JPH0312144B2 - - Google Patents

Info

Publication number
JPH0312144B2
JPH0312144B2 JP59217539A JP21753984A JPH0312144B2 JP H0312144 B2 JPH0312144 B2 JP H0312144B2 JP 59217539 A JP59217539 A JP 59217539A JP 21753984 A JP21753984 A JP 21753984A JP H0312144 B2 JPH0312144 B2 JP H0312144B2
Authority
JP
Japan
Prior art keywords
cermet
particles
titanium
volume
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59217539A
Other languages
Japanese (ja)
Other versions
JPS6196072A (en
Inventor
Taijiro Sugisawa
Keiichi Wakashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP59217539A priority Critical patent/JPS6196072A/en
Publication of JPS6196072A publication Critical patent/JPS6196072A/en
Publication of JPH0312144B2 publication Critical patent/JPH0312144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、切削工具および耐摩耗工具用表面
被覆サーメツト部材に関し、特にマルテンサイト
型組織を有する結合合金中にチタン化合物とバナ
ジウム化合物の微細な粒子が硬質分散相として含
まれているサーメツト表面に、チタン化合物から
なる超硬質被覆層を設けてなる、工具寿命が著し
く改善された切削工具および耐摩耗工具用表面被
覆サーメツト部材に関するものである。 〔従来の技術〕 従来、高速度鋼(以下、ハイスという)は高い
硬さとすぐれた靭性を有するので、切削工具だけ
でなく、耐摩耗性を必要とする各種の耐摩耗工具
の素材としても広く使用されているが、さらにこ
れら工具の寿命を延ばすため、最近では耐摩耗性
の向上に寄与する種々の金属の炭化物や窒化物を
焼結法によつてハイス中に分散させたサーメツト
が開発されており、一方ハイス表面にチタン化合
物からなる超硬質被覆層を設けると、それによつ
て耐溶着性と耐焼付性が向上し、工具寿命が2〜
10倍延びるところから、このような被覆層をハイ
ス表面に設けることも工業的に広く採用されてい
る。 〔発明が解決しようとする問題点〕 そして上記金属炭化物の代表的なものである炭
化チタンは、焼結時にはサーメツトの焼結性を同
上させるとともに、焼結後はサーメツトの組織中
に分散残存してその耐摩耗性を向上させる作用を
有し、また上記金属窒化物の代表的なものである
窒化チタンは、焼結後サーメツト組織中に分散残
存してサーメツトの耐溶着性と耐焼付性を向上さ
せる作用を有するが、この窒化チタンを結合金属
中に多量に分散させるとサーメツトの靭性が低下
するので、その添加量には限度があり、したがつ
て窒化チタンによる上記の耐溶着性と耐焼付性の
改善には自づから限界があつた。 一方、上記の超硬質層の被覆によつても、工具
寿命の延長は、下記の理由により、必ずしも満足
できるものではなかつた。 (1) 上記被覆層の被覆処理はハイスの焼戻し温度
以下、すなわち、通常500℃附近の温度で行な
われるが、従来のこのような被覆処理だけでは
基体と被覆層との間に十分な付着力が得られ
ず、この被覆層を設けた工具を使用すると、被
覆層が剥離しやすい。 (2) また上記工具は或程度使用した後にも、その
一部を再研摩して繰返し使用されるが、その場
合残存している被覆層は工具寿命を延ばすのに
役立つので、この再研摩を施してもその被覆ハ
イス工具の寿命は被覆しなかつたハイス工具に
比べて改善されるけれども、再研摩で被覆層が
失なわれることによつて露出した母材表面の耐
摩耗性が結局工具寿命を左右するので、超硬質
被覆層による工具寿命改善の効果は個々の実作
業において一定しない。 したがつて、このような超硬質被覆層によつて
工具寿命を延ばそうとしても、その効果は不安定
で予測できないため、実作業では個々の例につい
て効果を確かめながら、その応用をはかつている
のが現状である。 〔問題点を解決するための手段〕 そこで本発明者等は、上述のような観点から、
マルテンサイト型組織を有するハイス母合金中に
硬質粒子が分散しているサーメツト表面に超硬質
層が被覆されている、切削工具および耐摩耗工具
用の表面被覆部材の工具寿命を改善すべく、種々
研究を重ねた結果、下記の知見、すなわち、 () 約500℃という被覆温度では、被覆物質の
蒸着時における原子の拡散距離がきわめて短か
い上に、チタン原子は鉄基基体中に拡散しにく
いため、チタン化合物からなる被覆層と鉄基基
体との間には強いが付着力が得られないのに対
し、この基体中にチタン化合物からなる分散相
が存在すると、その分散相と被覆相との接合面
においてチタン原子の再配列が起きてチタン分
散相と被覆相とがチタン原子を介して一体とな
つた構造、すなわち被覆層が基体中に根を下し
た構造が形成され、それによつて被覆層と基体
との間に強い結合力を生じ、その結合力を接合
面全体に強く発揮させるためには、チタン化合
物の含有量をサーメツト中で5重量%以上にし
なければならないこと、 () 結合合金中に分散させる窒化チタン(以下
TiNで示す)および/またはTiCxNy(ただし
x<y)粒子の平均粒径を5μm以下とすると
焼結性が改善されるので、これを5〜20容量%
と多量に含有させてもサーメツトの靭性が低下
しないこと、 () したがつて、サーメツトの靭性を低下させ
ることなく、TiNおよびTiCxNy(x<y)の
含有量を増大できて、これらが元来備えている
耐溶着性および耐焼付性を強力に発揮できるた
め、使用中の工具の一部を再研摩することによ
つて基体が工具表面に露出しても、その基体自
体が従来のハイスやサーメツトと比べて耐溶着
性と耐焼付性にすぐれ、ひいてはその耐摩耗性
が向上して、被覆層のすぐれた耐摩耗性と十分
釣合がとれるので、結局工具全体として安定し
た工具寿命が得られること、 を見出した。 この発明は、上記知見に基いて発明されたもの
であつて、 平均粒径:5μm以下のTiNおよびNiCxNy(た
だしx<y)のうちの1種または2種の粒子であ
る第一の粒子:D1および同5μm以下の炭化バナ
ジウム(以下VCで示す)および(Vx、My)C
(ただしMはTi、Zr、Hf、Nb、Ta、Cr、Mo、
Wのうちから選ばれた1種または2種以上の元素
であり、かつx>y)のうちの1種または2種の
粒子である第二の粒子:D2からなる分散相と、 Cr:3.5〜6%、W+Mo:4〜20%、V:3〜
6%、CoまたはCo+Ni(ただしNi/Co+Ni:3
%以下):2〜15%、C:0.5〜2.0%、およびFe
+不可避不純物:残り、からなる組成を有する
(以下重量%)、焼入れおよび焼戻しの熱処理を受
けたマルテンサイト型組織を有する結合相、とか
らなるサーメツトであつて、そのD1、D2および
結合相に関する組成が、D1:5〜20容量%、
D2:5〜30容量%および結合相:残り、である
前記サーメツトを基体とし、 その基体表面にTi、一窒化二チタン、(以下
Ti2Nで示す)、TinおよびTiCxNy(ただしx<
y)のうちの、いずれか1種からなる単一層(た
だしTiの場合は除く)、またはいずれか2種以上
からなる複合層、あるいはこれらの単一層と複合
層とを各1層以上組合せた多重層からなるビツカ
ース硬さHv:2000Kg/mm2以上を有する厚み:1
〜10μmの超硬質被覆層を設けてなる、切削工具
および耐摩耗工具用表面被覆サーメツト部材 を提供するものである。 つぎに、この発明において、成分組成範囲、粒
子寸法、被覆層のビツカース硬さおよび層厚を上
記のとおりに限定した理由を述べる。 A 基体 (a) 結合相 結合相を形成する母合金は、粉末状のハイ
スを焼結することによつて得られる、Cr:
3.5〜6%、W+Mo:4〜20%、V:3〜6
%、CoまたはCo+Ni(ただしNi/Co+Ni:
3%以下):2〜15%、C:0.5〜2.0%、お
よびFe+不可避不純物:残り、という組成
を有し(以上重量%)、これら個々の成分の
組成範囲はハイスとしての適性を備えた範囲
であるが、そのうちCoについては、その3
重量%以下をNiで置換することができる。
Niは熱処理後の残留オーステナイト量を増
やす働きを有するが、この発明では分散相が
十分な硬さと耐摩耗性を発揮するために、結
合相を構成する合金自体の硬さが熱処理を受
けた通常のハイスの硬さより僅かに低下する
ことは許容される。この結合母合金は焼入
れ、焼戻しされたマルテンサイト型の組織を
有し、その他に微細なM6C型炭化物、およ
び場合により(特にNiを含む場合)若干の
残留オーステナイト組織を含むものである。 (b) 分散相D1 窒化チタン:TiNおよび炭窒化チタン:
TiCxNyは、本来各種工具に高い硬さと耐摩
耗性を付与するのに有効な成分であるととも
に、これら化合物中に含まれるTiが、既に
述べたとおり、基体と被覆層との接合面にお
いて、被覆層成分中のTiと再配列を起こし
て基体と被覆層との間の結合を強めるので、
チタン化合物からなる被覆層を基体上に強固
に付着させる重要な役割も担う成分である
が、これら化合物からなる分散相の量が5容
量%未満になると、上記結合を強く保つこと
ができず、一方それが20容量%を越えると基
体全体の靭性が低下するところから、その含
有量を5〜20容量%と定めた。また、これら
化合物の粒子の平均粒径が5μmを越えると、
基体の靭性が低下するのでそれを5μm以下
と定め、さらにTiCxNyによつて基体に十分
な耐溶着性と耐焼付性を与えるためには、そ
の組成において窒素成分よりも(原子比で)
多く含まれていなければならないところか
ら、x<yと定めた。 (c) 分散相D2 炭化バナジウム:VCおよびバナジウムと
Ti、Zr、Hf、Nb、Ta、Cr、Mo、Wのうち
の1種または2種以上の金属との複合炭化
物:(Vx、My)C(ただしMは前記金属を表
わし、かつz>y)は、本来各種工具に高い
硬さと耐摩耗性を付与するのに有効な成分で
あるとともに、これら炭化物中に含まれるV
が結合母合金中のVと相互に拡散し合い、も
つて炭化物と結合母合金との界面強度を高め
て靭性を向上させる作用も有するが、上記複
合炭化物の場合、V以外の金属Mの割合がV
の割合を越えると(原子比で)、その炭化物
と結合相との海面強度が弱まつて基体の靭性
が低下するところから、(Vx、My)Cにお
いてx>yと定めた。また、これら炭化物粒
子の平均粒径が5μmを越えると、基体の靭
性が低下するので、それを5μm以下と定め、
さらにこれら炭化物からなる分散相の量が5
容量%未満になると、炭化物による上記耐摩
耗性向上効果が期待できず、一方それが30容
量%を越えると、基体の靭性および耐酸化性
が低下するところから、その含有量を5〜30
容量%と定めた。 B 超硬質被覆層の層厚および硬さ 被覆層は、前述のとおり、Ti2N、TiN、お
よびTiCxNy(x<y)からなるチタン化合物
のいずれか1種以上またはこれらチタン化合物
とTiを構成成分としており、これらチタン化
合物は超硬質層を形成し、一方Tiは、それの
みでは、すなわちTiの単一層という形では、
超硬室の被覆層を形成することができないが、
これらチタン化合物各層の間またはこれら各層
と基体との間に介在すると、これら相互間の付
着力を高める作用があり、そして炭窒化チタン
TiCxNyにおいてx<yと定めた理由は前記A
の(c)項で述べたとおりである。ここで複合層と
は、例えばTiN+TiCNまたはTiN+TiCNか
らなる層のような、すべての層が互に異なる2
種以上の成分からなる層を意味し、多重層と
は、例えばTiN単一層とTiCN+TiN複合層と
を重ね合わせたTiN+Ti+TiN層のような、
或1種以上の成分からなる層が2回以上繰返し
て重ね合わされる、全体として2種以上の成分
からなり、かつ3層以上の層から構成される層
を意味する。 そして上記被覆層の層厚が1μm以下では十
分な耐摩耗性の向上が得られず、一方これが
10μmを越えても耐摩耗性の向上は少なく、む
しろ部材全体の靭性劣化が著しくなるので、そ
の層厚を1〜10μmと定めた。また、被覆層の
マイクロビツカース硬度計による硬さが2000
Kg/mm2では所望の耐摩耗性を確保することがで
きないところから、その硬さを2000Kg/mm2と定
めた。 なお、この発明の表面被覆サーメツト部材
は、ハイス粉末を窒化物粉末および炭化物粉末
と混合し、混合粉末を加圧成形して圧粉体にし
た後、それを真空中または非酸化性雰囲気中で
焼結し、さらに必要に応じてHIP処理によつて
残存空孔を除去してから焼入れおよび焼戻しを
行ない、さらに研摩加工によつて所定寸法の基
