JPH03122523A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JPH03122523A
JPH03122523A JP25889189A JP25889189A JPH03122523A JP H03122523 A JPH03122523 A JP H03122523A JP 25889189 A JP25889189 A JP 25889189A JP 25889189 A JP25889189 A JP 25889189A JP H03122523 A JPH03122523 A JP H03122523A
Authority
JP
Japan
Prior art keywords
signal
excitation
generation section
signal generation
timing signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25889189A
Other languages
Japanese (ja)
Inventor
Hiroshi Okaniwa
岡庭 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP25889189A priority Critical patent/JPH03122523A/en
Publication of JPH03122523A publication Critical patent/JPH03122523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable removal of noise even when a frequency component of the noise ranges wide, by varying the frequency of an exciting current randomly. CONSTITUTION:A pipeline 1 is provided with electrodes 11 and 12. An exciting coil 2 generates a magnetic field on the basis of an output of an exciting current generating element 3 and a signal of the polarity corresponding to the direction of the magnetic field is generated between the electrodes 11 and 12. This generated signal is sampled 5 after amplification 4 and sent to an output element 6. A signal having a period T1 for supply of a current and a signal for which random pause periods T2, R3,... are made to occur alternately are sent to the generating element 3 from a timing signal generating circuit 7, the generating element 3 sends an exciting current to the coil 2 between the signals of the period T1, and magnetic fields being different in the direction of excitation are supplied alternately from the coil 2 to the pipeline 1. A random variation in the period of pause of the exciting current is synchronous with a change in a sampling pulse and thereby an excitation frequency is varied randomly.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、流体の流速等を測定する電磁流量計に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electromagnetic flowmeter that measures the flow velocity of a fluid.

[従来の技術] 周知のように流体の流速を測定するものに電磁流量計が
ある。これは管路に流体を流し、その管路に直角方向に
励磁用の磁界を加えると、流体を挟む電極から流速に対
応した電気信号が得られることを利用している。ところ
が、この装置は微小な電気信号を扱うので、本来の流量
信号の他に商用周波数の雑音成分が重畳し易い、そして
流速信号は励磁磁界の方向を変えるとその極性も反転す
るが、雑音成分の極性はそのときでも変わらない性質を
利用して、励磁電流の極性が変わる前後の信号の位相を
反転させ加算もしくは積分することで、雑音成分だけを
除去していた。この励磁電流は極性を変えるために矩形
波を使用し、使用する周波数は商用周波数の1/4ある
いは1/8等の値を遭定していた。
[Prior Art] As is well known, there is an electromagnetic flow meter that measures the flow velocity of a fluid. This utilizes the fact that when a fluid flows through a pipe and an excitation magnetic field is applied perpendicularly to the pipe, an electrical signal corresponding to the flow velocity is obtained from the electrodes that sandwich the fluid. However, since this device handles minute electrical signals, commercial frequency noise components are likely to be superimposed on the original flow rate signal, and although the polarity of the flow rate signal is reversed when the direction of the excitation magnetic field is changed, the noise component Taking advantage of the fact that the polarity of the excitation current does not change even when the polarity of the excitation current changes, only the noise component is removed by inverting the phases of the signals before and after the polarity of the excitation current changes and adding or integrating them. This excitation current uses a rectangular wave to change the polarity, and the frequency used has been found to be 1/4 or 1/8 of the commercial frequency.

[発明が解決しようとする課題] しかしながら、例えばAgNO3、KCj 、 NaC
jなどの強電解質の流体を管路に流した場合は商用周波
数のノイズよりも大きい値のノイズが広範囲の周波数に
わたり生じるため、従来の方法では励磁周波数とその奇
数倍の周波数にもノイズが重畳し、流量信号と区別がで
きなくなるため、ノイズ除去性能が不十分であるという
課題があった。
[Problem to be solved by the invention] However, for example, AgNO3, KCj, NaC
When a strong electrolyte fluid such as J flows through a pipe, noise with a value larger than that of the commercial frequency is generated over a wide range of frequencies, so in the conventional method, noise is superimposed on the excitation frequency and odd multiples of it. However, since it cannot be distinguished from the flow rate signal, there is a problem that the noise removal performance is insufficient.

[課題を解決するための手段] このような課題を解決するために第1の発明は、励磁コ
イルに励磁信号を供給する励磁信号発生部と、流量信号
をサンプリングするサンプリング信号発生部と、励磁信
号発生部とサンプリング信号発生部とを同期させて動作
させるためのタイミング信号を発生するタイミング信号
発生部とからなり、タイミング信号発生部で発生するタ
イミング信号の周期がランダムにしたものである。
[Means for Solving the Problems] In order to solve such problems, a first invention includes an excitation signal generation section that supplies an excitation signal to an excitation coil, a sampling signal generation section that samples a flow rate signal, and an excitation signal generation section that supplies an excitation signal to an excitation coil. It consists of a timing signal generation section that generates a timing signal for synchronizing the operation of the signal generation section and the sampling signal generation section, and the cycle of the timing signal generated by the timing signal generation section is made random.

