JPH03120452A - Detection of corrosion of supporting plate for heat transfer tube of heat exchanger - Google Patents

Detection of corrosion of supporting plate for heat transfer tube of heat exchanger

Info

Publication number
JPH03120452A
JPH03120452A JP25771889A JP25771889A JPH03120452A JP H03120452 A JPH03120452 A JP H03120452A JP 25771889 A JP25771889 A JP 25771889A JP 25771889 A JP25771889 A JP 25771889A JP H03120452 A JPH03120452 A JP H03120452A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
supporting plate
heat exchanger
support plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25771889A
Other languages
Japanese (ja)
Inventor
Yoshimichi Yoshida
吉田 好道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25771889A priority Critical patent/JPH03120452A/en
Publication of JPH03120452A publication Critical patent/JPH03120452A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the length of the remaining sound part of a supporting plate by inserting a radioisotope ray source into a heat transfer tube, inserting a radiation measuring instrument into the other heat transfer tube adjacent to the heat transfer tube and measuring the radiations radiated by the ray source. CONSTITUTION:The radioisotope ray source 2 which is provided at the front end of a hose 4a for coupling and has further a probe 1 for low-frequency eddy current flaw detection via a hose 4b for coupling at the front end thereof is inserted through a water chamber 7 by the hose 4a into the heat transfer tube penetrating through the supporting plate 9 to be measured. A supporting plate signal is generated when the probe 1 arrives at the supporting plate region. The ray source 2 arrives at the center 9a of the supporting plate when the ray source is inserted by the spacing L1 between the ray source 2 and the probe 1 from this position. The radiation measuring instrument 3 constituted in the same manner is inserted into the adjacent heat transfer tube and is similarly positioned. There is a specified relation between the transmission rate of the radiations which are received by the measuring instrument 3 and radiated by the ray source 3 and the length of the remaining sound part of the supporting plate 9 and, therefore, the corroding part 10 at the center 9a can be detected by the radiations received by the measuring instrument 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放射線を用い比熱交換器伝熱管支持板腐食検
出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting corrosion of a heat exchanger tube support plate of a specific heat exchanger using radiation.

〔従来の技術〕[Conventional technology]

化学プラント等の各種プラントにおいては、同種類又は
異なつ7’C種類の流体間の熱交換を行う九め、第3図
に示ような熱交換器が使用されている。
In various plants such as chemical plants, a heat exchanger as shown in FIG. 3 is used to exchange heat between fluids of the same type or different types.

第3図において、11は熱交換器容器であシ、1次側流
体は入口ノズル12より水室7a、伝熱管ga、氷室7
b、伝熱管8b、水室7cを経由して出口ノズル15か
ら排出される。
In FIG. 3, 11 is a heat exchanger container, and the primary fluid is passed through an inlet nozzle 12 to a water chamber 7a, a heat exchanger tube ga, and an ice chamber 7.
b, is discharged from the outlet nozzle 15 via the heat exchanger tube 8b and the water chamber 7c.

一方2次側流体F12次側入ロノズル16から流入し伝
熱管8m、8b間の間隙を通シつつ熱交換を行って2次
側比ロノズル17から排出される。
On the other hand, the secondary fluid F1 flows in from the secondary side inlet nozzle 16, exchanges heat while passing through the gap between the heat transfer tubes 8m and 8b, and is discharged from the secondary side specific nozzle 17.

なお容器11の中央には氷室間および伝熱管群を2分す
る仕切板18があるので1次側流体も2次側流体も、は
ソ容器11の全長を往復し効果的に熱交換を行うことが
できる。
In addition, since there is a partition plate 18 in the center of the container 11 that divides the ice chamber and the heat transfer tube group into two, both the primary fluid and the secondary fluid reciprocate along the entire length of the container 11 for effective heat exchange. be able to.

一般的に熱交換器の伝熱管は長い場合が多く伝熱管に危
わみを生じ、最悪の場合伝熱管同士が接触し、その個所
での効果的な熱交換を不可能としたり、接触個所の損傷
が生じたりする。
Generally, the heat exchanger tubes in a heat exchanger are often long, which can cause danger to the heat exchanger tubes, and in the worst case, the heat exchanger tubes may come into contact with each other, making effective heat exchange impossible at that point, or damage may occur.

