JPH0312224B2 - - Google Patents

Info

Publication number
JPH0312224B2
JPH0312224B2 JP57030872A JP3087282A JPH0312224B2 JP H0312224 B2 JPH0312224 B2 JP H0312224B2 JP 57030872 A JP57030872 A JP 57030872A JP 3087282 A JP3087282 A JP 3087282A JP H0312224 B2 JPH0312224 B2 JP H0312224B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
throttle valve
valve
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57030872A
Other languages
Japanese (ja)
Other versions
JPS58148267A (en
Inventor
Takeshi Atago
Toshio Manaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIDOSHA KIKI GIJUTSU KENKYU KUMIAI
Original Assignee
JIDOSHA KIKI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIDOSHA KIKI GIJUTSU KENKYU KUMIAI filed Critical JIDOSHA KIKI GIJUTSU KENKYU KUMIAI
Priority to JP57030872A priority Critical patent/JPS58148267A/en
Publication of JPS58148267A publication Critical patent/JPS58148267A/en
Publication of JPH0312224B2 publication Critical patent/JPH0312224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/043Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit upstream of an air throttle valve

Description

【発明の詳細な説明】 本発明は自動車の吸気路に設置した燃料噴射装
置に係り、特に、絞り弁の上流側に設置した低圧
型の燃料噴射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection device installed in an air intake path of an automobile, and particularly to a low-pressure fuel injection device installed upstream of a throttle valve.

絞り弁の上流側に設置した低圧型の燃料噴射装
置は、米国特許第4149496号、4186708号で公知と
なつているが、これは吸気筒の内面に向けて燃料
を噴射衝突させるものである。しかしこの方式は
噴霧状の燃料が吸気筒の内面で再び集合して液滴
化し、エンジンに供給される混合気の濃度が変動
し易いという問題点をもつていた。
A low-pressure fuel injection device installed upstream of the throttle valve is known from US Pat. However, this method has the problem that the atomized fuel gathers again on the inner surface of the intake cylinder and becomes droplets, making the concentration of the air-fuel mixture supplied to the engine liable to fluctuate.

この問題点を改善するために噴射燃料を絞り弁
に衝突させることが試みられていた。第1図は従
来のエンジン運転システムの一例を示すブロツク
図である。エンジン1の複数気筒に接続した吸気
マニホールド2はスロツトルチヤンバ3に接続
し、スロツトルチヤンバ3内の絞り弁4に向つて
燃料噴射弁5から燃料は噴射されている。スロツ
トルチヤンバ3の上流側に設けたバイパス空気路
には空気流量計6が設置され、スロツトルチヤン
バ3の上端はエアクリーナ7に連通している。な
お、エンジン1で燃焼した排気ガスは排気管14
を通つて放出される。
In order to improve this problem, attempts have been made to cause the injected fuel to collide with the throttle valve. FIG. 1 is a block diagram showing an example of a conventional engine operating system. An intake manifold 2 connected to a plurality of cylinders of an engine 1 is connected to a throttle chamber 3, and fuel is injected from a fuel injection valve 5 toward a throttle valve 4 in the throttle chamber 3. An air flow meter 6 is installed in a bypass air passage provided upstream of the throttle chamber 3, and the upper end of the throttle chamber 3 communicates with an air cleaner 7. Note that the exhaust gas combusted by the engine 1 is passed through the exhaust pipe 14.
released through.