体とした後、通常の化学蒸着法または物理蒸着
法によつてチタン化合物またはそれとチタンと
を基体表面に披着させることによつて得られ
る。 〔実施例〕 つぎに、この発明の表面被覆サーメツト部材を
実施例によつて具体的に説明する。 実施例 1 Cr:4.0%、V:3.2%、Mo:5.0%、W:5.0
%、Co:9.0%、C:1.1%およびFe+不可避不純
物:残りからなる組成(以上重量%)からなる組
成を有する、アトマイズで調整された平均粒径:
5μmのハイス粉末90容量%、同1.0μmのTiN粉末
5容量%および同1.1μmの(V0.95、Ti0.05)C粉
末5容量%の配合割合で、これら原料粉末を配合
し、ボールミルて24時間湿式混合粉砕し、乾燥し
た後、プレス圧力3.0ton/mm2にてプレス成形して
圧粉体とし、ついで真空中、温度:1270℃におい
て1時間保持する条件で圧粉体を焼結した後、さ
らにこれに1000気圧のアルゴン中、温度:1230℃
に保持する条件でHIP処理を施すことによつて緻
密なサーメツトを得た。 このサーメツトを組織観察したところ、TiN
含有量は5.1容量%、バナジウム主体の炭化物:
(V0.95、Ti0.05)C量は5.2容量%であり、このよ
うに、焼結後の実測は配合値と近似した。 つぎに、このサーメツトを、温度:1260℃から
油焼入れし、さらに同550℃で2回焼戻ししてそ
のロツクウエル硬さCスケールHRCを67とした
後、サーメツトを研摩して、寸法8×12×4.8mm
を有するサイドカツター用のスローアウエイチツ
プを製造した。 このスローアウエイチツプ、並びに比較の目的
で、溶製法で造られた市販のSKH−9種のハイ
スから切り出して用意した上記と同寸法のスロー
アウエイチツプに、イオンプレーテイング法によ
り、ビツカース硬さ2200Kg/mm2、厚さ3μmを有
するTiN単一層を500℃において被覆し、本発明
被覆切削チツプ1および比較被覆切削チツプ1を
製造した。 そこでこれら切削チツプの表面に20Kgの荷重で
ビツカース硬度計の圧子を打込んだところ、比較
被覆切削チツプ1には四角の圧痕の再にTiN層
の剥離が観察されたのに対して、本発明被覆切削
チツプには剥離が全くみられなかつた。 また、これら切削チツプにおいて、チツプの半
数はすくい面を研摩して、逃げ面だけ被覆層が残
る状態のものとし、上記研摩をしないものととも
に、サイドカツターによる、 被削材:JIS・SNCM−8(硬さ:HB270)の丸棒 切削速度:100m/min、 送り:0.3mm/rev・、 切込み:5mm、 の条件での鋼連続切削試験を行ない、逃げ面摩耗
量の測定を行ない、その値が0.3mmに達した時を
工具の寿命基準として、各切削チツプの工具寿命
を測定し、その結果を第1表に示した。
[Industrial Application Field] The present invention relates to surface-coated cermet members for cutting tools and wear-resistant tools, and in particular, a bonding alloy having a martensitic structure containing fine particles of a titanium compound and a vanadium compound as a hard dispersed phase. The present invention relates to a surface-coated cermet member for cutting tools and wear-resistant tools, which has a super hard coating layer made of a titanium compound on the surface of the cermet. [Conventional technology] Conventionally, high-speed steel (hereinafter referred to as high speed steel) has high hardness and excellent toughness, so it has been widely used not only for cutting tools but also as a material for various wear-resistant tools that require wear resistance. However, in order to further extend the life of these tools, recently cermets have been developed in which carbides and nitrides of various metals, which contribute to improved wear resistance, are dispersed in HSS using a sintering method. On the other hand, if an ultra-hard coating layer made of a titanium compound is provided on the surface of the high speed steel, the welding resistance and seizure resistance will be improved, and the tool life will be extended by 2 to 30 minutes.
Since the length is 10 times longer, providing such a coating layer on the surface of high speed steel has also been widely adopted industrially. [Problems to be Solved by the Invention] Titanium carbide, which is a typical metal carbide, improves the sinterability of cermet during sintering, and remains dispersed in the structure of cermet after sintering. Titanium nitride, which is a typical metal nitride, remains dispersed in the cermet structure after sintering and improves the welding and seizure resistance of the cermet. However, if a large amount of titanium nitride is dispersed in the bonding metal, the toughness of the cermet will decrease, so there is a limit to the amount of titanium nitride added. There was a natural limit to the improvement of seizability. On the other hand, even with the above-mentioned coating with the ultra-hard layer, the extension of tool life was not necessarily satisfactory for the following reasons. (1) The coating treatment for the above coating layer is carried out at a temperature below the tempering temperature of the high speed steel, that is, usually at a temperature around 500°C. If a tool provided with this coating layer is used, the coating layer is likely to peel off. (2) In addition, even after the above-mentioned tools have been used for a certain period of time, they are partially re-sharpened and used repeatedly. In this case, the remaining coating layer is useful for extending the tool life, so this re-sharpening is recommended. Although the life of a coated HSS tool is improved compared to an uncoated HSS tool, the wear resistance of the exposed base material surface due to the loss of the coating layer due to re-sharpening will eventually reduce the tool life. Therefore, the effect of improving tool life with the ultra-hard coating layer is not constant in each actual operation. Therefore, even if an attempt is made to extend the tool life using such a super-hard coating layer, the effect is unstable and unpredictable, so it is difficult to confirm its effectiveness in individual cases in actual work before deciding on its application. The current situation is that [Means for solving the problem] Therefore, from the above-mentioned viewpoint, the present inventors have solved the problem.
In order to improve the tool life of surface-coated members for cutting tools and wear-resistant tools, in which the surface of a cermet, in which hard particles are dispersed in a high-speed steel master alloy having a martensitic structure, is coated with an ultra-hard layer, various As a result of repeated research, we found the following findings: () At a coating temperature of approximately 500°C, the diffusion distance of atoms during vapor deposition of the coating material is extremely short, and titanium atoms are difficult to diffuse into the iron-based substrate. Therefore, strong adhesion cannot be obtained between the coating layer made of a titanium compound and the iron-based substrate, whereas if a dispersed phase made of a titanium compound exists in this substrate, the dispersed phase and the coating phase Rearrangement of titanium atoms occurs at the bonding surface, forming a structure in which the titanium dispersed phase and the coating phase are integrated via titanium atoms, that is, a structure in which the coating layer is rooted in the substrate. In order to create a strong bonding force between the coating layer and the substrate and to exert that bonding force strongly over the entire joint surface, the content of the titanium compound in the cermet must be 5% by weight or more; () Titanium nitride (hereinafter referred to as titanium nitride) dispersed in the bonding alloy