これを防ぐために種々の方法が採用されているが、第3
図および第4図に示すような管同士の接触を防止する支
持板9が一般に使用されている。
Various methods have been adopted to prevent this, but the third
A support plate 9 is commonly used to prevent the tubes from coming into contact with each other, as shown in FIGS.

ところがこの支持板9の材質や2次側流体の化学的性質
や温度によっては第5図に示すような伝熱管周囲の支持
板9に腐食部分10が発生することがある。
However, depending on the material of the support plate 9 and the chemical properties and temperature of the secondary fluid, corroded portions 10 may occur on the support plate 9 around the heat exchanger tubes as shown in FIG.

上記支持板9の腐食を検出するための検出方法は、渦電
流探傷用プローブ21t−管内部22に挿入し探傷する
ものであった。
The detection method for detecting the corrosion of the support plate 9 was to insert the eddy current probe 21t into the tube interior 22 for flaw detection.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の腐食検出方法は、渦電流探傷用プローブ21を用
い次場合、腐食部分10の検出は可能であるが、残存健
全部の長さTt−推定することは不可能であつ次。
The conventional corrosion detection method uses an eddy current flaw detection probe 21. In the following case, it is possible to detect the corroded part 10, but it is impossible to estimate the length Tt of the remaining healthy part.

この残存健全部の長さTが小さくなると(即ち腐食部分
が大きくなると)管が振動したJハ変形したり、損傷を
受けたりする友め、このTの長さを知り支持板9の取り
替えを行う必要があるが、渦電流探傷による場合にはこ
の要求を満すことができなかった。
If the length T of this remaining healthy part becomes smaller (that is, if the corroded part becomes larger), the pipe may be deformed or damaged due to vibration. Therefore, know the length of this T and replace the support plate 9. However, this requirement could not be met using eddy current testing.

本発明は上記課題を解決しようとするものである。The present invention aims to solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の熱交換器伝熱管支持板腐食検出方法は、位置決
め用渦電流探傷プローブを有しホースの先端に結合され
たラジオアイソトープ線源を測定対象の支持板を貫通ず
る伝熱管内に挿入し、同伝熱管に隣接する他の伝熱管内
に位置決め用渦電流探傷プローブを有しホースの先端に
結合され之放射線測定器を挿入し、上記ラジオアイソト
ープ線源が放射する放射線より上記放射線測定器が支持
板の残存鍵存健全部の長さ′t−測定することを特徴と
している。
A heat exchanger heat transfer tube support plate corrosion detection method of the present invention involves inserting a radioisotope source having a positioning eddy current probe and coupled to the tip of a hose into a heat transfer tube passing through a support plate to be measured. , a radiation measuring device having a positioning eddy current flaw detection probe coupled to the tip of the hose is inserted into another heat transfer tube adjacent to the same heat transfer tube, and the radiation measuring device is detected from the radiation emitted by the radioisotope source. is characterized in that the length 't- of the remaining key holding healthy portion of the support plate is measured.

〔作用〕[Effect]

上記において、まず、測定対象の支持板を貫通する伝熱
管内にホースによってラジオアイソトープ線源を挿入す
る。同ラジオアイソトープ線源が支持板の近傍に到達し
、渦醒流深傷プローブが支持板信号を発生すると、上記
ラジオアイソトープ線源の位1tを微調整し、支持板中
心と合致させる。
In the above, first, a radioisotope source is inserted through a hose into a heat exchanger tube that passes through a support plate to be measured. When the radioisotope source reaches the vicinity of the support plate and the vortex deep wound probe generates a support plate signal, the position 1t of the radioisotope source is finely adjusted to match the center of the support plate.

次に、上記ラジオアイソトープ線源が挿入された伝熱管
に隣接する伝熱管内に、放射線測定器を挿入する。同放
射線測定器も上記ラジオアイソトープ線源と同様、渦電
流探傷プローブが支持板信号を発生すると、その位置を
微調整し支持板中心と合致させる。
Next, a radiation measuring device is inserted into the heat exchanger tube adjacent to the heat exchanger tube into which the radioisotope source is inserted. Similar to the radioisotope radiation source described above, when the eddy current flaw detection probe generates a support plate signal, this radiation measuring instrument finely adjusts its position to match the center of the support plate.

