JPH0422453B2 - - Google Patents

Info

Publication number
JPH0422453B2
JPH0422453B2 JP8535985A JP8535985A JPH0422453B2 JP H0422453 B2 JPH0422453 B2 JP H0422453B2 JP 8535985 A JP8535985 A JP 8535985A JP 8535985 A JP8535985 A JP 8535985A JP H0422453 B2 JPH0422453 B2 JP H0422453B2
Authority
JP
Japan
Prior art keywords
excitation signal
sampling
period
waveform
commercial power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8535985A
Other languages
Japanese (ja)
Other versions
JPS61245025A (en
Inventor
Hiroshi Watanabe
Shinichi Akano
Fumio Nagasaka
Hiroshi Okaniwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP8535985A priority Critical patent/JPS61245025A/en
Publication of JPS61245025A publication Critical patent/JPS61245025A/en
Publication of JPH0422453B2 publication Critical patent/JPH0422453B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば各種化学プロセスにおいて、
パイプを通じて供給される水、その他導電性を有
する各種流体の流量を測定する場合に用いられる
電磁流量計に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to various chemical processes, for example,
The present invention relates to an electromagnetic flowmeter used to measure the flow rate of water and other conductive fluids supplied through pipes.

〔従来の技術〕[Conventional technology]

一般にこの種の電磁流量計は、励磁コイルに一
定周期の交番電流からなる励磁信号を供給する手
段と、発生される磁界に対し直交しかつ測定対象
の流れを挟んで配置された検出電極間に得られる
電位差を検出する変換器と、その出力を励磁信号
に同期したタイミングでサンプリングする手段
と、サンプリング値から最終的な出力を演算する
手段とから構成されるが、周囲を取りまく商用電
源の作用によるノイズを除去するためには当該商
用電源に同期させて励磁を行ないサンプリングす
ることが有効であることから、従来励磁周波数は
商用電源周波数が50Hzの場合で最大25Hzとされて
いた。
Generally, this type of electromagnetic flowmeter has a means for supplying an excitation signal consisting of a constant cycle alternating current to an excitation coil, and a detection electrode arranged perpendicular to the generated magnetic field and across the flow to be measured. It consists of a converter that detects the resulting potential difference, a means for sampling its output at a timing synchronized with the excitation signal, and a means for calculating the final output from the sampled value. In order to remove the noise caused by this, it is effective to excite and sample in synchronization with the commercial power supply, so conventionally the excitation frequency was set to a maximum of 25Hz when the commercial power supply frequency was 50Hz.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、電磁流量計に対する外的ノイズの大き
いものとして、さらに両検出電極間に現われる電
気化学的分極作用による電位の時間的変化に起因
するノイズがある。このノイズは、通常0〜2V、
0.1Hz程度の電圧および周波数成分を有し、一般
の流体では変換器の初段入力部に交流像幅器を設
置することにより除去できる程度であるが、イオ
ン化傾向の高い特殊流体等においては、このノイ
ズが時として0〜10Hz程度の幅で変化することが
あり、特に励磁周波数が近い場合には上述した方
法では十分にカツトできず、それが出力にふらつ
きとなつて現われるという問題があつた。第4図
はその一例を示したもので、図中イがイオン化傾
向の高い特殊流体があるが、図中ロで示した普通
流体に比較して出力が大きく変動していることが
わかる。
However, one of the major external noises to the electromagnetic flowmeter is noise caused by temporal changes in potential due to electrochemical polarization occurring between both detection electrodes. This noise is usually 0 to 2V,
It has a voltage and frequency component of about 0.1Hz, and for general fluids, it can be removed by installing an AC image width filter at the first stage input section of the converter, but for special fluids with a high tendency to ionize, this The problem is that the noise sometimes changes in a range of about 0 to 10 Hz, and the above-mentioned method cannot sufficiently cut it, especially when the excitation frequencies are close, and this appears as fluctuation in the output. FIG. 4 shows an example of this, and it can be seen that there is a special fluid with a high ionization tendency indicated by A in the figure, but the output fluctuates greatly compared to the normal fluid indicated by B in the figure.

