JPH03122091A - Method for synthesizing diamond at high speed - Google Patents

Method for synthesizing diamond at high speed

Info

Publication number
JPH03122091A
JPH03122091A JP25676689A JP25676689A JPH03122091A JP H03122091 A JPH03122091 A JP H03122091A JP 25676689 A JP25676689 A JP 25676689A JP 25676689 A JP25676689 A JP 25676689A JP H03122091 A JPH03122091 A JP H03122091A
Authority
JP
Japan
Prior art keywords
substrate
bias voltage
plasma
gas
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25676689A
Other languages
Japanese (ja)
Inventor
Seiichiro Matsumoto
精一郎 松本
Takeshi Naganami
武 長南
Ikuo Hosoya
郁雄 細谷
Yusuke Moriyoshi
佑介 守吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP25676689A priority Critical patent/JPH03122091A/en
Publication of JPH03122091A publication Critical patent/JPH03122091A/en
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve deposition rate and area, etc., by carrying out DC discharge of a specific gas, generating a thermal plasma, applying a positive bias voltage to a substrate or a substrate holder, supplying a carbon source, decomposing the carbon source and depositing diamond on the substrate. CONSTITUTION:In a method for generating a thermal plasma (e.g. a DC plasma torch 1) at >=1700K gas temperature in hydrogen or a mixed gas thereof and an inert gas by DC discharge (e.g. a DC power source 2) to decompose or evaporate an organic compound or carbonaceous material in the plasma and depositing diamond from the resultant gas on a substrate 3, a positive bias voltage (e.g. a bias power source 11) is applied to the substrate 3 or a substrate holder 3'. The bias voltage can be applied to an electrode in the form of a ring (e.g. a ring electrode 12) or mesh placed near the substrate 3. Even a bias electrode at a negative bias voltage can be used. Low-frequency AC, high-frequency or microwave devices can be also used as the discharge power source in place of the DC power source.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱プラズマCVD法によるダイヤモンドの高速
合成法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a method for high-speed synthesis of diamond by thermal plasma CVD.

(従来の技術及び解決しようとする課題)ダイヤモンド
の高速合成法としては、直流、低周波交流、高周波、マ
イクロ波の単独放電或いはこれらの重せき放電により発
生させた、ガス温度が1700に以上の熱プラズマを用
いる方法が知られている(特開昭62−158195号
)、。
(Prior art and problems to be solved) As a high-speed diamond synthesis method, a method of producing diamonds using a gas temperature of 1,700 or more generated by direct current, low-frequency alternating current, high frequency, or microwave discharge, or by a combined discharge of these, is used. A method using thermal plasma is known (Japanese Unexamined Patent Publication No. 158195/1983).

この方法によれば、ダイヤモンドの成長速度は、従来の
低温プラズマCVD法に比べ、約100倍程度上昇する
が、ガス温度が高温であること及びガス温度や気相中の
化学種の空間分布が急峻に変化し易いことから、基体温
度や析出速度のコントロールが難しく、また基体上の析
出面積が狭く、膜厚分布が不均一になり易く、更に結晶
粒が大きくなり易く、表面平滑性が悪いという欠点があ
った。
According to this method, the diamond growth rate increases about 100 times compared to the conventional low-temperature plasma CVD method, but the gas temperature is high and the spatial distribution of chemical species in the gas phase is Because it tends to change rapidly, it is difficult to control the substrate temperature and deposition rate, and the deposition area on the substrate is narrow, making the film thickness distribution likely to be uneven. Furthermore, crystal grains tend to become large, and surface smoothness is poor. There was a drawback.

本発明は、上記従来技術の問題点を解決し、基体温度や
析出速度のコントロールがし易く、析出面積が広く、ま
た表面平滑性の良いダイヤモンドの高速合成法を提供す
ることを目的とするものである。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to provide a high-speed synthesis method for diamond that allows easy control of substrate temperature and precipitation rate, has a large precipitation area, and has good surface smoothness. It is.

