供給する。
On the other hand, air is supplied from the gas supply port 3, and the fired powder 1 from the hopper 2 is supplied to the grinding chamber 6 at supersonic speed via the supply nozzle 4.

この際、各供給ガスの流速は、500〜1200 tn
/sec程度とされる。
At this time, the flow rate of each supply gas is 500 to 1200 tn
/sec.

一方、リング状に形成された粉砕室6の所定箇所には、
通常粉砕室6の接線方向から多少ずれた方向に開口する
複数個のガス噴射ノズル5が設けられ、ガス供給口3か
ら、超音速にて空気が噴射される。
On the other hand, at a predetermined location of the ring-shaped crushing chamber 6,
A plurality of gas injection nozzles 5 that open in a direction slightly deviated from the tangential direction of the crushing chamber 6 are normally provided, and air is injected from the gas supply port 3 at supersonic speed.

このような構成にて、ホッパ2から供給される焼成粉末
lは、超音速気流中で粉体同志、あるいは粉砕室6隔壁
との高速衝突により粉砕が促進されるものである。
With this configuration, the fired powder l supplied from the hopper 2 is pulverized by high-speed collision with each other or with the partition wall of the pulverizing chamber 6 in a supersonic air flow.

そして、このように微粉砕化された焼成粉末lは高速旋
回渦流によって分級され、粉砕室6からサイクロン7内
に降下する。
The thus finely pulverized fired powder l is classified by the high-speed swirling vortex flow and descends from the grinding chamber 6 into the cyclone 7.

サイクロン7内では、焼成粉末1は浮遊旋回し、極微粉
は、排出管9を通って不活性ガスとともに外部に排出さ
れる。 一方、微粉末はサイクロン底部に堆積し、超音
速気流の供給を中止したのち、切出しホッパ8を開き、
磁性粉として取出される。
Inside the cyclone 7, the fired powder 1 floats and swirls, and the extremely fine powder is discharged to the outside together with the inert gas through the discharge pipe 9. On the other hand, the fine powder is deposited at the bottom of the cyclone, and after stopping the supply of supersonic airflow, the cutting hopper 8 is opened.
Extracted as magnetic powder.

なお、第3図に示されるジェットミル粉砕機では、粉砕
室6内に衝突板65を設けている。
Note that in the jet mill crusher shown in FIG. 3, a collision plate 65 is provided in the crushing chamber 6.

この後、空気中にて、300〜1000℃にて、2〜4
時間程度焼鈍を行い、歪取りを行う。
After this, in the air at 300-1000℃ for 2-4 hours.
Annealing is performed for about an hour to remove distortion.

その後必要に応じ解砕を行い、前記の粒度分布をもつ磁
性粉がえられる。
Thereafter, crushing is performed as necessary to obtain magnetic powder having the above-mentioned particle size distribution.

なお、本発明においては、焼成後の粉砕に、アトライタ
ー ボールミル、パールミル等の湿式粉砕を用いてもよ
い。
In the present invention, wet pulverization such as an attriter ball mill or a pearl mill may be used for pulverization after firing.

このときには、粉砕後、表面のエツチングを行い、乾燥
、焼鈍および解砕を行う。
At this time, after pulverization, the surface is etched, followed by drying, annealing, and crushing.

エツチングには、塩酸等のエッチャントを用い、このエ
ッチャントに粉体を20〜40 ’Cにて10〜30分
程度浸漬し撹拌することにより、主にメディアから混入
したFeを除去すればよい。
For etching, an etchant such as hydrochloric acid is used, and the powder is immersed in this etchant at 20 to 40'C for about 10 to 30 minutes and stirred to mainly remove Fe mixed in from the media.

このエツチングは、湿式粉砕を行うとき有効であり、ジ
ェットミル粉砕を行うときには行う必要がない。
This etching is effective when wet pulverization is performed and is not necessary when jet mill pulverization is performed.

なお、このような粉体のHcは3〜15kOe程度、σ
Sは5〜l 5 emu/g程度、σrは4〜12 e
mu/g程度であり、Tcは100〜180°C程度、
角形比は0.6以上、好ましくは0.7以上、特に0.
7〜0.9である。 そして、これらの特性のバラツキ
はきわめて少ない。
In addition, Hc of such powder is about 3 to 15 kOe, σ
S is about 5 to 15 emu/g, and σr is about 4 to 12 e
It is about mu/g, Tc is about 100 to 180°C,
The squareness ratio is 0.6 or more, preferably 0.7 or more, especially 0.
It is 7-0.9. The variation in these properties is extremely small.

本発明の磁気記録媒体は、このような磁性粉とバインダ
とを含有する磁性層を有する。
The magnetic recording medium of the present invention has a magnetic layer containing such magnetic powder and a binder.