〔問題点を解決するための手段〕[Means for solving problems]

このような問題点を解決するために、本発明
は、商用電源周波数以上の周波数を有し、しかも
商用電源波形と当該商用電源波形の2n(nは1以
上の整数)周期ごとに同期し、つまり当該2n周
期ごとに同一の波形を繰り返し、かつ当該2n周
期内でn周期ごとに同期する波形の前半のn周期
間に対して後半のn周期間を反転させてなる励磁
信号で励磁を行ない、上記前半のn周期と後半の
n周期間の励磁信号に対して同一のタイミング、
つまり当該n周期間の開始から同一時間経過後の
タイミングでサンプリングを行ない、そのサンプ
リング値から上記両n周期間における出力の差を
求めるようにしたものである。
In order to solve such problems, the present invention has a frequency higher than the commercial power supply frequency, and synchronizes with a commercial power supply waveform every 2n (n is an integer of 1 or more) cycles of the commercial power supply waveform, In other words, excitation is performed using an excitation signal that repeats the same waveform every 2n cycles and inverts the first half n cycles of the waveform that synchronizes every n cycles within the 2n cycles. , the same timing for the excitation signal between the first half n cycles and the second half n cycles,
In other words, sampling is performed at a timing after the same period of time has elapsed from the start of the n-cycle period, and the difference in output between the two n-cycle periods is determined from the sampled value.

〔作用〕[Effect]

商用電源波形と特定の関係をもたせることによ
り商用電源ノイズを除去した出力が得られるため
高速励磁が可能となり、その結果電気化学的分極
作用に起因するノイズの影響も抑えることができ
る。
By establishing a specific relationship with the commercial power supply waveform, an output with commercial power supply noise removed can be obtained, making high-speed excitation possible, and as a result, the effects of noise caused by electrochemical polarization can also be suppressed.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すブロツク図で
ある。同図において1は測定対象の流体が流れる
管、2A,2Bは管1の内面に流れを挟んで対向
するように配置された検出電極、3は励磁コイル
であり、励磁コイル3に一定周期の交番電流から
なる励磁信号を与えることにより、両検出電極2
A,2Bにeで示すような信号起電力eが得られ
る。なお、eNは電気化学的分極作用に起因するノ
イズを等価的に示したものである。すなわち、励
磁スイツチング回路4は、第2図に示すように4
個のスイツチSW1〜SW4を備え、制御回路5
からの制御信号CNT1,CNT2によりこれらを
開閉することによつて定電流源6から励磁コイル
3に供給される電流を反転制御する。一方、両検
出電極に得られた起電力は、変換器7内において
増幅された後、その差電圧がサンプリング回路8
に送られる。サンプリング回路8は、上記制御回
路5からの制御信号に基いて所定のタイミングで
変換器出力をサンプリングし、デイジタルデータ
に変換して制御回路5に送る。ここで、制御回路
5は周知マイクロプロセツサ等のプロセツサユニ
ツトを備えたマイクロコンピユータによつて構成
され、水晶発振器等からなる第1の基準クロツク
発生回路9が出力する高周波のクロツク信号と、
第2の基準クロツク信号と、第2の基準クロツク
発生回路10が出力する商用電源周波数のクロツ
ク信号とから制御信号CNT1,CNT2を作成し
て励磁スイツチング回路4に送出するとともに、
当該制御信号に対して特定のタイミングでサンプ
リング回路9にサンプリング信号を送出する一
方、サンプリング回路8から送られるサンプリン
グデータに所定の演算を施し、最終的な出力デー
タを求める。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, 1 is a pipe through which the fluid to be measured flows, 2A and 2B are detection electrodes arranged on the inner surface of the pipe 1 to face each other across the flow, and 3 is an excitation coil. By applying an excitation signal consisting of an alternating current, both detection electrodes 2
A signal electromotive force e as shown by e is obtained at A and 2B. Note that e N equivalently represents noise caused by electrochemical polarization. That is, the excitation switching circuit 4 has four
The control circuit 5 includes switches SW1 to SW4.
By opening and closing these in accordance with control signals CNT1 and CNT2 from the constant current source 6, the current supplied from the constant current source 6 to the excitation coil 3 is invertedly controlled. On the other hand, the electromotive force obtained at both detection electrodes is amplified in the converter 7, and then the difference voltage is converted into the sampling circuit 8.
sent to. The sampling circuit 8 samples the converter output at a predetermined timing based on the control signal from the control circuit 5, converts it into digital data, and sends it to the control circuit 5. Here, the control circuit 5 is constituted by a microcomputer equipped with a processor unit such as a well-known microprocessor, and receives a high frequency clock signal outputted from a first reference clock generating circuit 9 consisting of a crystal oscillator or the like.
Create control signals CNT1 and CNT2 from the second reference clock signal and the commercial power frequency clock signal output by the second reference clock generation circuit 10, and send them to the excitation switching circuit 4.
A sampling signal is sent to the sampling circuit 9 at a specific timing in response to the control signal, and a predetermined operation is performed on the sampling data sent from the sampling circuit 8 to obtain final output data.