燃料噴射弁5には燃料ポンプ9およびフイルタ
を介して燃料タンクの液体燃料が供給されてお
り、制御回路8よりの制御信号によつて開弁時間
比は制御される。即ち、噴射燃料量はデユーテイ
制御される。また、燃料噴射弁5の余分の燃料は
燃圧差調整弁10を介して燃料タンクに戻される
ので、燃料噴射弁5に供給される液体燃料は運転
状態の如何にかかわらず所定圧となつている。な
お、このように絞り弁4の上流側に設置する場合
はエンジンの吸入負圧変動の影響が少いので燃料
を噴射する空間の圧力変動が少く、この点からし
ても燃料噴射量の精度が良好である。
Liquid fuel from a fuel tank is supplied to the fuel injection valve 5 via a fuel pump 9 and a filter, and the valve opening time ratio is controlled by a control signal from a control circuit 8. That is, the amount of fuel injected is duty-controlled. Additionally, excess fuel in the fuel injection valve 5 is returned to the fuel tank via the fuel pressure difference adjustment valve 10, so the liquid fuel supplied to the fuel injection valve 5 is at a predetermined pressure regardless of the operating state. . In addition, when installed upstream of the throttle valve 4 in this way, the influence of the engine's suction negative pressure fluctuation is small, so there is little pressure fluctuation in the space where fuel is injected, and from this point of view, the accuracy of the fuel injection amount is also improved. is good.

制御回路8にはエンジン1のクランク回転数計
の信号、空気流量計6の信号、エンジン1の冷却
水温度計16の信号、排気ガス中のO2濃度を測
定するO2センサ15の信号およびアイドルスイ
ツチ11の信号等が入力され、その運転状態に好
適な燃料を供給するように燃料噴射弁5を開弁さ
せるデユーテイ信号を出力している。また、クラ
ンク回転数計は配電器13内に併設されている
が、制御回路8の出力信号を点火コイル12を介
して配電器13に供給し、エンジン1の点火時期
を制御している。なお、アイドルスイツチ11は
絞り弁レバーが接触する場合に出力し、アイドル
運転中であることを制御回路8に知らせている。
The control circuit 8 includes a signal from a crank rotation speed meter of the engine 1, a signal from an air flow meter 6, a signal from a cooling water temperature meter 16 for the engine 1, a signal from an O 2 sensor 15 that measures the O 2 concentration in exhaust gas, and A signal from an idle switch 11 and the like are input, and a duty signal is output to open the fuel injection valve 5 so as to supply fuel suitable for the operating state. Further, the crank rotation speed meter is installed in the power distributor 13, and the output signal of the control circuit 8 is supplied to the power distributor 13 via the ignition coil 12 to control the ignition timing of the engine 1. It should be noted that the idle switch 11 outputs an output when the throttle valve lever comes into contact, and notifies the control circuit 8 that the engine is in idle operation.

第2図は第1図の制御回路8のブロツク図で、
第1図と同じ部分には同一符号を付している。冷
却水温度計16よりの信号であるTEMPと、バツ
テリ電源電圧VBおよび空気流量計6の信号HW
はI/OLSIのA/D変換器でデイジタル化され、
配電器13よりの回転数信号RPMは入力回路IO
に直接入力される。これらの価はCPUで計算さ
れて運転状態に適した値が求められてROMに記
憶され、必要に応じて読み出されてI/OLSIの
OOを介して燃料噴射弁(INJ)5に供給する。
また、DIOよりの信号で燃料ポンプ9をオン−オ
フさせると共に、アイドルスイツチ11等のスイ
ツチ類を切換えた時はDIOに信号を送つている。
なお、DIOはデイスクリートIOを示す。
FIG. 2 is a block diagram of the control circuit 8 in FIG.
The same parts as in FIG. 1 are given the same reference numerals. T EMP , which is the signal from the cooling water temperature meter 16, the battery power supply voltage VB, and the signal HW from the air flow meter 6.
is digitized by I/OLSI's A/D converter,
The rotation speed signal RPM from the power distributor 13 is input to the input circuit IO
is entered directly into These values are calculated by the CPU to find values suitable for the operating conditions, stored in the ROM, and read out as needed to be used by the I/OLSI.
It is supplied to the fuel injection valve (INJ) 5 via OO.
Further, the fuel pump 9 is turned on and off by a signal from the DIO, and when switches such as the idle switch 11 are changed over, a signal is sent to the DIO.
Note that DIO indicates discrete IO.