第2の発明は流量信号はフィルタを介して出力し、その
フィルタの遮断周波数をタイミング信号の周期の変化に
対応させて変化させるようにしたものである。
In a second aspect of the invention, the flow rate signal is output through a filter, and the cutoff frequency of the filter is changed in accordance with changes in the period of the timing signal.

[作用] 励磁周波数がランダムになるので、各種の周波数につい
て雑音除去が行え、広範囲の周波数にわたるノイズでも
除去可能になる。
[Operation] Since the excitation frequency is random, noise can be removed for various frequencies, and even noise over a wide range of frequencies can be removed.

[実施例] 第1図はこの発明の一実施例を示すブロック図であり、
第2図はその動作を示す波形図である。
[Embodiment] FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a waveform diagram showing the operation.

図において、1は絶縁体で構成された管路であり、1□
および12は管路1に流れる流体を挟む位置に設けられ
た電極である。2は励磁コイルであり励磁電流発生部3
から供給される電流によって磁界を発生させるようにな
っており、その磁界の方向に対応した極性の信号が電極
11.12間に発生するようになっている。電極11.
12間に発生した信号は増幅器4で増幅されてサンプリ
ング部5でサンプリングされ、その信号は出力部6を介
して出力されるようなっている。7はサンプリング信号
のタイミングおよびこのタイミングに同期する励磁電流
発生タイミングを決定するタイミング信号発生回路であ
り、信号線a、b、cに第2図(a)、(b)、(c)
に示す波形図の信号を発生するようになっている。
In the figure, 1 is a conduit made of an insulator, and 1□
and 12 are electrodes provided at positions sandwiching the fluid flowing through the conduit 1. 2 is an excitation coil and an excitation current generating section 3
A magnetic field is generated by a current supplied from the electrodes 11 and 12, and a signal having a polarity corresponding to the direction of the magnetic field is generated between the electrodes 11 and 12. Electrode 11.
The signal generated between 12 and 12 is amplified by an amplifier 4 and sampled by a sampling section 5, and the signal is outputted via an output section 6. 7 is a timing signal generation circuit that determines the timing of the sampling signal and the timing of generating an excitation current in synchronization with this timing, and the signal lines a, b, and c are connected to the signals shown in FIGS. 2(a), (b), and (c).
It is designed to generate the signal shown in the waveform diagram.

タイミング信号発生回路7から励磁電流発生部3に対し
て、例えば第2図(a>のように励磁電流供給のため期
rWIT□を有する信号とランダムな休止期間T2. 
T、、T、・・・・とが交互に発生する信号を供給して
いる。このため励磁電流発生部3は期間T1の信号が供
給されている間に励磁電流をコイル2に供給するので、
コイル2からは交互に励磁方向が異なる磁界が管路lに
供給される。なお、期間T2は乱数発生器等の手段によ
ってランダムな期間を得るようにしている。
The timing signal generation circuit 7 sends a signal having a period rWIT□ and a random rest period T2.
T, , T, . . . supply signals that are generated alternately. Therefore, the exciting current generator 3 supplies the exciting current to the coil 2 while the signal of the period T1 is being supplied.
Magnetic fields with different excitation directions are alternately supplied from the coil 2 to the pipe line l. Note that the period T2 is a random period obtained by means such as a random number generator.

タイミング信号発生回路7は信号線すに対しては第2図
(b)に示すタイミング信号を供給し、信号線Cに対し
ては第2図(c)に示す信号を供給するので、サンプリ
ング部5は第2図(a)に示すように励磁方向が変化す
る度にその励磁電流によって発生した信号をサンプリン
グする。
The timing signal generation circuit 7 supplies the timing signal shown in FIG. 2(b) to the signal line C, and the signal shown in FIG. 2(c) to the signal line C, so that the sampling section 5 samples the signal generated by the excitation current every time the excitation direction changes, as shown in FIG. 2(a).