(課題を解決するための手段) 前記問題点に鑑みて、本発明者らは、熱プラズマCVD
中で基体にバイアス電圧を印加することを試みた結果、
プラズマの伸長効果、或いは電子、イオンの基体との相
互作用の効果を加味することができることを見い出し、
ここに本発明を完成するに至ったものである。
(Means for Solving the Problems) In view of the above problems, the present inventors have developed a thermal plasma CVD method.
As a result of trying to apply a bias voltage to the substrate inside,
We discovered that it is possible to take into account the elongation effect of plasma or the effect of interaction of electrons and ions with the substrate,
This is what led to the completion of the present invention.

すなわち、本発明に係るダイヤモンドの高速合成法は、
要するに、水素又は水素と不活性ガスの混合ガスに、直
流放電、低周波交流放電、高周波放電、マイクロ波放電
又はこれらの重せき放電により温度1700に以上の熱
プラズマを発生させ、該プラズマ中で有機化合物又は炭
素材を分解或いは蒸発させて得られる気体から、ダイヤ
モンドを基体上に析出させる方法において、基体又は基
体ホルダー、或いは基体の近傍に置いたリング状又はメ
ツシュ状電極に正又は負のバイアス電圧を印加すること
を特徴とするものである。
That is, the high-speed diamond synthesis method according to the present invention is as follows:
In short, a thermal plasma with a temperature of 1700°C or more is generated in hydrogen or a mixed gas of hydrogen and an inert gas by direct current discharge, low frequency alternating current discharge, high frequency discharge, microwave discharge, or a combination of these discharges, and in the plasma In a method of depositing diamond on a substrate from a gas obtained by decomposing or evaporating an organic compound or carbon material, a positive or negative bias is applied to the substrate or substrate holder, or to a ring-shaped or mesh-shaped electrode placed near the substrate. It is characterized by applying a voltage.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) 熱プラズマ発生法としては放電による方法が簡単であり
、直流、低周波交流、高周波又はマイクロ波による放電
、或いはそれらの重せきしたものが用いられる。
(Function) As a method for generating thermal plasma, a method using electrical discharge is simple, and discharge using direct current, low frequency alternating current, high frequency or microwave, or a combination thereof is used.

本発明で用いるプラズマ発生用ガスとしては、水素ガス
単独、又は水素ガスとアルゴン、ヘリウム等の混合ガス
が用いられる。
As the plasma generating gas used in the present invention, hydrogen gas alone or a mixed gas of hydrogen gas, argon, helium, etc. is used.

炭素源としては、1700に以上の熱プラズマ中で分解
し、イオン種、ラジカル種を生成するものであれば良い
。例えば、メタン、エタン、プロパン、エチレン、ベン
ゼン、シクロヘキサン等の飽和、不飽和脂肪族又は芳香
族炭化水素、アルコール、アセトン、アルデヒド等の酸
素を含む有機化合物、アミン、アミド等の窒素を含む有
機化合物、塩化メチル、クロロホルム等のハロゲンを含
む有機化合物、チオフェン等の硫黄を含む有機化合物、
ホスフィン等の燐を含む有機化合物、ポリエチレン等の
高分子化合物や、−酸化炭素、二酸化炭素等が用いられ
る。また、固体黒鉛材もプラズマ中に投入して用いるこ
とができる。
Any carbon source may be used as long as it decomposes in a thermal plasma of 1700° C. or more and generates ion species and radical species. For example, saturated or unsaturated aliphatic or aromatic hydrocarbons such as methane, ethane, propane, ethylene, benzene, and cyclohexane; organic compounds containing oxygen such as alcohols, acetone, and aldehydes; organic compounds containing nitrogen such as amines and amides; , organic compounds containing halogens such as methyl chloride and chloroform, organic compounds containing sulfur such as thiophene,
Organic compounds containing phosphorus such as phosphine, polymeric compounds such as polyethylene, -carbon oxide, carbon dioxide, etc. are used. Furthermore, solid graphite material can also be used by being introduced into the plasma.

プラズマのガス圧力は10−4〜5 X 10’気圧ま
での範囲で用いることができる。圧力が低すぎるとダイ
ヤモンドの析出速度が遅く、逆に高すぎると容器の取り
扱いに手間がかかり、装置が高価になるので、10−3
〜10気圧が望ましい。
The plasma gas pressure can range from 10@-4 to 5.times.10' atmospheres. If the pressure is too low, the diamond precipitation rate will be slow, and if the pressure is too high, it will take time to handle the container and the equipment will be expensive.
~10 atm is desirable.