バインダ中に分散することにより、可どう性が向上し、
取り扱いが容易となる等の効果が実現する。
Dispersion in the binder improves flexibility and
Effects such as ease of handling are realized.

用いるバインダとしては、公知の各種熱可塑性樹脂、熱
硬化性樹脂、放射線硬化性樹脂、反応性樹脂等が使用可
能である。
As the binder used, various known thermoplastic resins, thermosetting resins, radiation curable resins, reactive resins, etc. can be used.

バインダと本発明の磁性粉とは、重量比で9:1〜1:
9、特に3:1〜1:3程度の量比で含有されればよい
The binder and the magnetic powder of the present invention have a weight ratio of 9:1 to 1:
9, particularly in a quantitative ratio of about 3:1 to 1:3.

なお、バインダおよび磁性粉は2種以上用いてもよく、
また、必要に応じ他の磁性粉を併用してもよい。
Note that two or more types of binder and magnetic powder may be used,
Further, other magnetic powders may be used in combination as necessary.

この他、磁性層には、公知の分散剤、研磨剤、着色剤、
潤滑剤等が含有されていてもよい。
In addition, the magnetic layer may contain known dispersants, abrasives, colorants,
A lubricant or the like may be contained.

磁性層の厚さは0.5〜30pJn程度でよい。The thickness of the magnetic layer may be approximately 0.5 to 30 pJn.

なお、磁性層は複数積層してもよい。Note that a plurality of magnetic layers may be laminated.

用いる基板としては、公知の各種樹脂、金属、ガラス等
が適用可能である。
As the substrate used, various known resins, metals, glasses, etc. can be used.

なお、媒体の用途に応じ、各種下地層、表面層、中間層
、裏面層が形成されていてもよい。
Note that various base layers, surface layers, intermediate layers, and back layers may be formed depending on the use of the medium.

このような磁気記録媒体を用いて磁気記録を行うには以
下のような方法がある。
There are the following methods for performing magnetic recording using such a magnetic recording medium.

まず、第1は、熱磁気記録である。The first is thermomagnetic recording.

この際には、磁性層を磁性粉のキュリー点以上の温度、
例えば120〜180℃程度に、例えばレーザー光によ
り加熱して、通常の記録を行えばよい。
At this time, the magnetic layer is heated to a temperature above the Curie point of the magnetic powder.
For example, normal recording may be performed by heating to about 120 to 180° C. using, for example, a laser beam.

また、その第2は熱磁気記録である。The second one is thermomagnetic recording.

この際には、マスク用の信号を担持する、γ−F e 
z Ox等の磁性層と接触させた状態で、上記の温度に
加熱して信号を転写すればよい。
At this time, γ-Fe, which carries the mask signal, is
The signal may be transferred by heating to the above temperature while in contact with a magnetic layer such as zOx.

いずれも0.7以上の角形比を示し、入出力特性が良好
で、転写ないし記録信号の周波数特性はきわめて平坦で
ある。
All of them exhibit a squareness ratio of 0.7 or more, have good input/output characteristics, and have extremely flat frequency characteristics of transferred or recorded signals.

〈実施例〉 以下、本発明の実施例を挙げ、本発明をさらに詳細に説
明する。
<Example> Hereinafter, the present invention will be described in further detail by giving examples of the present invention.

実施例1 原料を秤量して、空気中にて1300℃、2時間仮焼後
5〜15−の粒径に粉砕し、次いでこれを成形し空気中
に1420℃、2時間焼成して、 Sr0・5.6 (Feazs(:r4.5zsAj+
、5zs)を得た。
Example 1 Raw materials were weighed, calcined in the air at 1300°C for 2 hours, and then ground to a particle size of 5 to 15-1, which was then molded and calcined in the air at 1420°C for 2 hours to obtain Sr0.・5.6 (Feazs(:r4.5zsAj+
, 5zs) were obtained.

この焼結体を振動ミルにて5 pm以下に粗粉砕した。This sintered body was coarsely ground to 5 pm or less using a vibration mill.

次いで、これを第4図に示されるジェットミル粉砕機1
0にて微粉砕した。
Next, this is passed through a jet mill pulverizer 1 shown in FIG.
It was pulverized at 0.

この場合、ノズル出口径は10mm、ノズル人口径は5
mm、供給ガスの流速は1000 m/secとした。
In this case, the nozzle outlet diameter is 10 mm, and the nozzle population diameter is 5 mm.
mm, and the flow rate of the supplied gas was 1000 m/sec.