上記ラジオアイソトープ線源と放射線測定器が支持板中
心に合致するとラジオアイソトープ線源が放射する放射
線測定器が受線する。
When the radioisotope source and the radiation measuring device coincide with the center of the support plate, the radiation measuring device receives the radiation emitted by the radioisotope source.

上記放射線測定器が受線する放射線の放射線透過量率と
支持板の残存健全部の長さとの間には一定の関係がある
ため、上記放射線測定器は、受線し友放射線の放射線透
過量率より支持板の残存健全部の長さを測定する。
Since there is a certain relationship between the radiation transmittance rate of the radiation received by the radiation measuring device and the length of the remaining healthy portion of the support plate, the radiation measuring device Measure the length of the remaining healthy part of the support plate from the ratio.

上記により、放射線を用いた熱交換器伝熱管回りの支持
板の腐食の程度を非破壊的に測定することが可能となっ
た几め、支持板の取替えの判断が容易となり、支持管の
腐食部分のふくらみによる伝熱管の損傷も防止できて、
熱交換器の品質維持が容易となった。
As a result of the above, it has become possible to non-destructively measure the degree of corrosion of the support plates around the heat exchanger heat transfer tubes using radiation, and it has become easier to decide whether to replace the support plates, and corrosion of the support tubes has become possible. It also prevents damage to the heat transfer tubes due to bulges.
It has become easier to maintain the quality of the heat exchanger.

〔実施例〕〔Example〕

本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be explained with reference to FIG.

第1図に示す本実施例の腐食検出方法は、支持板9によ
って支持され管端が管板5に挿入されてシール溶接6さ
れ水室7に連通する伝熱管8を有する熱交換器において
、結合用ホース4aの先端に設けられ更にその先に結合
用ホース4bを介して低周波渦電流探傷用プローブ1t
−有するラジオアイソトープ線源21に上記熱交換器の
伝熱管8に挿入し、結合用ホース4aの先端に設けられ
更にその先に結合用ホース4bを介して低周波渦直流深
傷用プローブ1を有する放射線計測器3ft上記ラジオ
アイソトープ線源2が挿入された伝熱−W8と隣接する
伝熱管8に挿入し、上記ラジオアイソトープ線源2が放
射する放射線を上記放射線計測器3が受線し支持板9の
健全部の長さを測定する。
The corrosion detection method of this embodiment shown in FIG. 1 is performed in a heat exchanger having a heat exchanger tube 8 supported by a support plate 9, the tube end of which is inserted into a tube plate 5, seal-welded 6, and communicates with a water chamber 7. A probe 1t for low frequency eddy current flaw detection is provided at the tip of the coupling hose 4a and further connected to the coupling hose 4b.
- The radio isotope source 21 is inserted into the heat exchanger tube 8 of the heat exchanger, and the low frequency vortex direct current deep wound probe 1 is installed at the tip of the coupling hose 4a and further connected to the probe 1 for deep wounds via the coupling hose 4b. A radiation measuring device 3 ft having the above-mentioned radioisotope source 2 is inserted into the heat transfer tube 8 adjacent to the heat transfer W8 into which the radioisotope source 2 is inserted, and the radiation measuring device 3 receives and supports the radiation emitted by the above-mentioned radioisotope source 2. Measure the length of the healthy portion of plate 9.

上記において、まず、結合用ホース4aKよって1次側
ノズル、水室7を経由し伝熱′#8にラジオ了イソート
ープ線源4−2を挿入する。同ラジオアイソトープ線源
÷2の先端には結合用ホース4bを介して低周波渦電流
損傷用プローブlが取1付けられており、このプローブ
1が支持板領域圧到達すると、支持板信号を発生する。
In the above, first, the radio isotope source 4-2 is inserted into the heat transfer '#8 via the primary side nozzle and the water chamber 7 using the connecting hose 4aK. A low frequency eddy current damage probe 1 is attached to the tip of the radioisotope source ÷ 2 via a coupling hose 4b, and when this probe 1 reaches the pressure in the support plate area, it generates a support plate signal. do.