基体としては、金属、半導体、セラミックスのいずれで
も用いることができる。
As the substrate, any metal, semiconductor, or ceramic can be used.

基体、基体ホルダー、或いはリング状若しくはメツシュ
状電極に印加するバイアス電圧は、ガス圧力及びプラズ
マフレームに対する基体の位置にもよるが、−5kV〜
+5kVの範囲で用いられる。
The bias voltage applied to the substrate, substrate holder, or ring-shaped or mesh-shaped electrode varies from -5 kV to -5 kV depending on the gas pressure and the position of the substrate relative to the plasma flame.
Used in the +5kV range.

このバイアス電圧によりプラズマの基体上への伸長が見
られる。また、基体或いは基体ホルダーがバイアス電極
の場合は、基体温度のいくらかの上昇が見られるが、こ
の基体温度及び基体上へのプラズマの伸長のコントロー
ルは、バイアスの電圧、電流を変化させることにより可
能であり、これはバイアスの無いときの基体位置や基体
ホルダーの冷媒による冷却でのコントロールより遥かに
制御し易い。
This bias voltage causes the plasma to extend onto the substrate. Furthermore, if the substrate or substrate holder is a bias electrode, some increase in the substrate temperature is observed, but this substrate temperature and the extension of plasma onto the substrate can be controlled by changing the bias voltage and current. This is much easier to control than controlling the position of the substrate without bias or cooling the substrate holder with a coolant.

更に、正のバイアスの印加の場合は、ダイヤモンドの析
出速度が向上し、析出面積も広がる。
Furthermore, in the case of applying a positive bias, the diamond precipitation rate increases and the precipitation area also increases.

方、負のバイアスの場合はダイヤモンドの結晶粒が細か
くなり、表面平滑性が向上する。
On the other hand, in the case of a negative bias, the diamond crystal grains become finer and the surface smoothness improves.

本発明において、正のバイアス電圧の印加によりダイヤ
モンドの析出速度が向上し、析出面積が増大する理由と
しては、 (1)密度の高いプラズマが基体のより近傍まで伸びる
ことにより、基体に届く活性種の量が増大したこと。
In the present invention, the reasons why the application of a positive bias voltage improves the deposition rate of diamond and increases the deposition area are as follows: (1) The high-density plasma extends closer to the substrate, allowing active species to reach the substrate. an increase in the amount of

(2)電子の基体上への衝撃効果が増大し、基体上での
化学反応が増加したこと、 等が考えられる。
(2) It is thought that the impact effect of electrons on the substrate increased, leading to an increase in chemical reactions on the substrate.

一方、負のバイアスで表面平滑性が増す理由としては、
イオンの基体上へのIQ効果の増大による、成長面上で
の核発生サイトの増加が考えられる。
On the other hand, the reason why the surface smoothness increases with negative bias is as follows.
It is thought that the number of nucleation sites on the growth surface increases due to an increase in the IQ effect of ions on the substrate.

次に、本発明の実施に使用する装置の一例を図面を用い
て説明する。
Next, an example of an apparatus used to carry out the present invention will be described with reference to the drawings.

第1図は直流放電の場合の反応装置を示しており、1は
直流プラズマトーチ、2は直流電源、3は基体、3′は
基体ホルダー、4は析出室、5は排気装置、6はガス供
給装置、7.7′はガス流量調整バルブ、11はバイア
ス電源、12はリング電極である。
Figure 1 shows the reaction apparatus for DC discharge, where 1 is a DC plasma torch, 2 is a DC power source, 3 is a substrate, 3' is a substrate holder, 4 is a deposition chamber, 5 is an exhaust device, and 6 is a gas In the supply device, 7.7' is a gas flow rate adjustment valve, 11 is a bias power supply, and 12 is a ring electrode.

この場合の操作手順としては、まず、排気装置5により
析出室4を真空にした後、ガス流量調整バルブ7を通じ
てプラズマ発生ガスを供給する。
In this case, the operating procedure is as follows: First, the deposition chamber 4 is evacuated by the exhaust device 5, and then plasma generating gas is supplied through the gas flow rate adjustment valve 7.