この後、空気中にて500℃、2時間焼鈍し、解砕して
、本発明の磁性粉1を得た。
Thereafter, it was annealed in air at 500° C. for 2 hours and crushed to obtain magnetic powder 1 of the present invention.

この磁性粉のSEM像を画像解析して、各粒子の最大粒
径を算出し、数平均粒径Jを算出したところ、1.1−
であった。
The SEM image of this magnetic powder was analyzed to calculate the maximum particle size of each particle, and the number average particle size J was calculated, which was 1.1-
Met.

また、全体の72%の個数の粒子が、0.5a−i、s
aの範囲にあった。
In addition, 72% of the total number of particles were 0.5a-i,s
It was within the range of a.

さらにイオンエツチング−を行いながら、ESCAによ
りFe1lをカウントしたところ、Cs / Ciは0
.95〜1.05であった。
Furthermore, while performing ion etching, Fe1l was counted by ESCA, and Cs/Ci was 0.
.. It was 95-1.05.

この磁性粉1の特性は下記のとおりであった。The properties of this magnetic powder 1 were as follows.

Tc    130°C1 Hc     11.0kOe、 σS       6. Oemu/g 。Tc 130°C1 Hc 11.0kOe, σS 6. Oemu/g.

Cr       5.1emu/g。Cr 5.1 emu/g.

角形比    0.70であった。The squareness ratio was 0.70.

この磁性粉を用い、下記の組成を用意した。Using this magnetic powder, the following composition was prepared.

磁性粉          120重量部カーボンブラ
ック       6重量部レシチン        
   2重量部硝化綿(H−1/2秒    15重量
部イソプロピルアルコール30% を塩酢ビ共重合体UCC社製 VAGH30%で置換した硝化 綿70%のチップ) メチルエチルケトン、     50重量部メチルイソ
ブチルケトン   50重量部これらの組成中、硝化綿
チップ、レシチン、メチルエチルケトン、メチルイソブ
チルケトンをかくはん機で良く溶解した後、これらを磁
性粉およびカーボンブラックと共にボールミル中に投入
し、3時間混合し良(湿潤させた。
Magnetic powder 120 parts by weight Carbon black 6 parts by weight Lecithin
2 parts by weight of nitrified cotton (H-1/2 seconds 15 parts by weight 70% chips of nitrified cotton in which 30% of isopropyl alcohol was replaced with 30% of VAGH, a salt-vinyl acetate copolymer manufactured by UCC) Methyl ethyl ketone, 50 parts by weight of methyl isobutyl ketone 50 Parts by Weight Among these compositions, after thoroughly dissolving the nitrified cotton chips, lecithin, methyl ethyl ketone, and methyl isobutyl ketone with a stirrer, these were placed in a ball mill together with magnetic powder and carbon black, and mixed for 3 hours (wetted). .

次に、 ポリウレタン樹脂      15重量部(ビイ・エフ
・グツドリッチ社製 ニステン5701) メチルエチルケトン    200重量部テトラヒドロ
フラン    100重量部潤滑剤(ミリスチン酸ブチ
ル) 3重量部の組成物を良く混合溶解させた。 そし
てこれを先の組成物がはいっているボールミル中に投入
し、再び422時間混分散させた。
Next, a composition consisting of 15 parts by weight of polyurethane resin (Nisten 5701 manufactured by BF Gutdrich), 200 parts by weight of methyl ethyl ketone, 100 parts by weight of tetrahydrofuran, and 3 parts by weight of a lubricant (butyl myristate) was thoroughly mixed and dissolved. This was then put into the ball mill containing the previous composition, and mixed and dispersed again for 422 hours.

分散後、磁性塗料中のバインダーの水酸基を主体とした
官能基と反応し架橋し得るインシアネート化合物(バイ
エル社のデスモジュールL)を5重量部ボールミル中に
添加し、20分間混合をおこなった。
After dispersion, 5 parts by weight of an incyanate compound (Desmodur L manufactured by Bayer AG) capable of reacting with and crosslinking the functional groups, mainly hydroxyl groups, of the binder in the magnetic paint were added to the ball mill and mixed for 20 minutes.

このようにして得られた磁性塗料を、20μm厚のポリ
エステルフィルム上に塗布して磁気テープとし、表面加
工を行なった後、80℃で48時間保持して磁性塗膜の
熱硬化反応を進めた。
The magnetic paint thus obtained was coated onto a 20 μm thick polyester film to make a magnetic tape, and after surface treatment, it was held at 80°C for 48 hours to advance the thermosetting reaction of the magnetic paint film. .

さらにこれをスリッタにて切断した。Furthermore, this was cut with a slitter.

磁性層の膜厚は10−とした。The thickness of the magnetic layer was 10-.