第3図は第1図のスロツトルチヤンバ3の拡大
断面図である。空気流量計6はベンチユリ部18
とベンチユリ部18の上流側とに開口を有するパ
イパス空気路19中に設置され、燃料噴射弁5は
絞り弁4に向つて燃料を噴射するようにスロツト
ルチヤンバ3に斜めに装着されている。
FIG. 3 is an enlarged sectional view of the throttle chamber 3 of FIG. 1. The air flow meter 6 is a bench lily part 18
The fuel injection valve 5 is installed in a bypass air passage 19 having openings on the upstream side of the bench lily portion 18 and the fuel injection valve 5 is installed obliquely in the throttle chamber 3 so as to inject fuel toward the throttle valve 4. .

このように構成すると、燃料噴射範囲17は絞
り弁4の開度が変化しても絞り弁4の略全面を常
にカバーしているので、噴射燃料の全てを絞り弁
4に衝突させることができる。また、絞り弁4の
開度が小さいときは噴射燃料量は少く絞り弁4を
流下した燃料を微粒化できるので、均一濃度の混
合気を作つてエンジン1に供給されるが、絞り弁
4の開度が大きく噴射燃料量が多い場合は、衝突
した燃料が液滴となつて絞り弁4より落下し、エ
ンジン1に供給する混合気の濃度を大きく変化さ
せる。したがつて、絞り弁4の開度に比例して排
気ガス中のCO量が間欠的に大きくなり、運転性
を悪化させると共に燃料を浪費し、更に排気ガス
中の有害成分を増加させるという欠点を生じてい
た。即ち、スロツトルチヤンバ3の内面に燃料を
噴射させる場合に比べて低速運転時の性能は改善
されたが、中高速運転域では殆んど改善されてい
ない。
With this configuration, the fuel injection range 17 always covers substantially the entire surface of the throttle valve 4 even if the opening degree of the throttle valve 4 changes, so that all of the injected fuel can collide with the throttle valve 4. . In addition, when the opening degree of the throttle valve 4 is small, the amount of fuel injected is small and the fuel flowing down the throttle valve 4 can be atomized, so a mixture of uniform concentration is created and supplied to the engine 1. When the opening degree is large and the amount of fuel injected is large, the collided fuel becomes droplets and falls from the throttle valve 4, greatly changing the concentration of the air-fuel mixture supplied to the engine 1. Therefore, the amount of CO in the exhaust gas increases intermittently in proportion to the opening degree of the throttle valve 4, which deteriorates drivability, wastes fuel, and further increases harmful components in the exhaust gas. was occurring. That is, compared to the case where fuel is injected into the inner surface of the throttle chamber 3, the performance during low speed operation is improved, but there is almost no improvement in the medium to high speed operation range.

第4図は発明者等が試作し実験したスロツトル
チヤンバの断面図で、第3図と同じ部分には同一
符号を付してある。このスロツトルチヤンバ3は
ベンチユリ部18を横向きにして燃料噴射弁5を
絞り弁4の真上に設置したものである。即ち、燃
料噴射弁5の中心軸と吸気路の中心とを一致させ
て絞り弁4の上方から燃料を噴射させたものであ
るが、図のごとく噴霧の周辺部が吸気路壁に衝突
している。また、この噴霧はエンジンの吸気量が
増加するにしたがつて、即ち、絞り弁開度が大き
くなるにつれて噴霧拡がり角θ′は吸気流に押され
て次第に縮少する。
FIG. 4 is a sectional view of a throttle chamber prototyped and tested by the inventors, in which the same parts as in FIG. 3 are given the same reference numerals. In this throttle chamber 3, the fuel injection valve 5 is installed directly above the throttle valve 4 with the bench lily portion 18 facing sideways. That is, the central axis of the fuel injection valve 5 and the center of the intake passage are aligned and the fuel is injected from above the throttle valve 4, but as shown in the figure, the peripheral part of the spray collides with the wall of the intake passage. There is. Further, as the intake air amount of the engine increases, that is, as the throttle valve opening increases, the spray spread angle θ' is pushed by the intake air flow and gradually decreases.