所定の圧力とした後、直流型rX2よりプラズマトーチ
1の@極間に電力を供給し、プラズマを発生させる。基
体、基体ホルダー、若しくはリング電極にバイアス電圧
を印加し、プラズマ中にバルブ7′より炭素源を供給す
ることにより、基体上にダイヤモンドを析出させる。
After setting the pressure to a predetermined value, power is supplied between the poles of the plasma torch 1 from the DC type rX2 to generate plasma. Diamond is deposited on the substrate by applying a bias voltage to the substrate, the substrate holder, or the ring electrode, and supplying a carbon source into the plasma from the valve 7'.

第2図は高周波放電の場合の反応装置を示しており、8
は高周波プラズマトーチ、9は高周波発振機、10はワ
ークコイル、13はバイアス用対向電極であり、その他
は第1図と同様である。
Figure 2 shows the reactor for high-frequency discharge.
1 is a high-frequency plasma torch, 9 is a high-frequency oscillator, 10 is a work coil, 13 is a counter electrode for bias, and the other parts are the same as in FIG.

この操作手順としては、まず、排気装置5により析出室
4を真空にした後、ガス流量調整バルブ7よりキャリア
ガス、バルブ7′よりプラズマガス、バルブ7′よりシ
ースガスを流し、ワークコイル10に電源9より電力を
供給し、プラズマを発生させる。基体3と対向電極13
の間にバイアス電圧を印加し、ガス流量調整バルブ7″
より炭素源を供給し、基体上にダイヤモンドを析出させ
る。このように、トーチ中にバイアス電極に対向する電
極になり得るものがない場合は、新たに対向電極を置く
ことが有効な場合が多い。
In this operating procedure, first, the deposition chamber 4 is evacuated using the exhaust device 5, and then the carrier gas is flowed through the gas flow rate adjustment valve 7, the plasma gas is flowed through the valve 7', and the sheath gas is flowed through the valve 7', and the work coil 10 is powered. Power is supplied from 9 to generate plasma. Base body 3 and counter electrode 13
Apply a bias voltage between the gas flow rate adjustment valve 7''
A carbon source is supplied to deposit diamond on the substrate. As described above, if there is nothing in the torch that can be used as an electrode opposite to the bias electrode, it is often effective to place a new counter electrode.

なお、低周波交流放電、マイクロ波放電の場合の装置と
しては、上記各装置例に準じて適宜構成するものを用い
れば良い。
Note that as a device for low-frequency alternating current discharge and microwave discharge, one appropriately configured in accordance with each of the above-mentioned device examples may be used.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

去1」し− 第1図に示した装置を使用し、直径20++onのモリ
ブデン基板を用い、析出室を0 、 I Torr以下
に排気した後、バルブ7よりアルゴン30 Q /mi
n、水素10 Q /minを流し、炭素源としてバル
ブ7′よりメタン0.75fl/minを流し、140
T orrのもとて電源出力10kWの放電を10分間
行った。この時、基板には+200V、3Aのバイアス
電流が流され、基板温度は950℃であった。その結果
、得られた膜はX線回折及びラマン分光の結果よりダイ
ヤモンドと同定された。膜厚は最高部で150μmであ
った。また結晶性のダイヤモンドの析出直径は約16m
mであった。
Using the apparatus shown in FIG. 1 and using a molybdenum substrate with a diameter of 20++ on, the deposition chamber was evacuated to below 0.1 Torr, and then argon was pumped through valve 7 at 30 Q/mi.
n, hydrogen was flowed at 10 Q/min, methane was flowed at 0.75 fl/min from valve 7' as a carbon source, and 140
Discharge was performed for 10 minutes at a power output of 10 kW under Torr. At this time, a bias current of +200V and 3A was applied to the substrate, and the substrate temperature was 950°C. As a result, the obtained film was identified as diamond based on the results of X-ray diffraction and Raman spectroscopy. The film thickness was 150 μm at the highest point. The diameter of crystalline diamond precipitation is approximately 16 m.
It was m.

一方、バイアスの無い場合の同条件の析出実験では、基
板温度850℃で、最高部膜厚60μm、結晶性ダイヤ
モンドの析出直径12mmであった。
On the other hand, in a precipitation experiment under the same conditions without bias, the substrate temperature was 850° C., the maximum film thickness was 60 μm, and the crystalline diamond precipitation diameter was 12 mm.