このテープの角形比は0.8、Hc10koe 、 B
 r 2 、7emu/gであった。
The squareness ratio of this tape is 0.8, Hc10koe, B
r 2 , 7 emu/g.

次に、市販のγ−Few O3オーディオテープ(TD
K株式会社製)をマスターテープとして、60 Hz=
 l OkHzの信号を記録した。
Next, commercially available γ-Few O3 audio tape (TD
(manufactured by K Co., Ltd.) as the master tape, 60 Hz=
l OkHz signal was recorded.

このマスターテープと上記のテープとを2.5 m/s
にて走行させながら、180℃に加熱しながら熱磁気転
写を行った。
This master tape and the above tape are connected at 2.5 m/s.
Thermomagnetic transfer was carried out while heating the film to 180° C. while running the film.

マスターテープの出力と、転写テープの出力との出力比
を下記表1に示す。 この場合、マスターテープの記録
は、100Hz〜10kHzにおいて出力が平坦となる
ように行い、各転写テープの1oOHzの出力なOdB
として、各周波数の出力比を算出した。
The output ratio between the output of the master tape and the output of the transfer tape is shown in Table 1 below. In this case, recording on the master tape is performed so that the output is flat in the range of 100Hz to 10kHz, and the OdB of the 1oOHz output of each transfer tape is
The output ratio of each frequency was calculated as follows.

表     1 本発明(dB)  比較(dB) 100Hz      OO l  kHz       −1−1010k)lz 
     −1−5 なお、比較として、CrO□テープの例を表1に併記す
る。
Table 1 Invention (dB) Comparison (dB) 100Hz OO l kHz -1-1010k)lz
-1-5 For comparison, an example of CrO□ tape is also listed in Table 1.

この場合、用いたCrO□磁性粉は平均粒径0.5−1
Hc 4000 e 、 a s 80 emu/g、
σ、 50 emu/gである。
In this case, the CrO□ magnetic powder used had an average particle size of 0.5-1
Hc 4000 e, a s 80 emu/g,
σ, 50 emu/g.

表1に示される結果から、本発明の効果があきらかであ
る。
From the results shown in Table 1, the effects of the present invention are clear.

比較例1 実施例1において、ジエ゛ットミル粉砕のかわりに、ア
トライター粉砕を行い、−通接乾燥を行った。
Comparative Example 1 In Example 1, attritor pulverization was performed instead of jet mill pulverization, and -pass drying was performed.

エッチャントには塩酸を用い、これに25℃にて磁性粉
を30分間浸漬撹拌することにより表面をエツチングし
た。
Hydrochloric acid was used as the etchant, and the surface was etched by immersing and stirring the magnetic powder in this at 25° C. for 30 minutes.

この磁性粉2の特性は下記のとおりである。The characteristics of this magnetic powder 2 are as follows.

H1,3P 0、5 ]〜1.5;748 % Cs / Ci ≧ 1 。 I Tc              160 ℃Hc  
                7.5kOeσS 
               6.  Oemu/g
σr                 4. 9em
u/g角形比        0.51 実施例2 比較例1のアトライター粉砕と乾燥との間に、エツチン
グを行った。
H1,3P 0,5 ] ~ 1.5; 748% Cs/Ci ≧ 1. I Tc 160℃Hc
7.5kOeσS
6. Oemu/g
σr4. 9em
u/g squareness ratio 0.51 Example 2 Etching was performed between the grinding and drying of the attritor in Comparative Example 1.

乾燥は、80℃で空気中の条件とした。Drying was carried out at 80° C. in air.

この磁性粉3の特性は、下記のとおりであった。The properties of this magnetic powder 3 were as follows.

H1,2m 015 ]〜1.5;7  60% Cs / Ci            1  ±0.
05Te              l  30 ℃
Hc                  9.2kO
eσs                  5. 9
emu/gσr                 4
.8emu/g角形比        0.63 実施例3 実施例1において、磁性粉1を下記にかえて、同様に磁
気テープを作製した。
H1,2m 015 ] ~ 1.5; 7 60% Cs/Ci 1 ±0.
05Tel 30℃
Hc 9.2kO
eσs 5. 9
emu/gσr 4
.. 8 emu/g squareness ratio 0.63 Example 3 A magnetic tape was produced in the same manner as in Example 1 except that the magnetic powder 1 was changed to the following.