If the average particle size of TiN) and/or TiCxNy (where x<y) particles is set to 5 μm or less, sinterability is improved, so 5 to 20% by volume
() Therefore, the content of TiN and TiCxNy (x<y) can be increased without reducing the toughness of the cermet, and these are Because it has strong adhesion and seizure resistance, even if the base is exposed on the tool surface by re-sharpening a part of the tool in use, the base itself will not be damaged by conventional high-speed steel or Compared to cermet, it has superior welding and seizure resistance, and its wear resistance is well balanced with the excellent wear resistance of the coating layer, resulting in a stable tool life for the tool as a whole. I found out that it can be done. This invention was invented based on the above findings, and includes: first particles that are one or two particles of TiN and NiCxNy (where x<y) with an average particle size of 5 μm or less: D1 and vanadium carbide (hereinafter referred to as VC) of 5μm or less and (Vx, My)C
(However, M is Ti, Zr, Hf, Nb, Ta, Cr, Mo,
A dispersed phase consisting of second particles: D2, which are one or more elements selected from W and are one or two particles of x>y), and Cr: 3.5. ~6%, W+Mo: 4~20%, V: 3~
6%, Co or Co+Ni (however, Ni/Co+Ni: 3
% or less): 2-15%, C: 0.5-2.0%, and Fe
+ unavoidable impurities: a cermet consisting of a binder phase having a martensitic structure that has undergone heat treatment of quenching and tempering (hereinafter referred to as weight %), and with respect to D1, D2 and the binder phase. The composition is D1: 5-20% by volume,
D2: 5 to 30% by volume and binder phase: the remainder The cermet is used as a base, and the surface of the base is coated with Ti, dititanium mononitride,
Ti2N ), Tin and TiCxNy (where x<
A single layer consisting of any one of y) (excluding the case of Ti), a composite layer consisting of two or more of these, or a combination of one or more of each of these single layers and composite layers. Multi-layered Bitkers hardness Hv: 2000Kg/mm 2 or more Thickness: 1
The present invention provides a surface-coated cermet member for cutting tools and wear-resistant tools, which is provided with an ultra-hard coating layer of ~10 μm. Next, in this invention, the reason why the component composition range, particle size, Vickers hardness and layer thickness of the coating layer are limited as described above will be described. A Base (a) Binding phase The master alloy forming the binding phase is Cr: which is obtained by sintering powdered high speed steel.
3.5~6%, W+Mo: 4~20%, V: 3~6
%, Co or Co+Ni (however, Ni/Co+Ni:
3% or less): 2 to 15%, C: 0.5 to 2.0%, and Fe + unavoidable impurities: the remainder (weight %), and the composition range of these individual components is suitable for high speed steel. However, for Co, Part 3
Up to % by weight can be replaced with Ni.
Ni has the function of increasing the amount of retained austenite after heat treatment, but in this invention, in order for the dispersed phase to exhibit sufficient hardness and wear resistance, the hardness of the alloy itself constituting the binder phase is lower than that of the alloy itself after heat treatment. It is permissible for the hardness to be slightly lower than that of high speed steel. This bond master alloy has a martensitic structure that has been quenched and tempered, and also contains fine M 6 C type carbides and, in some cases (particularly when Ni is included), a small amount of retained austenite structure. (b) Dispersed phase D1 Titanium nitride: TiN and titanium carbonitride:
TiCxNy is originally an effective component for imparting high hardness and wear resistance to various tools, and as mentioned above, the Ti contained in these compounds can cause damage to the coating at the bonding surface between the base and the coating layer. Because it causes rearrangement with Ti in the layer components and strengthens the bond between the substrate and the coating layer,
It is a component that plays an important role in firmly adhering the coating layer made of titanium compounds to the substrate, but if the amount of the dispersed phase made of these compounds is less than 5% by volume, the above bond cannot be maintained strongly. On the other hand, if the content exceeds 20% by volume, the toughness of the entire substrate decreases, so the content was set at 5 to 20% by volume. In addition, if the average particle size of the particles of these compounds exceeds 5 μm,
Since the toughness of the substrate decreases, it is set at 5 μm or less, and in order to provide sufficient adhesion resistance and seizure resistance to the substrate with TiCxNy, it is necessary to
Since a large amount must be included, it was determined that x<y. (c) Dispersed phase D2 Vanadium carbide: VC and vanadium
Composite carbide with one or more metals from Ti, Zr, Hf, Nb, Ta, Cr, Mo, and W: (Vx, My)C (where M represents the above metal, and z>y ) is originally an effective component for imparting high hardness and wear resistance to various tools, and V contained in these carbides.
and V in the bonding mother alloy, which has the effect of increasing the interfacial strength between the carbide and the bonding mother alloy and improving toughness, but in the case of the above composite carbide, the proportion of metal M other than V is V