第7図は第3図および第4図の燃料噴射手段に
よる燃焼特性の差を比較して示す線図で、横軸は
絞り弁開度を示し、縦軸は排気ガス中のCO量を
一酸化炭素計の振れ幅(%)で示している。実線
Dは第3図の燃料噴射弁5を斜めに設置したもの
で、この場合は絞り弁4の開度が増すと排気ガス
中のCO量が急増する。これは絞り弁4に衝突し
た燃料の滴下が盛んになり、エンジンへの燃料供
給が断続するためである。
Figure 7 is a diagram comparing and showing the difference in combustion characteristics between the fuel injection means in Figures 3 and 4, where the horizontal axis shows the throttle valve opening and the vertical axis shows the amount of CO in the exhaust gas. It is shown as the amplitude (%) of the carbon oxide meter. The solid line D shows the fuel injection valve 5 in FIG. 3 installed diagonally, and in this case, as the opening degree of the throttle valve 4 increases, the amount of CO in the exhaust gas increases rapidly. This is because the fuel that collides with the throttle valve 4 drips more frequently, and the fuel supply to the engine is interrupted.

一方、破線Eは第4図の場合であり、絞り弁4
の開度が増すにつれて吸気流によつて噴霧拡がり
角θ′が自動的に縮少し、絞り弁4の投影面積の変
化に追従するので、一定絞り弁開度以上になると
エンジンに供給する混合気の均一度は向上する。
即ち、低速運転時の吸気路壁面への燃料吹き着け
を防止すれば、一般に良好な結果が得られること
を示している。
On the other hand, the broken line E is the case in FIG. 4, and the throttle valve 4
As the opening of the throttle valve 4 increases, the spray spread angle θ' automatically decreases due to the intake air flow, and follows the change in the projected area of the throttle valve 4. Therefore, when the throttle valve opening exceeds a certain level, the air-fuel mixture supplied to the engine decreases. uniformity is improved.
In other words, it is shown that generally good results can be obtained if fuel is prevented from spraying onto the wall surface of the intake passage during low-speed operation.

本発明は絞り弁開度に関係なく常に好適な混合
気を供給することができる燃料噴射装置を提供す
ることを目的とし、エンジンに供給する空気量を
制御する絞り弁と、この絞り弁の上流側の吸気路
に上記空気量に見合つた燃料を噴射する燃料噴射
弁とを有する燃料噴射装置において、上記燃料噴
射弁の燃料出口に噴射燃料に旋回力を与え、上記
燃料噴射弁よりの噴射燃料の拡がりの中心軸と同
心の円環状をなし、かつ、上記噴射燃料が直接上
記吸気路壁に衝突しないように拡がる燃料分布を
発生させるスワラーを設け、上記燃料噴射弁より
の噴射燃料の拡がりの中心軸と上記吸気路の中心
軸とを一致させてなることを特徴とすることを特
徴とするものである。
An object of the present invention is to provide a fuel injection device that can always supply a suitable air-fuel mixture regardless of the opening degree of the throttle valve. In a fuel injection device having a fuel injection valve that injects fuel corresponding to the amount of air into a side intake passage, a swirling force is applied to the injected fuel at the fuel outlet of the fuel injection valve, and the fuel injected from the fuel injection valve is A swirler is provided, which has an annular shape concentric with the center axis of the expansion of the fuel injector, and which generates a fuel distribution that spreads so that the injected fuel does not directly collide with the intake passage wall, thereby controlling the expansion of the fuel injected from the fuel injection valve. It is characterized in that the central axis and the central axis of the intake passage are made to coincide with each other.

第5図は本発明の一実施例であるスロツトルチ
ヤンバの断面図で、第3図、第4図と同じ部分に
は同一符号を付してある。この場合は噴射燃料に
旋回力を与えるスワラー20を装着した燃料噴射
弁5を吸気路の中心軸と同軸とし、その燃料噴射
範囲17は吸気路壁に噴霧燃料が直接衝突しない
位置に設置してある。また、燃料噴射弁5はベン
チユリ部18を形成する部材の中央に取り付け、
着脱を容易にしている。
FIG. 5 is a sectional view of a throttle chamber according to an embodiment of the present invention, in which the same parts as in FIGS. 3 and 4 are given the same reference numerals. In this case, the fuel injection valve 5 equipped with the swirler 20 that gives swirling force to the injected fuel is coaxial with the center axis of the intake passage, and its fuel injection range 17 is installed at a position where the atomized fuel does not directly collide with the intake passage wall. be. Further, the fuel injection valve 5 is attached to the center of the member forming the bench lily portion 18,
Makes it easy to put on and take off.