上記構成において、第3図に示すような励磁を
行なう。すなわち第3図は商用電源波形(同図
a)に対する休止期間を有する正・負の矩形波か
らなる励磁信号波形(同図b)の関係を示したも
のであるが、同図から明らかなように、励磁信号
は商用電源周波数の2倍の周波数をもち、しかも
商用電源波形と、当該商用電源波形の2周期ごと
に同期する、つまり当該2周期ごとに同一の波形
を繰り返すとともに当該2周期内で1周期ごとに
同期する波形の、前半の1周期間に対して後半の
1周期間を極性反転させてなる波形を有してい
る。
In the above configuration, excitation as shown in FIG. 3 is performed. In other words, Fig. 3 shows the relationship between the commercial power supply waveform (a in the figure) and the excitation signal waveform (b in the figure) consisting of positive and negative rectangular waves with rest periods. In addition, the excitation signal has a frequency twice the commercial power supply frequency, and is synchronized with the commercial power supply waveform every two cycles of the commercial power supply waveform. In other words, the same waveform is repeated every two cycles, and The waveform has a waveform that is synchronized every cycle, and has a waveform in which the polarity of the first half of the cycle is inverted from that of the second half of the cycle.

これに対し、上記反転させた1周期と反転させ
ない1周期間の励磁信号に対して、当該1周期間
の開始からt1、t3およびt1′、t3′ならびに励磁信号
の極性が反対となるt2、t4およびt2′、t4′のタイミ
ングでサンプリングを行なつた場合、各サンプリ
ング電位をs1〜s8、それらに含まれる商用電源ノ
イズをer1〜er8として、励磁信号の各周期内の出
力e1〜e4は次式で求められる。
On the other hand, with respect to the excitation signal between one period that is inverted and one period that is not inverted, the polarity of t 1 , t 3 , t 1 ', t 3 ' and the excitation signal is opposite from the start of that one period. When sampling is performed at the timings t 2 , t 4 and t 2 ′, t 4 ′, the sampling potentials are s 1 to s 8 , and the commercial power supply noise included in them is e r1 to e r8 , The outputs e 1 to e 4 within each period of the excitation signal are determined by the following equation.

e1=(s1+er1)−(s2+er2) e2=(s3+er3)−(s4+er4) e3=(s5+er3)−(s6+er6) e4=(s7+er7)−(s8+er8) ここで、励磁信号は商用電源波形に対して基本
的に1周期ごとに同期をとつているから、tk
tk′(k=1〜4)とした場合、er1〜er8には次の
関係が成立する。
e 1 = (s 1 + e r1 ) − (s 2 + e r2 ) e 2 = (s 3 + e r3 ) − (s 4 + e r4 ) e 3 = (s 5 + e r3 ) − (s 6 + e r6 ) e 4 = (s 7 + e r7 ) − (s 8 + e r8 ) Here, since the excitation signal is basically synchronized every cycle with the commercial power supply waveform, t k =
When t k ′ (k=1 to 4), the following relationship holds true for e r1 to e r8 .

er1=er5、er3=er7 er2=er6、er4=er8 したがつて、上記商用電源波形の2周期のう
ち、前半1周期と後半1周囲期間における出力の
差eOUTを求めると、 eOUT=(e1+e2)−(e3+e4)=(s1−s2)+(s3
s4)+(s6−s5)+(s8−s7)+er1 eOUT=(e1+e2)−(e3+e4)=(s1−s2)+(s3
s4)+(s6−s5)+(s8−s7)+er1 −er2+er3−er4−er5+er6−er7+er8=(s1−s2
+(s3−s4)+(s6−s5)+(s8−s7) となり、商用電源ノイズer1〜er8を含まない流量
出力が得られる。
e r1 = e r5 , e r3 = e r7 e r2 = e r6 , e r4 = e r8 Therefore, of the two periods of the above commercial power supply waveform, the difference in output between the first half period and the second half period e OUT Then, e OUT = (e 1 + e 2 ) − (e 3 + e 4 ) = (s 1 − s 2 ) + (s 3
s 4 ) + (s 6 - s 5 ) + (s 8 - s 7 ) + e r1 e OUT = (e 1 + e 2 ) - (e 3 + e 4 ) = (s 1 - s 2 ) + (s 3 -
s 4 ) + (s 6 - s 5 ) + (s 8 - s 7 ) + e r1 - e r2 + e r3 - e r4 - e r5 + e r6 - e r7 + e r8 = (s 1 - s 2 )
+( s3 - s4 )+( s6 - s5 )+( s8 - s7 ), and a flow rate output that does not include commercial power supply noise e r1 to e r8 can be obtained.