(Vx, My)C is set as x>y because if the ratio exceeds (in atomic ratio), the sea surface strength of the carbide and the binder phase weakens and the toughness of the base material decreases. In addition, if the average particle size of these carbide particles exceeds 5 μm, the toughness of the base will decrease, so it is set at 5 μm or less,
Furthermore, the amount of the dispersed phase consisting of these carbides is 5
If it is less than 30% by volume, the above-mentioned effect of improving wear resistance due to carbide cannot be expected. On the other hand, if it exceeds 30% by volume, the toughness and oxidation resistance of the base material will decrease.
It was determined as capacity%. B Layer thickness and hardness of ultra-hard coating layer As mentioned above, the coating layer is composed of one or more of the titanium compounds consisting of Ti 2 N, TiN, and TiCxNy (x<y), or these titanium compounds and Ti. These titanium compounds form an ultra-hard layer, while Ti alone, i.e. in the form of a single layer of Ti,
Although it is not possible to form a coating layer of the carbide chamber,
When these titanium compounds are interposed between each layer or between each of these layers and the substrate, it has the effect of increasing the adhesion between these layers, and titanium carbonitride
The reason for setting x<y in TiCxNy is the above A.
As stated in paragraph (c) of Here, a composite layer refers to two layers in which all the layers are different from each other, such as a layer consisting of TiN+TiCN or TiN+TiCN.
A multilayer refers to a layer consisting of more than one component, such as a TiN+Ti+TiN layer, which is a stack of a TiN single layer and a TiCN+TiN composite layer.
It means a layer consisting of two or more types of components and three or more layers, in which layers made of one or more types of components are repeatedly stacked on each other twice or more. If the thickness of the coating layer is less than 1 μm, sufficient improvement in wear resistance cannot be obtained;
Even if the thickness exceeds 10 μm, there is little improvement in wear resistance, and rather the toughness of the entire member deteriorates significantly, so the layer thickness was set at 1 to 10 μm. In addition, the hardness of the coating layer is 2000 as measured by a micro-Vickers hardness tester.
Since the desired wear resistance cannot be achieved with Kg/mm 2 , the hardness was set at 2000 Kg/mm 2 . The surface-coated cermet member of the present invention is produced by mixing high-speed steel powder with nitride powder and carbide powder, press-molding the mixed powder to form a green compact, and then molding it in vacuum or in a non-oxidizing atmosphere. After sintering, removing residual pores by HIP treatment if necessary, quenching and tempering, and polishing to obtain a substrate of specified dimensions, conventional chemical vapor deposition or physical vapor deposition is performed. It can be obtained by depositing a titanium compound or titanium and titanium on the surface of a substrate by a method. [Example] Next, the surface-coated cermet member of the present invention will be specifically explained with reference to Examples. Example 1 Cr: 4.0%, V: 3.2%, Mo: 5.0%, W: 5.0
%, Co: 9.0%, C: 1.1% and Fe + unavoidable impurities: remainder (weight %), average particle size adjusted by atomization:
These raw material powders were blended at a blending ratio of 90% by volume of 5μm high speed steel powder, 5% by volume of 1.0μm TiN powder, and 5% by volume of 1.1μm (V 0.95 , Ti 0.05 )C powder, and then ball milled for 24 hours. After wet mixing and pulverization, drying, press forming at a press pressure of 3.0 ton/mm 2 to form a green compact, and then sintering the green compact by holding it in a vacuum at a temperature of 1270°C for 1 hour. , furthermore, in argon at 1000 atmospheres, temperature: 1230℃
A dense cermet was obtained by performing HIP treatment under conditions where the cermet was maintained at When we observed the structure of this cermet, we found that it was TiN.
Content is 5.1% by volume, carbide mainly composed of vanadium:
(V 0.95 , Ti 0.05 ) The amount of C was 5.2% by volume, and thus the actual measurement after sintering was close to the blended value. Next, this cermet was oil quenched at a temperature of 1260°C, and then tempered twice at the same temperature of 550°C to give a Rockwell hardness C scale HRC of 67.The cermet was then polished to a size of 8 x 12. ×4.8mm
A throw-away tip for a side cutter was manufactured. This throw-away chip, as well as a throw-away chip with the same dimensions as above, cut from commercially available SKH-9 types of high-speed steel manufactured by the melting method, were prepared using the ion plating method to achieve a Bitkers hardness of 2200 kg. /mm 2 and a thickness of 3 μm at 500° C. to produce inventive coated cutting chips 1 and comparison coated cutting chips 1. Therefore, when an indenter of a Vickers hardness tester was driven into the surface of these cutting chips with a load of 20 kg, peeling of the TiN layer was observed in the square indentation of the comparison coated cutting chip 1, whereas peeling of the TiN layer was observed in the square indentations of the comparative coated cutting chip 1. No peeling was observed on the coated cutting chips. In addition, for half of these cutting chips, the rake face is polished so that only the flank surface remains with a coating layer, and the chips that are not polished are cut using a side cutter. Work material: JIS / SNCM-8 ( A continuous steel cutting test was conducted on a round bar with hardness: H B 270) under the following conditions: cutting speed: 100 m/min, feed: 0.3 mm/rev・, depth of cut: 5 mm, and the amount of flank wear was measured. The tool life of each cutting tip was measured using the time when the value reached 0.3 mm as the tool life standard, and the results are shown in Table 1.