磁性粉4 Sr0・5.8  (Fe5ieAlaitsOs)■
         1.8胛 0.5■〜i、sg  71% Cs / Ci       l±0.05Hc   
      12.3kOeas          
4.  lemu/gTc        160℃ 角形比        0.73 磁性粉5 SrO−5,6(FeszaCrtzaOa)J   
       2.3戸 0.5zT 〜1.FzT  73% Cs / C’i       l±0.05Hc  
        8.6kOeas         
 5.2emu/gTc        140℃ 角形比        0.72 磁性粉6 SrO5,6(FeazaGazzgCrzzeAj+
zaOs)a          1.5μ 0.5ゴ〜1.5HT2% Cs / Ci       l±0.05Hc   
       7.2kOeσs          
6.2emu/gTc        110℃ 角形比        0,70 上記各磁性粉につき、実施例1と同様に熱磁気転写を行
ったところ、実施例1と同等の結果をえた。
Magnetic powder 4 Sr0・5.8 (Fe5ieAlaitsOs) ■
1.8 胛0.5■~i, sg 71% Cs / Ci l±0.05Hc
12.3kOeas
4. lemu/gTc 160℃ Squareness ratio 0.73 Magnetic powder 5 SrO-5,6 (FeszaCrtzaOa)J
2.3 units 0.5zT ~1. FzT 73% Cs/C'i l±0.05Hc
8.6kOeas
5.2 emu/gTc 140°C Squareness ratio 0.72 Magnetic powder 6 SrO5,6 (FeazaGazzgCrzzeAj+
zaOs)a 1.5μ 0.5Go~1.5HT2% Cs/Ci l±0.05Hc
7.2kOeσs
6.2 emu/gTc 110° C. Squareness ratio 0.70 When each of the above magnetic powders was subjected to thermomagnetic transfer in the same manner as in Example 1, the same results as in Example 1 were obtained.

実施例4 原料を秤量して1450℃にて焼結して、Ba0・5.
lll (Fea、5zaGaazaCri、57aO
x)を得たのち、これを実施例1と同様に粉砕して、ゴ
=1.3−の磁性粉7を得た。
Example 4 Raw materials were weighed and sintered at 1450°C to obtain Ba0.5.
lll (Fea, 5zaGaazaCri, 57aO
After obtaining x), this was crushed in the same manner as in Example 1 to obtain magnetic powder 7 with Go = 1.3-.

この磁性粉7の特性は下記の通りであった。The characteristics of this magnetic powder 7 were as follows.

J                1.4戸0.5z
T 〜1.51  71% Cs / Ci            l  ±0.
05Hc                   5 
kOeO95,5emu/g Tc               120 ℃角形比
        0.74 この磁性粉7につき、実施例1と同様に媒体を作製し、
熱磁気転写を行ったところ、実施例1と同等の結果を得
た。
J 1.4 units 0.5z
T ~1.51 71% Cs/Cil ±0.
05Hc 5
kOeO95.5emu/g Tc 120°C Squareness ratio 0.74 A medium was prepared using this magnetic powder 7 in the same manner as in Example 1,
When thermomagnetic transfer was performed, the same results as in Example 1 were obtained.

実施例5 実施例3と同様にして、下記の磁性扮8〜12を作製し
た。
Example 5 The following magnetic masks 8 to 12 were produced in the same manner as in Example 3.

磁性粉8 Ba0・5.8 ] 0.5■〜1゜ Cs / Ci a σ S Hc 角形比 磁性粉9 Bad−5,8(Fet 035a〜1゜ Cs / Ci Hc σ S Hc 角形比 (Fe7zsGa3zaCrzzs04)1 、2− 70 % 1 ± 0 、05   kOe 8 、 5 emu/g 40℃ 0 、74 5 ] 5zecr4.S/603) 1 、2− 5 丁  71 % 1 ± 0 、05 7.1kOe 8、lemu/g 180 ℃ 0 、70 磁性粉10 Ba0・5.8 ■ 0.5■〜1.5 Cs / Ci Hc  S Hc 角形比 磁性粉11 Ba0・5.6 O,5H−1,5 Cs / Ci Hc σ S Hc 角形比 (Fe4/scrazaAg+t/a04)1 、2− 1 % 1 ± 0.05  koe 4 、 1 emu/g O℃ 0 、73 CFe4ysAls7ao<)   7 3 1 、2p H72% 1 ± 0 、05 1kOe 4 、 1 emu/g 180 ℃ 0 、73 磁性粉12 BaO・5.6 (Fe5.azsGa+zaCr+z
++AL、5zsO<)]          11.
1 戸、5■〜1.5’2r70% Cs / Ci       1±0.05Hc   
       7.2kOeas          
7.2emu/gT0       140℃ 角形比        0.75 これらの磁性粉8〜12につき、実施例1と同様に媒体
を作製し、熱磁気転写を行ったところ、実施例1と同等
の結果を得た。
Magnetic powder 8 Ba0・5.8 ] 0.5■~1°Cs / Cia σ S Hc Square ratio Magnetic powder 9 Bad-5,8 (Fet 035a~1°Cs / Ci Hc σ S Hc Square ratio (Fe7zsGa3zaCrzzs04 ) 1, 2-70% 1 ± 0, 05 kOe 8, 5 emu/g 40°C 0, 74 5] 5zecr4.S/603) 1, 2- 5 71% 1 ± 0, 05 7.1 kOe 8, lemu/g 180°C 0,70 Magnetic powder 10 Ba0・5.8 ■ 0.5■~1.5 Cs / Ci Hc S Hc Square specific magnetic powder 11 Ba0・5.6 O,5H-1,5 Cs / Ci Hc σ S Hc Squareness ratio (Fe4/scrazaAg+t/a04) 1, 2- 1% 1 ± 0.05 koe 4, 1 emu/g O℃ 0, 73 CFe4ysAls7ao<) 7 3 1, 2p H72% 1 ± 0 , 05 1kOe 4, 1 emu/g 180°C 0, 73 Magnetic powder 12 BaO・5.6 (Fe5.azsGa+zaCr+z
++AL, 5zsO<)] 11.
1 unit, 5■~1.5'2r70% Cs/Ci 1±0.05Hc
7.2kOeas
7.2 emu/gT0 140°C Squareness ratio 0.75 For these magnetic powders 8 to 12, a medium was prepared in the same manner as in Example 1, and thermomagnetic transfer was performed, and results equivalent to those in Example 1 were obtained. .