前述したように励磁方向が反転すると流体と磁界とが作
用して電極間に発生する信号の極性も反転するが、流体
と電極間の化学作用によって発生するノイズ信号の極性
は反転しない、このため、あるサンプリングタイミング
とその次のサンプリングタイミングとで増幅器出力信号
を反転させ加え合わせることによって、信号成分は加え
合わされるが、雑音成分は打ち消し合うので、ノイズ除
去がおこなわれる。そして励磁電流の休止期間がランダ
ムに変化し、その変化はサンプリングパルスの変化に同
期するようになっている。このため、励磁周波数がラン
ダムに変化することになるので、流体の種類と電極材質
とによって発生していた広範囲の周波数帯にわたるノイ
ズと流量信号とを区別することができ、ノイズを除去す
ることができる。
As mentioned above, when the excitation direction is reversed, the polarity of the signal generated between the electrodes due to the interaction between the fluid and the magnetic field is also reversed, but the polarity of the noise signal generated by the chemical action between the fluid and the electrodes is not reversed. By inverting and adding the amplifier output signals at a certain sampling timing and the next sampling timing, the signal components are added, but the noise components cancel each other out, so that noise is removed. The rest period of the excitation current changes randomly, and the change is synchronized with the change in the sampling pulse. For this reason, the excitation frequency changes randomly, making it possible to distinguish between the flow rate signal and noise over a wide range of frequency bands, which is caused by the type of fluid and electrode material, and to eliminate the noise. can.

第3図は他の実施例であり、増幅器とサンプリング部の
間にローパスフィルタからなるフィルタ部8を挿入した
もので、そのフィルタの遮断周波数は励磁電流の周波数
と所定の関係となるようにタイミング信号発生回路から
供給される信号によって制御されるようになっている。
FIG. 3 shows another embodiment, in which a filter section 8 consisting of a low-pass filter is inserted between the amplifier and the sampling section, and the timing is adjusted so that the cut-off frequency of the filter has a predetermined relationship with the frequency of the excitation current. It is controlled by a signal supplied from a signal generation circuit.

フィルタを挿入するだけでも第1図のものよりもノイズ
除去性能が向上するが、第3図のようにフィルタの遮断
周波数を励磁電流の周波数に対応させて変化することに
よってノイズ除去性能が一層向上する。
Simply inserting a filter improves the noise removal performance compared to the one shown in Figure 1, but by changing the cut-off frequency of the filter in accordance with the frequency of the excitation current as shown in Figure 3, the noise removal performance is further improved. do.

[発明の効果] 以上説明したようにこの発明は、励磁電流の周波数をラ
ンダムに変化させたのでノイズの周波数成分が広い範囲
にわたっていてもノイズ除去が行えるという効果を有す
る。
[Effects of the Invention] As explained above, the present invention has the effect that noise can be removed even if the frequency components of noise range over a wide range because the frequency of the excitation current is changed randomly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
はその動作を説明するための各部波形図、第3図は他の
実施例を示すブロック図である。 1・・・・管路、1..12・・・・電極、2・・・・
コイル、3・・・・励磁電流発生部、4・・・・増幅器
、5・・・・サンプリング部、6・・・・出力部、7・
・・・タイミング信号発生回路、8・・・・フィルタ部
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a waveform diagram of each part for explaining its operation, and FIG. 3 is a block diagram showing another embodiment. 1...Pipeline, 1. .. 12... Electrode, 2...
Coil, 3... Excitation current generating section, 4... Amplifier, 5... Sampling section, 6... Output section, 7...
...Timing signal generation circuit, 8...Filter section.

Claims (2)

【特許請求の範囲】[Claims] (1)励磁コイルに励磁信号を供給する励磁信号発生部
と、 流量信号をサンプリングするサンプリング信号発生部と
、 励磁信号発生部とサンプリング信号発生部とを同期させ
て動作させるためのタイミング信号を発生するタイミン
グ信号発生部とからなり、 タイミング信号発生部で発生するタイミング信号はその
周期がランダムであることを特徴とする電磁流量計。
(1) Generates an excitation signal generation section that supplies an excitation signal to the excitation coil, a sampling signal generation section that samples the flow rate signal, and a timing signal to operate the excitation signal generation section and the sampling signal generation section in synchronization. An electromagnetic flowmeter comprising: a timing signal generating section that generates a timing signal; the timing signal generated by the timing signal generating section has a random cycle;
(2)励磁コイルに励磁信号を供給する励磁信号発生部
と、 流量信号中の所定周波数以上の周波数成分を除去するフ
ィルタと、 フィルタ出力信号をサンプリングするサンプリング信号
発生部と、 励磁信号発生部とサンプリング信号発生部とを同期させ
て動作させるためのタイミング信号発生部とからなり、 タイミング信号発生部で発生するタイミング信号はその
周期がランダムであるとともにフィルタの遮断周波数も
タイミング信号の周期の応じて変化させることを特徴と
する電磁流量計。
(2) An excitation signal generation section that supplies an excitation signal to the excitation coil; a filter that removes frequency components above a predetermined frequency in the flow rate signal; a sampling signal generation section that samples the filter output signal; and an excitation signal generation section. It consists of a timing signal generation section for operating in synchronization with the sampling signal generation section, and the timing signal generated by the timing signal generation section has a random period, and the cutoff frequency of the filter also varies depending on the period of the timing signal. An electromagnetic flow meter that is characterized by a variable flow rate.
JP25889189A 1989-10-05 1989-10-05 Electromagnetic flowmeter Pending JPH03122523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25889189A JPH03122523A (en) 1989-10-05 1989-10-05 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25889189A JPH03122523A (en) 1989-10-05 1989-10-05 Electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JPH03122523A true JPH03122523A (en) 1991-05-24