【表】 実施例 2 各種金属の酸化物と炭素との混合物を水素で共
還元する公知の方法によつて製造された、Cr:
4.0%、V:3.0%、Mo:8.0%、Co:10%、C:
0.85%およびFe+不可避不純物:残り、からなる
組成を有する(以上重量%)平均粒径:3.0μmの
ハイス粉末、同3μmおよび同6.2μmのTiN粉末、
同2.0μmのTiC0.1N0.9粉末、同2.0μmのVC粉末、
同1.8μmの(V0.9Zr0.1)C粉末、同2.1μmの
(V0.95、Hf0.05)C粉末、同2.0μmの(V0.9
Nb0.1)C粉末、同1.5μmの(V0.95、Ta0.05)C
粉末、同1.3μmの(V0.8、W0.2)C粉末、同1.5μ
mの(V0.7、Ma0.3)C粉末および同1.3μmの
(V0.8、Cr0.2)C粉末を用意し、これら原料粉末
をそれぞれ所定の配合組成に配合し、ボールミル
にて24時間湿式混合粉砕し、乾燥した後、プレス
圧力2.0ton/mm2にてプレス成形して圧粉体とし、
ついで真空中、温度:1280℃に1時間保持する条
件で各圧粉体を焼結した後、さらにこれらに1000
気圧のアルゴン中、温度:1250℃に保持する条件
のHIP処理を施すことによつて、第2表に示され
るような成分組成を有するサーメツト部材を製造
し、引続いてこれらに温度:1250℃の焼入れおよ
び同540℃の焼戻しを施した後、雰囲気ガスを
種々変化させた500℃におけるイオンプレーテイ
ング法によつて、同じく第2表に示される組成と
平均層厚をもつた表面被覆層を形成させることに
よつてJIS.SNMN432の形状をもつた表面被覆サ
ーメツト部材としての本発明被覆切削チツプ2〜
11および比較被覆切削チツプ2〜7をそれぞれ製
造した。なお、比較被覆切削チツプ2〜7は、い
ずもサーメツト(基体)部材の構成成分のうちの
いずれかの成分含有量または分散相のチタン化合
物粒子D1の平均粒径、または被覆相の層厚がこ
の発明の範囲から外れたもの(いずれも第2表中
に※印で示す)である。 つぎに、この結果得られた切削チツプについて
実施例1と同一条件下で切削試験を実施して、そ
れぞれの工具寿命を評価するとともに、サーメツ
ト部材の抵抗力を測定し、これらの結果を第2表
に示した。 実施例 3 各種金属の酸化物と炭素との混合物を水素で共
[Table] Example 2 Cr produced by a known method of co-reducing a mixture of various metal oxides and carbon with hydrogen:
4.0%, V: 3.0%, Mo: 8.0%, Co: 10%, C:
0.85% and Fe + unavoidable impurities: The remainder has a composition (more than weight %) of average particle size: 3.0 μm high speed steel powder, 3 μm and 6.2 μm TiN powder,
2.0 μm TiC 0.1 N 0.9 powder, 2.0 μm VC powder,
1.8 μm (V 0.9 Zr 0.1 ) C powder, 2.1 μm (V 0.95 , Hf 0.05 ) C powder, 2.0 μm (V 0.9 ,
Nb 0.1 ) C powder, 1.5 μm (V 0.95 , Ta 0.05 ) C
Powder, 1.3μm (V 0.8 , W 0.2 )C powder, 1.5μm
Prepare a (V 0.7 , Ma 0.3 ) C powder with a diameter of 1.3 μm and a (V 0.8 , Cr 0.2 ) C powder with a diameter of 1.3 μm, mix these raw powders into a predetermined composition, and wet-mix and grind them in a ball mill for 24 hours. After drying, it is press-molded at a press pressure of 2.0ton/ mm2 to form a green compact.
Next, each green compact was sintered in a vacuum at a temperature of 1280°C for 1 hour, and then sintered at a temperature of 1000°C.
Cermet members having the component compositions shown in Table 2 are manufactured by performing HIP treatment at a temperature of 1250°C in argon at atmospheric pressure, and then heated to 1250°C. After quenching and tempering at 540°C, a surface coating layer with the composition and average layer thickness shown in Table 2 was formed by ion plating at 500°C with various atmospheric gases. Coated cutting chips of the present invention as surface-coated cermet members having the shape of JIS.SNMN432 by forming them
No. 11 and comparative coated cutting chips 2-7 were prepared, respectively. Comparative coated cutting chips 2 to 7 are based on the content of any of the constituent components of the Izumo cermet (substrate) member, the average particle size of the titanium compound particles D1 in the dispersed phase, or the layer thickness of the coating phase. are outside the scope of this invention (all are indicated by * in Table 2). Next, a cutting test was conducted on the resulting cutting chips under the same conditions as in Example 1 to evaluate the tool life of each, and the resistance force of the cermet member was measured, and these results were used in a second test. Shown in the table. Example 3 Mixtures of various metal oxides and carbon are co-coated with hydrogen.