実施例6 実施例1〜5のテープにつき、100〜180℃にて磁
気記録を行ったところ、平坦な周波数特性をもつ出力を
得ることができた。
Example 6 When magnetic recording was performed on the tapes of Examples 1 to 5 at 100 to 180°C, output with flat frequency characteristics could be obtained.

〈効果〉 本発明によれば、Hcが高く、−旦記録したのちに消去
しにくい磁性層かえられる。
<Effects> According to the present invention, a magnetic layer having a high Hc and difficult to erase after recording can be replaced.

しかも、角形比が高(,100〜180℃における熱磁
気転写や熱磁気記録を良好に行うことができ、その際、
周波数特性の良好な出力を得ることができる。
In addition, the squareness ratio is high (thermal magnetic transfer and thermomagnetic recording at temperatures of 100 to 180°C can be performed well;
Output with good frequency characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、図面代用写真であって、本発明の磁性粉の粒
子構造を示す走査型電子顕微鏡写真である。 第2図および第3図は、それぞれ本発明に用いるジェッ
トミル粉砕機を示す概略縦断面図である。 符号の説明 10・・・ジェットミル粉砕機 1・・・永久磁石用原料粉末 2・・・ホッパー 3・・・ガス導入管 4・・・供給ノズル 5・・・ガス噴射ノズル 6・・・粉砕室 65・・・衝突板 7・・・サイクロン 8・・・切出しホッパ 9・・・排出管
FIG. 1 is a photograph substituted for a drawing, and is a scanning electron micrograph showing the particle structure of the magnetic powder of the present invention. FIG. 2 and FIG. 3 are schematic vertical cross-sectional views each showing a jet mill pulverizer used in the present invention. Explanation of symbols 10... Jet mill pulverizer 1... Permanent magnet raw powder 2... Hopper 3... Gas introduction pipe 4... Supply nozzle 5... Gas injection nozzle 6... Grinding Chamber 65... Collision plate 7... Cyclone 8... Cutting hopper 9... Discharge pipe

Claims (8)