第6図aは第5図の燃料噴射弁の拡大断面図で
あり、第6図bは第6図aのX−X断面図であ
る。スワラー20は燃料噴射弁5の噴出孔とオリ
フイス22との間に装着され、多条のねじれ溝が
噴射燃料に旋回性を与えている。オリフイス22
に対向する球を下端に固定した弁体21はコイル
23の中央孔の所まで伸びており、コネクタ24
を介してコイル23に通電すると弁体21を上昇
させて開弁する。弁体21を収容している室には
所定圧に加圧された液体燃料が供給されているの
で、弁体21が上昇して開弁した時はスワラー2
0を介して噴出孔より環状の噴霧を放出させるこ
とになる。
FIG. 6a is an enlarged sectional view of the fuel injection valve of FIG. 5, and FIG. 6b is a sectional view taken along line XX of FIG. 6a. The swirler 20 is installed between the injection hole of the fuel injection valve 5 and the orifice 22, and has multiple twisted grooves that give swirling properties to the injected fuel. Orifice 22
The valve body 21, which has a ball fixed to its lower end opposite to the valve body 21, extends to the center hole of the coil 23, and connects to the connector 24.
When the coil 23 is energized through the coil 23, the valve body 21 is raised and opened. Since liquid fuel pressurized to a predetermined pressure is supplied to the chamber housing the valve body 21, when the valve body 21 rises and opens, the swirler 2
An annular spray is emitted from the nozzle through the nozzle.

第6図bにおいて、中央部Aおよび周辺部Cに
は燃料噴霧は存在しないでBの部分だけに存在し
ており、この関係は燃料圧が一定であるので噴射
燃料量には無関係で常時成立している。即ち、噴
射燃料量の多少は燃料噴射弁5を作動させるデユ
ーテイ(開弁時間比)によつて定まるだけであ
る。なお、絞り弁4の上流に燃料噴射弁5を設置
してあるので、エンジンの吸入負圧変動の影響を
受けることが少く燃料噴射範囲の変動も少いとい
う利点をもつている。
In Fig. 6b, there is no fuel spray in the central part A and the peripheral part C, but only in part B, and since the fuel pressure is constant, this relationship is always true regardless of the amount of injected fuel. are doing. That is, the amount of fuel injected is determined only by the duty (valve opening time ratio) for operating the fuel injection valve 5. Furthermore, since the fuel injection valve 5 is installed upstream of the throttle valve 4, it has the advantage that it is less affected by fluctuations in the intake negative pressure of the engine and there is little variation in the fuel injection range.

第8図は絞り弁の開度変化時の投影と第6図b
の燃料噴霧存在域を重ねて画いた説明図である。
棒状の絞り弁軸に固定された絞り弁4は開度0゜の
時は環状の噴霧と同心の円形であるが、開度が
20゜、40゜、60゜と大きくなるにしたがつて横方向が
縮少した楕円状の投影となる。
Figure 8 shows the projection when the opening degree of the throttle valve changes and Figure 6b
FIG. 2 is an explanatory diagram in which the fuel spray existing regions are overlapped.
The throttle valve 4 fixed to the rod-shaped throttle valve shaft has a circular shape concentric with the annular spray when the opening degree is 0°, but when the opening degree is
As the angle increases to 20°, 40°, and 60°, the projection becomes an ellipse that shrinks in the horizontal direction.