なお、基板の代わりにリング電極に280■、3Aのバ
イアスをかけた場合は、基板温度870℃で、最高部膜
厚9Sμm、結晶性ダイヤモンドの析出直径16mmで
あった。
In addition, when a bias of 280 mm and 3 A was applied to the ring electrode instead of the substrate, the substrate temperature was 870 DEG C., the maximum film thickness was 9 S .mu.m, and the crystalline diamond precipitation diameter was 16 mm.

去J[倒」工 第2図に示した装置を使用して、直径20mmのモリブ
デン基板を用い、析出室を約0.1Torrに排気した
後、バルブ7″′よりメタンIQ/n+in、バルブ7
よりアルゴン2Q/n+in、バルブ7′よりアルゴン
IQ/min、バルブ7′よりアルゴン2QQ/min
と水素8Q/minの混合ガスを流し、1気圧のもとて
真空管プレート人力60kWの電力をワークコイルに流
してプラズマを発生させ、10分間の放電を行った。
Using the apparatus shown in Figure 2, using a molybdenum substrate with a diameter of 20 mm, the precipitation chamber was evacuated to approximately 0.1 Torr, and then methane IQ/n+in was pumped through valve 7''.
Argon 2Q/n+in from valve 7', argon IQ/min from valve 7', argon 2QQ/min from valve 7'
A mixed gas of 8 Q/min of hydrogen and 8 Q/min of hydrogen was flowed, and 60 kW of human power was applied to the work coil under a pressure of 1 atm to generate plasma, which was then discharged for 10 minutes.

基板バイアス−600V、バイアス電流240mA、基
板温度約930 ’Cにて平均膜厚22μmのダイヤモ
ンド膜を得た。平均粒径は約1μmであった。
A diamond film with an average thickness of 22 μm was obtained at a substrate bias of -600 V, a bias current of 240 mA, and a substrate temperature of about 930'C. The average particle size was approximately 1 μm.

一方、バイアスが無い場合は、基板温度約900°Cで
、得られたダイヤモンドの平均膜厚、平均粒径はそれぞ
れ20μm、5μmであった。
On the other hand, in the case of no bias, the substrate temperature was about 900° C., and the average film thickness and average grain size of the obtained diamonds were 20 μm and 5 μm, respectively.

(発明の効果) 以上詳述したように、本発明によれば、基体又は基体近
傍の電極にバイアス電圧を印加するので。
(Effects of the Invention) As detailed above, according to the present invention, a bias voltage is applied to the substrate or the electrode near the substrate.

基板温度や析出速度のコントロール性が良くなり、また
プラズマの伸長及び電子又はイオンと基体の相互作用の
増大により、析出速度、析出面積の向上、或いは表面平
滑性の向上等の優れた効果が得られる。
The controllability of the substrate temperature and deposition rate is improved, and by elongating the plasma and increasing the interaction between electrons or ions and the substrate, excellent effects such as improving the deposition rate, deposition area, and surface smoothness can be obtained. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施に使用する反応装置の
一例を示す図で、第1図は直流放電の場合、第2図は高
周波放電の場合を示している。 1・・・直流プラズマトーチ、2・・・直流電源、3・
・・基体、3′・・・基体ホルダー、4・・・析出室、
5・・・排気装置、6・・・ガス供給装置、7.7′、
7′7″・・・ガス流量調整バルブ、8・・・高周波プ
ラズマトーチ、9・・・高周波発振機、10・・・ワー
クコイル、11・・・バイアス電源、12・・・リング
電極、13・・・対向電極。
FIGS. 1 and 2 are diagrams showing an example of a reaction apparatus used in carrying out the present invention, with FIG. 1 showing a case of direct current discharge and FIG. 2 showing a case of high frequency discharge. 1... DC plasma torch, 2... DC power supply, 3...
...Substrate, 3'...Substrate holder, 4...Precipitation chamber,
5... Exhaust device, 6... Gas supply device, 7.7',
7'7''... Gas flow rate adjustment valve, 8... High frequency plasma torch, 9... High frequency oscillator, 10... Work coil, 11... Bias power supply, 12... Ring electrode, 13 ...Counter electrode.