Family

ID=17326466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25889189A Pending JPH03122523A (en) 1989-10-05 1989-10-05 Electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPH03122523A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672330A2 (en) * 1996-05-24 2006-06-21 Bailey-Fischer & Porter GmbH Method and device for electromagnetic flow measurement
JP2013536416A (en) * 2010-08-11 2013-09-19 ローズマウント インコーポレイテッド Noise detection and avoidance
WO2021045915A1 (en) * 2019-09-05 2021-03-11 Micro Motion, Inc. Magnetic flowmeter
US11204267B2 (en) 2019-09-05 2021-12-21 Micro Motion, Inc. Continuously adaptive digital coil driver for magnetic flowmeter
US11204268B2 (en) 2019-09-05 2021-12-21 Micro Motion, Inc. Magnetic flowmeter having a programmable bi-directional current generator
US11333537B2 (en) 2019-09-05 2022-05-17 Micro Motion, Inc. Load leveling boost supply for magnetic flowmeter
JP2022545873A (en) * 2019-09-05 2022-11-01 マイクロ モーション インコーポレイテッド Electromagnetic flowmeter and its control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672330A2 (en) * 1996-05-24 2006-06-21 Bailey-Fischer & Porter GmbH Method and device for electromagnetic flow measurement
EP1672330A3 (en) * 1996-05-24 2007-06-06 Bailey-Fischer & Porter GmbH Method and device for electromagnetic flow measurement
JP2013536416A (en) * 2010-08-11 2013-09-19 ローズマウント インコーポレイテッド Noise detection and avoidance
US9057634B2 (en) 2010-08-11 2015-06-16 Rosemount Inc. Noise detection and avoidance
WO2021045915A1 (en) * 2019-09-05 2021-03-11 Micro Motion, Inc. Magnetic flowmeter
US11181404B2 (en) 2019-09-05 2021-11-23 Micro Motion, Inc. Magnetic flowmeter with a current sampling circuit sampling coil current pulses at a sampling frequency
US11204267B2 (en) 2019-09-05 2021-12-21 Micro Motion, Inc. Continuously adaptive digital coil driver for magnetic flowmeter
US11204268B2 (en) 2019-09-05 2021-12-21 Micro Motion, Inc. Magnetic flowmeter having a programmable bi-directional current generator
US11333537B2 (en) 2019-09-05 2022-05-17 Micro Motion, Inc. Load leveling boost supply for magnetic flowmeter
JP2022545873A (en) * 2019-09-05 2022-11-01 マイクロ モーション インコーポレイテッド Electromagnetic flowmeter and its control method

Similar Documents

Publication Publication Date Title
US3855858A (en) Self synchronous noise rejection circuit for fluid velocity meter
KR100533619B1 (en) Electromagnetic Flowmeter
JP2003097986A5 (en)
JPS6166123A (en) Converter of electromagnetic flowmeter
JPH03122523A (en) Electromagnetic flowmeter
JP2015011035A (en) Electromagnetic-inductive flow meter and method for operating the same
JPH0477854B2 (en)
JPS6175218A (en) Magnetic induction flow measuring method and device
JPH0216974B2 (en)
JPS62187218A (en) Electromagnetic flowmeter and method of measuring flow rate
JP4002132B2 (en) Electromagnetic flow meter
JP2545664B2 (en) Electromagnetic flow meter
JP2003329499A (en) Method for detecting uncertainty of measuring method operated by measuring frequency
JPH04369434A (en) Electromagnetic flowmeter
JP2545659B2 (en) Electromagnetic flow meter
JP2545658B2 (en) Electromagnetic flow meter
JP7303940B2 (en) Electromagnetic flowmeter and its control method
JPH075004A (en) Electromagnetic flow meter
SU1010468A1 (en) Electromagnetic flowmeter having capacitive signal output
JPH04340423A (en) Electromagnetic flowmeter converter
SU802790A1 (en) Flow velocity ultrasonic measuring method
JPH0422452B2 (en)
JPH0422453B2 (en)
JP2545657B2 (en) Electromagnetic flow meter
JP2003042821A (en) Electromagnetic flowmeter and signal processing method thereof