上記の関係を第5図で説明すると、燃料噴射範
囲17は不変であるが絞り弁4の傾斜が増加する
ので絞り弁4に衝突しないで通過する燃料量が次
第に増加することを示している。即ち、第8図に
戻ると絞り弁開度20゜までは噴射燃料のすべてが
絞り弁4に衝突し、その周辺部より吸気流に伴わ
れて均一な混合気となる。この場合は比較的吸気
量は少いが絞り弁4と吸気路壁面との狭い隙間を
通るので吸気流速は大きく、絞り弁4の周囲より
溢れる燃料流を微粒化するのに好都合である。し
たがつて、第7図のD線の左半分のようにCO計
の振れ幅は小さい。
The above relationship will be explained with reference to FIG. 5. Although the fuel injection range 17 remains unchanged, since the slope of the throttle valve 4 increases, the amount of fuel that passes through the throttle valve 4 without colliding with it gradually increases. That is, returning to FIG. 8, all of the injected fuel collides with the throttle valve 4 until the throttle valve opening degree is 20 degrees, and becomes a homogeneous air-fuel mixture along with the intake air flow from the surrounding area. In this case, although the amount of intake air is relatively small, since it passes through the narrow gap between the throttle valve 4 and the wall surface of the intake passage, the intake air flow velocity is high, which is convenient for atomizing the fuel flow overflowing from around the throttle valve 4. Therefore, the fluctuation range of the CO meter is small, as shown in the left half of line D in Figure 7.

しかるに絞り弁開度が40゜、60゜に増加すると、
第8図で明瞭なごとく斜線で示す燃料噴霧の存在
域が絞り弁4の投影よりはみ出す量が急増する。
特に絞り弁開度が60゜の場合は絞り弁4に衝突す
る噴射燃料量は全体の1/5程度となり、他の大部
分の噴霧は吸気流と混合して好適な混合気をエン
ジンに直接供給することになる。
However, when the throttle valve opening increases to 40° and 60°,
As is clear from FIG. 8, the extent to which the area where the fuel spray exists, which is indicated by diagonal lines, extends beyond the projection of the throttle valve 4 rapidly increases.
In particular, when the throttle valve opening is 60°, the amount of injected fuel that collides with the throttle valve 4 is about 1/5 of the total, and most of the other spray mixes with the intake air flow to deliver a suitable air-fuel mixture directly to the engine. will be supplied.

このことは第7図の破線Eの右半部と同じよう
な結果を生じることになり、絞り弁4の全開まで
好適な混合気を供給することができる。
This produces a result similar to the right half of the broken line E in FIG. 7, and a suitable air-fuel mixture can be supplied until the throttle valve 4 is fully opened.

第8図に示した結果を総合すると、第7図の実
線Fに示すように絞り弁開度の如何にかかわらず
CO計の振れ幅を小さく抑えることが可能となる。
また、絞り弁開度が大きくなるにしたがつて燃料
噴射弁5の開弁時間比が大きくなるので燃料噴霧
の質も向上安定して連続流に近くなり、各気筒へ
の燃料分配性に支障を来すことはなく、燃料供給
の応答性も向上するという利点も生じている。即
ち、全運転域において好適な混合気をエンジンに
供給できることになる。
Comprehending the results shown in Figure 8, as shown by the solid line F in Figure 7, regardless of the opening degree of the throttle valve,
It is possible to keep the fluctuation range of the CO meter small.
In addition, as the throttle valve opening increases, the valve opening time ratio of the fuel injection valve 5 increases, which improves the quality of the fuel spray, resulting in a stable and nearly continuous flow, which impedes fuel distribution to each cylinder. This also has the advantage of improving the responsiveness of fuel supply. That is, a suitable air-fuel mixture can be supplied to the engine over the entire operating range.