上記ラジオアイソトープ線源2とプローブ10間隔はり
、のため、同プローブ1が支持板信号を発生した後、さ
らに長さり、だけ挿入するとラジオアイソトープ線源2
は支持板中心9aに到達する。この場合、ラジオアイソ
トープ線源2の伝熱管8への挿入と移動は、図示しない
熱交換器の外部に設置された挿入装置によって自動的に
、又手動によって行われる。
Because the distance between the radioisotope source 2 and the probe 1 is long, after the probe 1 generates the support plate signal, it becomes even longer, and when it is inserted, the radioisotope source 2
reaches the support plate center 9a. In this case, the insertion and movement of the radioisotope source 2 into the heat exchanger tube 8 is performed automatically or manually by an insertion device (not shown) installed outside the heat exchanger.

放射線測定器30位置ぎめもラジオアイソトープ線源2
と同様にして行われる。即ち、放射線測定器3を上記ラ
ジオアイソトープ線源2が挿入された伝熱管8と隣接す
る伝熱管8に結合用ホース4aによって挿入する。上記
放射線測定器3の先端には結合用ホース4bt?介して
低周波渦電流探傷用プローブ1が取付けられており、こ
9プローブ1も支持板領域に到達すると支持板信号全発
生する。そこで、ラジオアイソトープ線源2の場合と同
様、さらに長さり、だけ挿入すると放射線測定器3も支
持板中心9aに到達する。
Radiation measuring device 30 positioning radio isotope source 2
It is done in the same way. That is, the radiation measuring device 3 is inserted into the heat exchanger tube 8 adjacent to the heat exchanger tube 8 into which the radioisotope source 2 has been inserted, using the coupling hose 4a. Is there a coupling hose 4b at the tip of the radiation measuring device 3? A low frequency eddy current flaw detection probe 1 is attached through the probe 1, and when this probe 1 reaches the support plate region, a full support plate signal is generated. Therefore, as in the case of the radioisotope source 2, if the length is further inserted, the radiation measuring device 3 will also reach the support plate center 9a.

上記の操作により、ラジオアイソトープ線源2の中心と
放射線測定器3の中心と支持板9の中心9aとが一致す
る之め、放射線測定器3が受線する放射線により、支持
板中心9aにおける腐食部分10が検出できる。
By the above operation, the center of the radioisotope source 2, the center of the radiation measuring device 3, and the center 9a of the support plate 9 are aligned, so that the radiation received by the radiation measuring device 3 causes corrosion at the center 9a of the supporting plate. Part 10 can be detected.

上記腐食部分10/I′i、第1図においては均等な腐
食となっているが、通常は必ずしも均等でなく、第5図
に示すように不規則なものが多い。
Although the corroded portion 10/I'i shown in FIG. 1 is uniformly corroded, it is usually not always uniform and is often irregular as shown in FIG. 5.

本実施例においては、渦電流探傷用プローブ1による支
持板信号を基準として位置決めを行っている友め、支持
板9の厚さの任意の個所にラジオアイソトープ線源2と
測定器3を適正に対向させることができるので正しい計
測が可能となる。
In this embodiment, the radioisotope source 2 and the measuring instrument 3 are properly positioned at any part of the thickness of the support plate 9, which is positioned based on the support plate signal from the eddy current probe 1. Since they can be placed facing each other, accurate measurement is possible.

なお腐食部分10が存在しても、透過能の大きい低周波
を採用しているため、渦電流探傷用プローブIKよって
支持板領域の検出は可能である。
Even if the corroded portion 10 exists, the support plate region can be detected by the eddy current probe IK because low frequency waves with high penetrating power are used.

次に、放射線測定器3による支持板の残存健全部の長さ
の測定豐領について説明する。
Next, the method of measuring the length of the remaining healthy portion of the support plate using the radiation measuring device 3 will be explained.

上記支持板の残存健全部の長さと放射線透過量率との関
係を第2図に示す。
FIG. 2 shows the relationship between the length of the remaining healthy portion of the support plate and the radiation transmittance rate.

縦軸は放射線測定器3に到達する放射線透過線量率、横
軸は支持板の残存健全部の長さであり、右端0は支持板
の全長に渡って腐食して込る場合であり、左端T、は支
持板が全く腐食していない場合である。
The vertical axis is the radiation transmission dose rate reaching the radiation measuring device 3, and the horizontal axis is the length of the remaining healthy part of the support plate. T is the case where the support plate is not corroded at all.