【表】 還元する公知の方法によつて製造された、Cr:
4.0%、V:3.0%、W:5.0%、Mo:5.0%、Co:
10%、Ni:1.0%、C:1.1%およびFe+不可避不
純物:残り、からなる組成(以上重量%)を有す
る平均粒径:3.0μmのハイス粉末85容量%、同
1.8μmのTiC0.4N0.6粉末5容量%および同2.0μm
のVC粉末10容量%の配合割合で、これら原料粉
末を配合した後、実施例1と同じ条件でサーメツ
トを製造した。 得られたサーメツト中における分散相の第一の
粒子D1、すなわちTiC0.4N0.6の組成を有する粒子
の含有量は5.2容量%であり、同第二の粒子D2、
すなわちVC粒子の含有量は10.2容量%であつた。 このサーメツトに実施例1と同じ条件の熱処理
を施して得たHRC硬さ65を有するサーメツト、並
びに比較の目的で、実施例1で使用したのと同一
のハイスから実施例1と同様な本発明被覆切削チ
ツプ12および比較被覆切削チツプ10を製造した。 ついで、これら切削チツプについて実施例1と
同じ切削試験を施して、その工具寿命を測定し
た。その結果を第3表に示す。
[Table] Cr produced by a known reduction method:
4.0%, V: 3.0%, W: 5.0%, Mo: 5.0%, Co:
10%, Ni: 1.0%, C: 1.1% and Fe + unavoidable impurities: the balance (weight%), average particle size: 3.0μm, high speed steel powder 85% by volume,
TiC 0.4 N 0.6 powder 5% by volume of 1.8μm and 2.0μm
After blending these raw powders at a blending ratio of 10% by volume of VC powder, a cermet was produced under the same conditions as in Example 1. The content of the first particles D1 of the dispersed phase in the obtained cermet, that is, particles having a composition of TiC 0.4 N 0.6 , was 5.2% by volume, and the content of the second particles D2,
That is, the content of VC particles was 10.2% by volume. A cermet with an HRC hardness of 65 was obtained by subjecting this cermet to heat treatment under the same conditions as in Example 1, and for comparison purposes, a cermet similar to that in Example 1 was prepared from the same high speed steel as used in Example 1. An inventive coated cutting tip 12 and a comparative coated cutting tip 10 were manufactured. These cutting chips were then subjected to the same cutting test as in Example 1 to measure the tool life. The results are shown in Table 3.