本実施例の燃料噴射装置は、スワラーを備えた
燃料噴射弁を吸気路の中心軸上に同軸に、かつ、
その燃料噴射範囲は低開度の絞り弁内となるよう
な位置に設置することによつて、絞り弁の低開度
の時は噴射燃料のすべてを絞り弁に衝突飛散させ
て微粒化し、絞り弁の開度が増加した場合は燃料
噴霧の衝突量を減少させて大部分を素通りさせる
ことにより、すべての運転域で好適な混合気を供
給し、運転性と燃料消費性を向上させると共に排
気ガス中の有害成分を減少させることができると
いる効果が得られる。
The fuel injection device of this embodiment has a fuel injection valve equipped with a swirler coaxially on the central axis of the intake passage, and
By installing the fuel injection range within the throttle valve with a low opening, when the throttle valve is at a low opening, all of the injected fuel collides with the throttle valve and is atomized, causing the throttle to flow. When the valve opening increases, the collision amount of fuel spray is reduced and most of it passes through, supplying a suitable air-fuel mixture in all operating ranges, improving drivability and fuel consumption, and reducing exhaust emissions. The effect of reducing harmful components in the gas can be obtained.

本発明は燃料噴射装置は、絞り弁開度の如何に
かかわらず常に好適な混合気をエンジンに供給で
きるという効果が得られる。
The present invention has the effect that the fuel injection device can always supply a suitable air-fuel mixture to the engine regardless of the opening degree of the throttle valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエンジン運転システムの一例を
示すブロツク図、第2図は第1図の制御回路のブ
ロツク図、第3図は第1図のスロツトルチヤンバ
の拡大断面図、第4図は従来試みられた他のスロ
ツトルチヤンバの断面図、第5図は本発明の一実
施例であるスロツトルチヤンバの断面図、第6図
は第5図の燃料噴射弁の拡大断面図と燃料噴射状
態の説明図、第7図は燃料噴射手段による燃焼特
性の差を比較して示す線図、第8図は絞り弁の開
度変化時の投影と第6図bの燃料噴霧存在域とを
重ねて画いた説明図である。 1…エンジン、2…吸気マニホールド、3…ス
ロツトルチヤンバ、4…絞り弁、5…燃料噴射
弁、6…空気流量計、7…エアクリーナ、8…制
御回路、9…燃料ポンプ、10…燃圧差調整器、
11…アイドルスイツチ、12…点火コイル、1
3…配電器、14…排気管、15…O2センサ、
16…冷却水温度計、17…燃料噴射範囲、18
…ベンチユリ部、19…バイパス空気路、20…
スワラー、21…弁体、22…オリフイス、23
…コイル、24…コネクタ。
Figure 1 is a block diagram showing an example of a conventional engine operating system, Figure 2 is a block diagram of the control circuit in Figure 1, Figure 3 is an enlarged sectional view of the throttle chamber in Figure 1, and Figure 4. 5 is a sectional view of another throttle chamber tried in the past, FIG. 5 is a sectional view of a throttle chamber according to an embodiment of the present invention, and FIG. 6 is an enlarged sectional view of the fuel injector shown in FIG. 5. and an explanatory diagram of the fuel injection state, Fig. 7 is a diagram comparing and showing the difference in combustion characteristics depending on the fuel injection means, Fig. 8 is a projection when the opening degree of the throttle valve is changed, and Fig. 6b shows the presence of fuel spray. FIG. DESCRIPTION OF SYMBOLS 1... Engine, 2... Intake manifold, 3... Throttle chamber, 4... Throttle valve, 5... Fuel injection valve, 6... Air flow meter, 7... Air cleaner, 8... Control circuit, 9... Fuel pump, 10... Fuel pressure difference regulator,
11...Idle switch, 12...Ignition coil, 1
3...Distributor, 14...Exhaust pipe, 15... O2 sensor,
16...Cooling water temperature gauge, 17...Fuel injection range, 18
... Bench lily part, 19... Bypass air passage, 20...
Swirler, 21... Valve body, 22... Orifice, 23
...Coil, 24...Connector.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンに供給する空気量を制御する絞り弁
と、この絞り弁の上流側の吸気路に上記空気量に
見合つた燃料を噴射する燃料噴射弁とを有する燃
料噴射装置において、上記燃料噴射弁の燃料出口
に噴射燃料に旋回力を与え、上記燃料噴射弁より
の噴射燃料の拡がりの中心軸と同心の円環状をな
し、かつ、上記噴射燃料が直接上記吸気路壁に衝
突しないように拡がる燃料分布を発生させるスワ
ラーを設け、上記燃料噴射弁よりの噴射燃料の拡
がりの中心軸と上記吸気路の中心軸とを一致させ
てなることを特徴とする燃料噴射装置。
1. A fuel injection device having a throttle valve that controls the amount of air supplied to the engine, and a fuel injection valve that injects fuel commensurate with the amount of air into the intake passage upstream of the throttle valve, Fuel that applies a swirling force to the injected fuel at the fuel outlet, forms an annular shape concentric with the central axis of the spread of the injected fuel from the fuel injection valve, and spreads so that the injected fuel does not directly collide with the intake passage wall. A fuel injection device characterized in that a swirler is provided to generate distribution, and the central axis of the spread of the injected fuel from the fuel injection valve is aligned with the central axis of the intake passage.
JP57030872A 1982-02-26 1982-02-26 Fuel imjector Granted JPS58148267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57030872A JPS58148267A (en) 1982-02-26 1982-02-26 Fuel imjector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57030872A JPS58148267A (en) 1982-02-26 1982-02-26 Fuel imjector