また図中のS曲線は残存健全部(密度7.9)のみに対
する放射線透過線11′率の長さによる変化をMail
線は腐食部分(密度的4)が付加された場合の放射線透
過量率の変化を示している。
In addition, the S curve in the figure shows the change depending on the length of the radiographic line 11' ratio for only the remaining healthy part (density 7.9).
The line shows the change in the radiation transmission rate when a corroded part (density 4) is added.

実際の測定はSdh線を測定することは不可能でありこ
のM曲線を測定することとなる。
In actual measurement, it is impossible to measure the Sdh line, and this M curve must be measured.

上記支持板の残存健全部の長さの測定は、放射線測定器
3により放射線透過率を測定し、それを上記M曲線を用
いて残存健全部の長さに換算するものである。
The length of the remaining healthy portion of the support plate is measured by measuring the radiation transmittance using the radiation measuring device 3, and converting it into the length of the remaining healthy portion using the M curve.

なお本測定は必ずしも支持板中心で計る必要はなく、線
源中心と測定器中心とが一致しておれば、成る程度の上
下は許容できる。
Note that this measurement does not necessarily have to be performed at the center of the support plate, and as long as the center of the radiation source and the center of the measuring device coincide, a certain degree of vertical movement is acceptable.

上記により、放射線を用い念熱交換器伝熱管回りの支持
板の腐食の程度を非破壊的に測定することが可能となっ
たため、支持板の取替えの判断が容易となり、支持管の
腐食部分のふくらみにょる伝熱管の損傷も防止できて、
熱交換器の品質維持が容易となった。
As a result of the above, it has become possible to non-destructively measure the degree of corrosion of the support plates around the heat transfer tubes of a telethermal heat exchanger using radiation, making it easier to decide whether to replace the support plates and to eliminate the corrosion of the corroded parts of the support tubes. It also prevents damage to the bulging heat transfer tubes.
It has become easier to maintain the quality of the heat exchanger.

〔発明の効果〕〔Effect of the invention〕

本発明の熱交換器伝熱管支持板腐食検出方法は、位置決
め用渦電流探傷プローブを有するラジオアイソトープ線
源を測定対象の支持板を貫通する伝熱管内に挿入し、同
伝熱管に隣接する他の伝熱管内に位置決め用渦電流探傷
プローブを有する放射線側、定器を挿入し、上記放射線
測定器が受線した放射線より支持板の残存健全部の長さ
’t 11111定することによって、放射i1i!を
用いt熱交換器伝熱管回りの支持板の腐食の程度を非破
壊的に測定することが可能となったため、支持板の取替
え判断が容易となり、支持管の腐食部分のふくらみによ
る伝熱管の損傷も防止できて、熱交換器の品質維持が容
易となった。
A heat exchanger heat exchanger tube support plate corrosion detection method of the present invention involves inserting a radioisotope source having a positioning eddy current flaw detection probe into a heat exchanger tube that passes through a support plate to be measured, and Insert a measuring device on the radiation side with a positioning eddy current flaw detection probe into the heat transfer tube, and determine the length of the remaining healthy part of the support plate from the radiation received by the radiation measuring device. i1i! It has become possible to non-destructively measure the degree of corrosion on the support plates around the heat exchanger heat transfer tubes using t, making it easier to determine whether the support plates should be replaced. Damage was also prevented, making it easier to maintain the quality of the heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図は上記一実
施例における残存健全部の長さと放射線透過線着率の関
係図、第3図は熱交換器の構造説明図、第4図は熱交換
器の伝熱管支持構造説明図、第5図は従来の検出方法の
説明図である。 1・・・渦電流探傷用プローブ、 2・・・ラジオアイソトープ線源、 3・・・放射線計測器、 4a、4b・・・結合用ホース、  5・・・管板、6
・・・シール溶接、  7・・・水室、  8・・・伝
熱管、9・・・支持板、  9a・・・支持板中心、1
0・・・腐食部分。
FIG. 1 is an explanatory diagram of an embodiment of the present invention, FIG. 2 is a diagram of the relationship between the length of the remaining healthy part and the radiation transmission rate in the above-mentioned embodiment, and FIG. 3 is an explanatory diagram of the structure of a heat exchanger. FIG. 4 is an explanatory diagram of a heat exchanger tube support structure of a heat exchanger, and FIG. 5 is an explanatory diagram of a conventional detection method. DESCRIPTION OF SYMBOLS 1...Eddy current flaw detection probe, 2...Radioisotope source, 3...Radiation measuring instrument, 4a, 4b...Hose for coupling, 5...Tube plate, 6
... seal welding, 7 ... water chamber, 8 ... heat exchanger tube, 9 ... support plate, 9a ... support plate center, 1
0...corroded part.