【表】 〔発明の効果〕 実施例の結果によると、この発明のサーメツト
部材はTiNおよび/またはTiCxNy粒子を含むた
めにチタン化合物からなる硬質被覆層をその表面
に強固に付着できるとともに(実施例1)、上記
チタン化合物粒子の粒度を小さくすることによつ
て、サーメツト部材の靭性を低下させることなく
(第2表の比較被覆切削チツプ5と本発明被覆切
削チツプ2〜11を参照)これらチタン化合物粒子
の含有量を増大させ、もつて基体自体の耐摩耗性
を向上させることができたので、表面被覆サーメ
ツト部材の工具寿命を著しく延長できた(第1表
〜第3表)ことがわかる。 上述のように、この発明の表面被覆サーメツト
部材は、すぐれた耐摩耗性と耐剥離性を備えてい
るために工具寿命が著しく改善され、したがつて
切削工具および耐摩耗工具として用いた場合、長
期に亘つてすぐれた切削性能を安定に維持するこ
とができるという、産業上すぐれた効果を発揮す
るものである。
[Table] [Effects of the Invention] According to the results of the Examples, the cermet member of the present invention contains TiN and/or TiCxNy particles, so that a hard coating layer made of a titanium compound can be firmly attached to the surface of the cermet member (Example). 1) By reducing the particle size of the titanium compound particles, these titanium It can be seen that by increasing the content of compound particles and improving the wear resistance of the base itself, the tool life of surface-coated cermet members was significantly extended (Tables 1 to 3). . As mentioned above, the surface-coated cermet member of the present invention has excellent wear resistance and peeling resistance, so the tool life is significantly improved, and therefore, when used as a cutting tool and a wear-resistant tool, It exhibits an excellent industrial effect in that excellent cutting performance can be stably maintained over a long period of time.