上述した実施例では、商用電源波形の2周期ご
とに同期しかつ当該2周期内で1周期ごとに同期
する波形の、前半1周期に対して後半1周期期間
のみを反転させた波形の励磁信号を用いた、つま
りnを1としたが、nは2以上としてもよい。
In the embodiment described above, the excitation signal has a waveform that is synchronized every two cycles of the commercial power supply waveform and synchronized every cycle within the two cycles, with only one cycle period in the latter half being inverted from one cycle in the first half. was used, that is, n was set to 1, but n may be set to 2 or more.

また、上述した実施例では商用電源周波数の2
倍の周波数をもつ励磁信号を用いたが、商用電源
波形の1サイクル内に励磁サイクルはいくつあつ
てもよい。
In addition, in the above-mentioned embodiment, 2 of the commercial power frequency
Although an excitation signal with twice the frequency was used, there may be any number of excitation cycles within one cycle of the commercial power supply waveform.

また、tk=tk′、つまり商用電源波形の前半n
周期と後半n周期間で同一のタイミングでサンプ
リングを行なうという条件させ満たせば、商用電
源波形のn周期内で非対称な波形を有する励磁信
号を用いてもよい。
Also, t k = t k ′, that is, the first half n of the commercial power supply waveform
An excitation signal having an asymmetrical waveform within n cycles of the commercial power supply waveform may be used as long as the condition that sampling is performed at the same timing in the cycle and the latter n cycles is satisfied.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、商用電
源周波数以上の周波数を有するとともに、商用電
源波形と当該商用電源周波数の2n周期ごとに同
期しかつ当該2n周期内でn周期ごとに同期する
波形の、前半のn周期間に対して後半のn周期間
を反転させてなる休止期間を有する正・負の矩形
波の励磁信号で励磁を行ない、前半n周期と後半
n周期間の励磁信号に対して同一のタイミングで
サンプリングを行ない、両n周期間の出力の差を
演算するようにしたことにより、電気化学的分極
作用に起因するノイズおよび商用電源ノイズのい
ずれにも影響されない流量出力を得ることができ
る。
As explained above, according to the present invention, the waveform has a frequency equal to or higher than the commercial power supply frequency, is synchronized with the commercial power supply waveform every 2n cycles of the commercial power supply frequency, and is synchronized every n cycles within the 2n cycles. Excitation is performed with a positive/negative square wave excitation signal having a rest period formed by inverting the first half n cycles and the second half n cycles, and the excitation signal between the first half n cycles and the second half n cycles is used. By sampling at the same timing and calculating the difference in output between both n periods, a flow rate output that is unaffected by both noise caused by electrochemical polarization and commercial power supply noise is obtained. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク図、
第2図はその一部詳細回路図、第3図は励磁信号
波形とサンプリングのタイミングを説明するため
の波形図、第4図は電気化学的分極作用によるノ
イズの影響を説明するための出力波形図である。 1……管、2A,2B……検出電極、3……励
磁コイル、4……励磁スイツチング回路、5……
制御回路、6……定電流源、7……変換器、8…
…サンプリング回路、9,10……基準クロツク
発生回路。
FIG. 1 is a block diagram showing one embodiment of the present invention;
Figure 2 is a partial detailed circuit diagram, Figure 3 is a waveform diagram to explain the excitation signal waveform and sampling timing, and Figure 4 is an output waveform to explain the influence of noise due to electrochemical polarization. It is a diagram. 1...Tube, 2A, 2B...Detection electrode, 3...Excitation coil, 4...Excitation switching circuit, 5...
Control circuit, 6... constant current source, 7... converter, 8...
...Sampling circuit, 9,10...Reference clock generation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 励磁コイルに一定周期の交番電流からなる励
磁信号を供給する励磁信号発生手段と、上記励磁
コイルによつて発生される磁界に直交しかつ流れ
を挟んで対向して配置された検出電極間に得られ
る電位差を検出する変換器と、この変換器の出力
を上記励磁信号に同期した所定のタイミングでサ
ンプリングするサンプリング手段と、得られたサ
ンプリング値を演算処理する信号処理手段とを備
えた電磁流量計において、励磁信号発生手段は、
商用電源周波数以上の周波数を有するとともにそ
の商用電源波形と当該商用電源波形の2n周期
(nは1以上の整数)ごとに同期しかつ当該2n周
期内でn周期ごとに同期する波形の、前半のn周
期間に対して後半のn周期間を反転させてなる波
形を有する休止期間をもつ正・負の矩形波の励磁
信号を発生し、サンプリング手段は、上記前半の
n周期と後半のn周期間の励磁信号に対して同一
のタイミングでサンプリングを行ない、信号処理
手段は、各サンプリング値から上記前半n周期間
の後半n周期間とにおける出力の差を求めること
を特徴とする電磁流量計。
1. Between an excitation signal generating means that supplies an excitation signal consisting of an alternating current with a constant period to an excitation coil, and detection electrodes arranged perpendicular to the magnetic field generated by the excitation coil and facing each other across the flow. An electromagnetic flow rate comprising a converter for detecting the obtained potential difference, a sampling means for sampling the output of the converter at a predetermined timing synchronized with the excitation signal, and a signal processing means for processing the obtained sampling value. In the meter, the excitation signal generating means is
The first half of a waveform that has a frequency equal to or higher than the commercial power supply frequency and is synchronized every 2n cycles (n is an integer of 1 or more) between the commercial power supply waveform and the commercial power supply waveform, and is synchronized every n cycles within the 2n cycle. The sampling means generates a positive/negative rectangular excitation signal having a rest period having a waveform formed by inverting the n-cycle period and the n-cycle period in the latter half, and the sampling means generates an excitation signal of the first-half n period and the second-half n period. An electromagnetic flowmeter characterized in that sampling is performed at the same timing for the excitation signal of the period, and the signal processing means calculates the difference in output between the first n periods and the latter n periods from each sampling value.
JP8535985A 1985-04-23 1985-04-23 Electromagnetic flow meter Granted JPS61245025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8535985A JPS61245025A (en) 1985-04-23 1985-04-23 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8535985A JPS61245025A (en) 1985-04-23 1985-04-23 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPS61245025A JPS61245025A (en) 1986-10-31
JPH0422453B2 true JPH0422453B2 (en) 1992-04-17