Claims (4)

【特許請求の範囲】[Claims] (1)水素又は水素と不活性ガスの混合ガスに、直流放
電によりガス温度1700K以上の熱プラズマを発生さ
せ、該プラズマ中で有機化合物又は炭素材を分解又は蒸
発させて得られる気体から、ダイヤモンドを基体上に析
出させる方法において、該基体又は基体ホルダーに正の
バイアス電圧を印加することを特徴とするダイヤモンド
の高速合成法。
(1) A thermal plasma with a gas temperature of 1700K or more is generated in hydrogen or a mixed gas of hydrogen and an inert gas by direct current discharge, and an organic compound or carbon material is decomposed or evaporated in the plasma. 1. A method for rapidly synthesizing diamond, which comprises applying a positive bias voltage to the substrate or a substrate holder.
(2)前記バイアス電圧を、基体近傍に置いたリング状
又はメッシュ状電極に印加する請求項1に記載の方法。
(2) The method according to claim 1, wherein the bias voltage is applied to a ring-shaped or mesh-shaped electrode placed near the substrate.
(3)前記バイアス電圧が負のバイアス電圧である請求
項1又は2に記載の方法。
(3) The method according to claim 1 or 2, wherein the bias voltage is a negative bias voltage.
(4)前記直流に代えて、低周波交流、高周波又はマイ
クロ波を放電電源として用いる請求項1、2又は3に記
載の方法。
(4) The method according to claim 1, 2 or 3, wherein low frequency alternating current, high frequency or microwave is used as the discharge power source instead of the direct current.
JP25676689A 1989-09-29 1989-09-29 Method for synthesizing diamond at high speed Expired - Lifetime JPH03122091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25676689A JPH03122091A (en) 1989-09-29 1989-09-29 Method for synthesizing diamond at high speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25676689A JPH03122091A (en) 1989-09-29 1989-09-29 Method for synthesizing diamond at high speed

Publications (1)

Publication Number Publication Date
JPH03122091A true JPH03122091A (en) 1991-05-24

Family

ID=17297150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25676689A Expired - Lifetime JPH03122091A (en) 1989-09-29 1989-09-29 Method for synthesizing diamond at high speed

Country Status (1)

Country Link
JP (1) JPH03122091A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288069A (en) * 1985-06-14 1986-12-18 Tdk Corp Diamond-like carbon film forming device
JPS63210099A (en) * 1987-02-26 1988-08-31 Nissin Electric Co Ltd Preparation of diamond film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288069A (en) * 1985-06-14 1986-12-18 Tdk Corp Diamond-like carbon film forming device
JPS63210099A (en) * 1987-02-26 1988-08-31 Nissin Electric Co Ltd Preparation of diamond film

Similar Documents

Publication Publication Date Title
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
AU2002332200B2 (en) Method for carrying out homogeneous and heterogeneous chemical reactions using plasma
US5614258A (en) Process of diamond growth from C70
RU2032765C1 (en) Method of diamond coating application from vapor phase and a device for it realization
JPH0372038B2 (en)
JPH03122091A (en) Method for synthesizing diamond at high speed
JPH06316402A (en) Production of hard boron nitride by photoirradiation-assisted plasma cvd
US5824368A (en) Process of diamond growth from C70
RU2532749C1 (en) Method of obtaining nanosized carbon layers with diamond properties
JP3035337B2 (en) Plasma coating equipment
Rossi et al. Plasma assisted chemical vapour deposition of boron nitride coatings from using BCl3–N2–H2–Ar gas mixture
JPS6395200A (en) Production of hard boron nitride film
RU2792526C1 (en) Diamond coating device
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JP2610505B2 (en) Gas phase synthesis of diamond
JP2636856B2 (en) Method for producing diamond thin film
JPH07283154A (en) Plasma cvd method and device
JPS6265997A (en) Method and apparatus for synthesizing diamond
JPH031377B2 (en)
JPH02133398A (en) Method and device for synthesizing diamond thin film
JPS62171995A (en) Production of diamond
JPH0649635B2 (en) Diamond synthesis method
JPH0532489A (en) Synthesis of diamond using plasma
JPH06207274A (en) Synthesizing method of cubic boron nitride film
JPH01216523A (en) Manufacture of plasma cvd thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term