Claims (1)

【特許請求の範囲】 1 平均粒径:5μm以下の窒化チタンおよび
TiCxNy(ただしx<y)のうちの1種または2
種の粒子である第一の粒子:D1および同5μm以
下の炭化バナジウムおよび(Vx、My)C(ただ
しMはTi、Zr、Hf、Nb、Ta、Cr、Mo、Wのう
ちから選ばれた1種または2種以上の金属であ
り、かつx>y)のうちの1種または2種の粒子
である第二の粒子:D2からなる分散相と、 Cr:3.5〜6%、W+Mo:4〜20%、V:3〜
6%、CoまたはCo+Ni(ただしNi/Co+Ni:3
%以下):2〜15%、C:0.5〜2.0%、Fe+不可
避不純物:残り、からなる組成を有する(以下重
量%)、焼入れおよび焼戻しの熱処理を受けたマ
ルテンサイト型組織を有する結合相、とからなる
サーメツトであつて、そのD1、D2および結合相
に関する組成が、D1:5〜20容量%、D2:5〜
30容量%および結合相:残り、である前記サーメ
ツトを基体とし、 その基体表面にチタン、一窒化二チタン、窒化
チタンおよびTiCxNy(ただしx<y)のうちの、
いずれか1種からなる単一層(ただしチタンの場
合は除く)、またはいずれか2種以上からなる複
合層、あるいはこれらの単一層と複合層とを各1
層以上組合せた多重層からなるビツカース硬さ
Hv:2000Kg/mm2以上を有する厚み:1〜10μmの
超硬質被覆層を設けてなる、切削工具および耐摩
耗工具用表面被覆サーメツト部材。
[Claims] 1. Titanium nitride with an average particle size of 5 μm or less and
One or two of TiCxNy (x<y)
First particles, which are seed particles: D1 and vanadium carbide of 5 μm or less and (Vx, My)C (where M is selected from Ti, Zr, Hf, Nb, Ta, Cr, Mo, and W) A dispersed phase consisting of second particles: D2, which are one or more metals and are one or two particles of x>y), Cr: 3.5 to 6%, W + Mo: 4 ~20%, V:3~
6%, Co or Co+Ni (however, Ni/Co+Ni: 3
% or less): 2 to 15%, C: 0.5 to 2.0%, Fe + unavoidable impurities: the remainder (hereinafter referred to as weight %), a binder phase having a martensitic structure that has undergone heat treatment of quenching and tempering, A cermet consisting of D1, D2 and a binder phase whose composition is D1: 5-20% by volume, D2: 5-20% by volume.
The cermet with 30% by volume and the remaining binder phase is used as a base, and on the surface of the base, titanium, dititanium mononitride, titanium nitride, and TiCxNy (where x<y) are applied.
A single layer consisting of one of these types (excluding the case of titanium), a composite layer consisting of two or more of these types, or one single layer and one composite layer each.
Bitker's hardness consisting of multiple layers combined
A surface-coated cermet member for cutting tools and wear-resistant tools, which is provided with an ultra-hard coating layer having an Hv of 2000 Kg/mm 2 or more and a thickness of 1 to 10 μm.
JP59217539A 1984-10-17 1984-10-17 Surface coated cermet member for cutting tool and wear resistant tool Granted JPS6196072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217539A JPS6196072A (en) 1984-10-17 1984-10-17 Surface coated cermet member for cutting tool and wear resistant tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217539A JPS6196072A (en) 1984-10-17 1984-10-17 Surface coated cermet member for cutting tool and wear resistant tool

Publications (2)

Publication Number Publication Date
JPS6196072A JPS6196072A (en) 1986-05-14
JPH0312144B2 true JPH0312144B2 (en) 1991-02-19

Family

ID=16705837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217539A Granted JPS6196072A (en) 1984-10-17 1984-10-17 Surface coated cermet member for cutting tool and wear resistant tool

Country Status (1)

Country Link
JP (1) JPS6196072A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699031B2 (en) * 1991-05-21 1998-01-19 株式会社不二越 Multi-layer coating tool
SE519235C2 (en) 1999-01-29 2003-02-04 Seco Tools Ab Tungsten carbide with durable binder phase

Also Published As

Publication number Publication date
JPS6196072A (en) 1986-05-14

Similar Documents

Publication Publication Date Title
EP1309733B1 (en) Chromium-containing cemented carbide body having a surface zone of binder enrichment
KR20040085050A (en) Sintered alloy having radient composition and method of producing the same
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
US6612787B1 (en) Chromium-containing cemented tungsten carbide coated cutting insert
JPH0222454A (en) Production of cutting tool made of surface-treated tungsten carbide-base sintered hard alloy
JP2893886B2 (en) Composite hard alloy material
JPH0312144B2 (en)
JPS61146763A (en) Manufacture of sintered body for cutting tool
JPS5941445A (en) Cubic boron nitride base high pressure sintered material for cutting tool
JPH0222455A (en) Surface-treated cermet for cutting tool
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JP2000336451A (en) Modified sintered alloy, coated sintered alloy, and their production
JPS58164750A (en) Material sintered under superhigh pressure for cutting tool
JP2982359B2 (en) Cemented carbide with excellent wear and fracture resistance
JPH0547633B2 (en)
JP2970201B2 (en) Surface coated Ti-based carbonitride-based cermet cutting tool with excellent adhesion of hard coating layer
JP2970199B2 (en) Surface-coated Ti-carbon boride based cermet cutting tool with excellent adhesion of hard coating layer
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPH024972A (en) Surface-coated cermet for cutting tool
JPH03131573A (en) Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JP2808715B2 (en) Coated cemented carbide
JPH07243024A (en) Cutting tool made of surface treated titanium carbonate type cermet, having hard coating layer excellent in adhesion
JP2003175407A (en) Cutting tip made of cubic boron nitride-group extra-high sintered material having excellent chipping resistance
JPH05269607A (en) Cutting tool made of surface covered sintered cermet
JPH0238559A (en) Cutting tool having excellent impact resistance made of surface coated tungsten carbide-base sintered hard alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term