Publications (2)

Publication Number Publication Date
JPS58148267A JPS58148267A (en) 1983-09-03
JPH0312224B2 true JPH0312224B2 (en) 1991-02-19

Family

ID=12315808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57030872A Granted JPS58148267A (en) 1982-02-26 1982-02-26 Fuel imjector

Country Status (1)

Country Link
JP (1) JPS58148267A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049263U (en) * 1983-09-13 1985-04-06 トヨタ自動車株式会社 Fuel injection carburetor for internal combustion engines
JPS6073050A (en) * 1983-09-28 1985-04-25 Hitachi Ltd Fuel injection device for internal-combustion engine
JPS6173069U (en) * 1984-10-20 1986-05-17
JPS61104158A (en) * 1984-10-25 1986-05-22 Aisan Ind Co Ltd Fuel injection device
US4922876A (en) * 1988-03-25 1990-05-08 Aisan Kogyo Kabushiki Kaisha Fuel injection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741464A (en) * 1980-08-26 1982-03-08 Nippon Soken Inc Fuel supply device for engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741464A (en) * 1980-08-26 1982-03-08 Nippon Soken Inc Fuel supply device for engine

Also Published As

Publication number Publication date
JPS58148267A (en) 1983-09-03

Similar Documents

Publication Publication Date Title
US4434765A (en) Fuel injection apparatus and system
US4899699A (en) Low pressure injection system for injecting fuel directly into cylinder of gasoline engine
US5409169A (en) Air-assist fuel injection system
US4237836A (en) Fuel supply system employing ultrasonic vibratory member of hollow cylindrically shaped body
US5323966A (en) Apparatus for injecting a fuel-air mixture
US6095437A (en) Air-assisted type fuel injector for engines
US4327675A (en) Fuel injection type internal combustion engine
US4292945A (en) Fuel injection apparatus and system
US4269153A (en) Internal combustion engine with fuel injector
US4524743A (en) Fuel injection apparatus and system
US4315491A (en) Fuel injection type internal combustion engine
JPH0312224B2 (en)
US4417547A (en) Engine speed and engine load responsive fluid injection system for an internal combustion engine
US4406266A (en) Fuel metering and discharging apparatus for a combustion engine
US4955349A (en) Device for preparation of a fuel-air mixture for internal combustion engines
JPH11159424A (en) Fuel injection device for internal combustion engine
GB2274877A (en) Fuel injected i.c. engine.
US4395989A (en) Fuel injection apparatus and system
US4300484A (en) Electronically controlled fluid injection system for an internal combustion engine
JPS6119968A (en) Fuel supply system for internal-combustion engine
US4528967A (en) Apparatus for heating the fuel-air mixture being supplied by a fuel metering system for use in a fuel injection type combustion engine
JP7365512B2 (en) internal combustion engine
JP3044876B2 (en) Electronically controlled fuel injection device for internal combustion engines
JPS588236A (en) Fuel injector for car engine
US4536356A (en) Carburetor