Claims (1)

【特許請求の範囲】[Claims] 位置決め用渦電流探傷プローブを有しホースの先端に結
合されたラジオアイソトープ線源を測定対象の支持板を
貫通する伝熱管内に挿入し、同伝熱管に隣接する他の伝
熱管内に位置決め用渦電流探傷プローブを有しホースの
先端に結合された放射線測定器を挿入し、上記ラジオア
イソトープ線源が放射する放射線より上記放射線測定器
が支持板の残存健全部の長さを測定することを特徴とす
る熱交換器伝熱管支持板腐食検出方法。
A radioisotope source that has a positioning eddy current probe and is coupled to the end of the hose is inserted into a heat transfer tube that penetrates the support plate to be measured, and then placed into another heat transfer tube adjacent to the same heat transfer tube for positioning. A radiation measuring device having an eddy current flaw detection probe coupled to the tip of the hose is inserted, and the radiation measuring device measures the length of the remaining healthy portion of the support plate from the radiation emitted by the radioisotope source. Characteristic method for detecting corrosion of heat exchanger tube support plates.
JP25771889A 1989-10-04 1989-10-04 Detection of corrosion of supporting plate for heat transfer tube of heat exchanger Pending JPH03120452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25771889A JPH03120452A (en) 1989-10-04 1989-10-04 Detection of corrosion of supporting plate for heat transfer tube of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25771889A JPH03120452A (en) 1989-10-04 1989-10-04 Detection of corrosion of supporting plate for heat transfer tube of heat exchanger

Publications (1)

Publication Number Publication Date
JPH03120452A true JPH03120452A (en) 1991-05-22

Family

ID=17310141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25771889A Pending JPH03120452A (en) 1989-10-04 1989-10-04 Detection of corrosion of supporting plate for heat transfer tube of heat exchanger

Country Status (1)

Country Link
JP (1) JPH03120452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347416A (en) * 2003-05-21 2004-12-09 Cosmo Oil Co Ltd Nondestructive inspection method and nondestructive inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347416A (en) * 2003-05-21 2004-12-09 Cosmo Oil Co Ltd Nondestructive inspection method and nondestructive inspection apparatus

Similar Documents

Publication Publication Date Title
US4596133A (en) Apparatus and methods for measuring fluid flow parameters
US5179862A (en) Snap-on flow measurement system
US4696191A (en) Apparatus and method for void/particulate detection
US4856321A (en) Apparatus and methods for measuring fluid flow parameters
US4754650A (en) Apparatus and methods for measuring fluid flow parameters
US6595059B2 (en) Noninvasive detection of corrosion, MIC, and foreign objects in fluid-filled pipes using leaky guided ultrasonic waves
EP0536313A4 (en) Improved flow measurement system
JPS62115358A (en) Method and device for detecting bubble in liquid metal by ultrasonic wave
US4523478A (en) Sonic flow meter having improved flow straighteners
RU2612727C2 (en) Ultrasonic signal coupler
JPH07217813A (en) Acoustic radiation signal collector and acoustic radiation sensor
JPH03194421A (en) Venturi apparatus
JPH0569630U (en) Fluid flow measuring device
JPH03120452A (en) Detection of corrosion of supporting plate for heat transfer tube of heat exchanger
CN111683691B (en) Method and device for detecting a non-condensable portion of an at least partially gaseous medium
US2957987A (en) Method of determining metal thickness, scaling, and deposits in piping
JP2006308401A (en) Corrosive gas analysis sensor
JP2005091332A (en) Ultrasonic flowmeter
JPS55162032A (en) Tool used for test and the like at tube-tube plate welded area of heat exchanger
CN207300453U (en) A kind of ultrasonic heat meter pipe section
HUT76794A (en) Method and apparatus for detection of failed fuel rods
JP2898835B2 (en) Vortex flow meter
CN214038622U (en) Ground heating water mixing system with water leakage detection function
CN215573258U (en) Pulsation detection device of ultrasonic gas meter
SU1312426A1 (en) Method of determining dimensions of leak