Family

ID=13856511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8535985A Granted JPS61245025A (en) 1985-04-23 1985-04-23 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JPS61245025A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545664B2 (en) * 1991-11-20 1996-10-23 山武ハネウエル株式会社 Electromagnetic flow meter

Also Published As

Publication number Publication date
JPS61245025A (en) 1986-10-31

Similar Documents

Publication Publication Date Title
US3855858A (en) Self synchronous noise rejection circuit for fluid velocity meter
US4709583A (en) Electromagnetic flow meter using a pulsed magnetic field
JPS6166123A (en) Converter of electromagnetic flowmeter
JPH0477854B2 (en)
JPS6175218A (en) Magnetic induction flow measuring method and device
JPH0216974B2 (en)
JP2931354B2 (en) Electromagnetic flow meter
US4417479A (en) Electromagnetic flowmeter system having a feedback loop
JPH0422453B2 (en)
JPH0422452B2 (en)
JP2545664B2 (en) Electromagnetic flow meter
JPS61245023A (en) Electromagnetic flow meter
JP3290843B2 (en) Electromagnetic flow meter
JPS60174915A (en) Low frequency exciting electromagnetic flow meter
JPS60195418A (en) Electromagnetic flow meter
JP3695074B2 (en) Electromagnetic flow meter
JPH04369434A (en) Electromagnetic flowmeter
JP3752324B2 (en) Electromagnetic flow meter
JPH057548Y2 (en)
JP3244341B2 (en) Electromagnetic flow meter
JPH0450509Y2 (en)
JPS58120118A (en) Electromagnetic flowmeter
JPH0738822Y2 (en) Electromagnetic flow meter
JPH0478126B2 (en)
JPH0212018A (en) Electromagnetic flow meter