【特許請求の範囲】[Claims] (1)下記式で示される組成を有し、平均粒径を■とし
たとき、0.5■〜1.5■の粒径の粒子の個数が全体
の65%以上であることを特徴とする磁性粉。 式 MeO・n[Fe_2_−_x_−_y_−_zG
a_xCr_yAl_zO_3]{上記式中、Meは、
Ba、Sr、PbおよびCaのうちの1種以上を表わす
。 また、4.5≦n≦6、x≧0、y≧0、 z≧0、 x/3+y/4+z/6≧1/6、 x/6+y/10+z/11≦1/6であ る。}
(1) It has a composition represented by the following formula, and when the average particle size is represented by ■, the number of particles with a particle size of 0.5■ to 1.5■ is 65% or more of the total. magnetic powder. Formula MeO・n[Fe_2_−_x_−_y_−_zG
a_xCr_yAl_zO_3] {In the above formula, Me is
Represents one or more of Ba, Sr, Pb and Ca. Further, 4.5≦n≦6, x≧0, y≧0, z≧0, x/3+y/4+z/6≧1/6, x/6+y/10+z/11≦1/6. }
(2)下記式で示される組成を有し、粒子表面のFe含
有量が粒子内部のFe含有量と実質的に等しいことを特
徴とする磁性粉。 式 MeO・n[Fe_2_−_x_−_y_−_zG
a_xCr_yAl_zO_3]{上記式中、Meは、
Ba、Sr、PbおよびCaのうちの1種以上を表わす
。 また、4.5≦n≦6、x≧0、y≧0、 z≧0、 x/3+y/4+z/6≧1/6、 x/6+y/10+z/11≦1/6であ る。}
(2) A magnetic powder having a composition represented by the following formula, and characterized in that the Fe content on the particle surface is substantially equal to the Fe content inside the particle. Formula MeO・n[Fe_2_−_x_−_y_−_zG
a_xCr_yAl_zO_3] {In the above formula, Me is
Represents one or more of Ba, Sr, Pb and Ca. Further, 4.5≦n≦6, x≧0, y≧0, z≧0, x/3+y/4+z/6≧1/6, x/6+y/10+z/11≦1/6. }
(3)平均粒径を■としたとき、0.5■〜1.5■の
粒径の粒子の個数が全体の65%以上である請求項2に
記載の磁性粉。
(3) The magnetic powder according to claim 2, wherein the number of particles having a particle size of 0.5 to 1.5 is 65% or more of the total, where the average particle size is .
(4)原料粉末を供給ガスにより粉砕室に噴射するとと
もに、ガス噴射ノズルからこの粉砕室内に前記供給ガス
を高速気流として噴射し、前記粉砕室内の高速気流中に
て前記原料粉末を粉砕するか、衝突板と強制的に衝突さ
せることにより粉砕して下記式で示される組成を有する
磁性粉を得ることを特徴とする磁性粉の製造方法。 式 MeO・n[Fe_2_−_x_−_y_−_zG
a_xCr_yAl_zO_3]{上記式中、Meは、
Ba、Sr、PbおよびCaのうちの1種以上を表わす
。 また、4.5≦n≦6、x≧0、y≧0、 z≧0、 x/3+y/4+z/6≧1/6、 x/6+y/10+z/11≦1/6であ る。}
(4) The raw material powder is injected into the crushing chamber by a supply gas, and the supplied gas is injected as a high-speed airflow into the crushing chamber from a gas injection nozzle, and the raw material powder is crushed in the high-speed airflow inside the crushing chamber. . A method for producing magnetic powder, which comprises pulverizing it by forcibly colliding with a collision plate to obtain magnetic powder having a composition represented by the following formula. Formula MeO・n[Fe_2_−_x_−_y_−_zG
a_xCr_yAl_zO_3] {In the above formula, Me is
Represents one or more of Ba, Sr, Pb and Ca. Further, 4.5≦n≦6, x≧0, y≧0, z≧0, x/3+y/4+z/6≧1/6, x/6+y/10+z/11≦1/6. }
(5)原料粉末を粉砕後、表面をエッチング除去して下
記式で示される組成を有する磁性粉を得ることを特徴と
する磁性粉の製造方法。 式 MeO・n[Fe_2_−_x_−_y_−_zG
a_xCr_yAl_zO_3]{上記式中、Meは、
Ba、Sr、PbおよびCaのうちの1種以上を表わす
。 また、4.5≦n≦6、x≧0、y≧0、 z≧0、 x/3+y/4+z/6≧1/6、 x/6+y/10+z/11≦1/6であ る。}
(5) A method for producing magnetic powder, which comprises pulverizing raw material powder and etching away the surface thereof to obtain magnetic powder having a composition represented by the following formula. Formula MeO・n[Fe_2_−_x_−_y_−_zG
a_xCr_yAl_zO_3] {In the above formula, Me is
Represents one or more of Ba, Sr, Pb and Ca. Further, 4.5≦n≦6, x≧0, y≧0, z≧0, x/3+y/4+z/6≧1/6, x/6+y/10+z/11≦1/6. }
(6)バインダ中に、請求項1ないし3のいずれかに記
載の磁性粉を含有する磁性層を有することを特徴とする
磁気記録媒体。
(6) A magnetic recording medium comprising a magnetic layer containing the magnetic powder according to any one of claims 1 to 3 in a binder.
(7)請求項6に記載の磁性層に熱磁気記録を行う磁気
記録方法。
(7) A magnetic recording method for performing thermomagnetic recording on the magnetic layer according to claim 6.
(8)請求項6に記載の磁性層に熱磁気転写を行う磁気
記録方法。
(8) A magnetic recording method in which thermomagnetic transfer is performed on the magnetic layer according to claim 6.
JP1262377A 1988-11-08 1989-10-06 Magnetic powder, manufacture thereof, magnetic recording medium and magnetic recording method Pending JPH03124003A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1262377A JPH03124003A (en) 1989-10-06 1989-10-06 Magnetic powder, manufacture thereof, magnetic recording medium and magnetic recording method
PCT/JP1989/001133 WO1990005367A1 (en) 1988-11-08 1989-11-02 Magnetic powder, its production method, magnetic recording medium and magnetic recording method
US07/536,661 US5229219A (en) 1988-11-08 1989-11-02 Magnetic recording medium comprising a magnetic layer containing a specified magnetic ferrite powder and having a curie temperature up to 180° C.
DE68920993T DE68920993T2 (en) 1988-11-08 1989-11-02 MAGNETIC POWDER, THEIR PRODUCTION AND MAGNETIC STORAGE MEDIUM AND MAGNETIC STORAGE METHOD.
EP89912135A EP0397885B1 (en) 1988-11-08 1989-11-02 Magnetic powder, its production method, magnetic recording medium and magnetic recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262377A JPH03124003A (en) 1989-10-06 1989-10-06 Magnetic powder, manufacture thereof, magnetic recording medium and magnetic recording method

Publications (1)

Publication Number Publication Date
JPH03124003A true JPH03124003A (en) 1991-05-27

Family

ID=17374909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262377A Pending JPH03124003A (en) 1988-11-08 1989-10-06 Magnetic powder, manufacture thereof, magnetic recording medium and magnetic recording method

Country Status (1)

Country Link
JP (1) JPH03124003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093689A (en) * 2007-10-03 2009-04-30 Fujifilm Corp Method of manufacturing magnetic recording medium and magnetic recording medium
WO2014148311A1 (en) * 2013-03-19 2014-09-25 デクセリアルズ株式会社 Coil module, antenna device, and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177627A (en) * 1984-09-20 1986-04-21 Ricoh Co Ltd Metallic oxide magnetic material and magnetic film
JPS61166905A (en) * 1985-01-16 1986-07-28 Sumitomo Special Metals Co Ltd Production of raw material powder for permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177627A (en) * 1984-09-20 1986-04-21 Ricoh Co Ltd Metallic oxide magnetic material and magnetic film
JPS61166905A (en) * 1985-01-16 1986-07-28 Sumitomo Special Metals Co Ltd Production of raw material powder for permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093689A (en) * 2007-10-03 2009-04-30 Fujifilm Corp Method of manufacturing magnetic recording medium and magnetic recording medium
WO2014148311A1 (en) * 2013-03-19 2014-09-25 デクセリアルズ株式会社 Coil module, antenna device, and electronic device
JP2014183428A (en) * 2013-03-19 2014-09-29 Dexerials Corp Coil module, antenna device and electronic device

Similar Documents

Publication Publication Date Title
EP0095070B1 (en) Magnetic recording media
EP0183988A2 (en) Magnetic powders for magnetic recording media and magnetic recording media employing said magnetic powder therein
JPH03124003A (en) Magnetic powder, manufacture thereof, magnetic recording medium and magnetic recording method
EP0247681B1 (en) Magnetic material, magnetic recording medium, and method of manufacturing a magnetic material
JP2003297628A (en) Magnetic film and its forming method
US5229219A (en) Magnetic recording medium comprising a magnetic layer containing a specified magnetic ferrite powder and having a curie temperature up to 180° C.
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
JPS6217841B2 (en)
JP2711555B2 (en) Magnetic material for magnetic recording medium, magnetic recording medium and magnetic recording method
JP2799590B2 (en) Magnetic recording media
JPS56134522A (en) Preparation of magnetic powder for magnetic recording use
US4650713A (en) Magnetic recording medium and process for its production
JPS61117804A (en) Mn-zn system soft ferrite and manufacture thereof
JPH1167511A (en) Magnetic material
JPH04337521A (en) Magnetic powder for magnetic recording medium and magnetic recording medium formed by using the powder
JP2787700B2 (en) Magnetic recording medium and magnetic recording method
JP2006054220A (en) Low coercive force ferrite magnetic powder, magnetic paint, and magnetic sheet
JPS58103564A (en) Preparation of magnetic coating material
JPS6331924B2 (en)
JPH061930A (en) Production of magnetic recording medium and kneading apparatus
JPS5918955A (en) Electrophotographic ferrite carrier
JPS55125169A (en) Production of magnetic coating material magnetic recording medium
JPH06290924A (en) Magnetic powder and high density magnetic recording medium made of same
JPH06267717A (en) Magnetic powder, magnetic recording medium and magnetic recording method
JPH0696917A (en) Magnetic recording medium, magnetic powder therefor, and magnetic recording method