JPH03120310A - Method for refining heat resisting alloy excellent in room temperature elongation characteristics - Google Patents

Method for refining heat resisting alloy excellent in room temperature elongation characteristics

Info

Publication number
JPH03120310A
JPH03120310A JP25960089A JP25960089A JPH03120310A JP H03120310 A JPH03120310 A JP H03120310A JP 25960089 A JP25960089 A JP 25960089A JP 25960089 A JP25960089 A JP 25960089A JP H03120310 A JPH03120310 A JP H03120310A
Authority
JP
Japan
Prior art keywords
refining
heat resisting
resisting alloy
room temperature
elongation characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25960089A
Other languages
Japanese (ja)
Inventor
Teruo Kamoto
葭本 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP25960089A priority Critical patent/JPH03120310A/en
Publication of JPH03120310A publication Critical patent/JPH03120310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To improve the yield of Ti addition, to reduce the contamination of molten metal with TiO2, and to produce a heat resisting alloy excellent in room temp. elongation characteristics by carrying out refining in a vacuum atmosphere at the time of refining an Ni-Cr-Co heat resisting alloy. CONSTITUTION:At the time of refining a heat resisting alloy having a composition consisting of, by weight, 0.3-0.6% C, <2.0% Si, <2.0% Mn, 22-32% Cr, 26-42% Ni, 9-26% Co, 3-16% W, 0.05-2.0% Ti, and the balance Fe, the atmosphere in the refining is controlled so that it is a vacuum atmosphere of <=5.0mmHg during the period between the initiation of refining and 30min at the longest after the initiation of refining, and further, the additive quantity of Ti is regulated to <=2.5%. Since the oxidation of Ti does not occur and deterioration in the cleanliness of the molten steel due to TiO2 is prevented because the refining is performed in vacuum, the heat resisting alloy excellent in room temp. elongation characteristics can be stably produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種工業用炉の炉内部品等に用いられる耐熱合
金の溶製法の改良に関し、より具体的には、1000℃
以上の高温に曝されてもクリープ破断強度が高く、耐酸
化性にすぐれると共に、室温伸び特性にすぐれた耐熱合
金を提供できる合金の溶製法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an improvement in the melting process for heat-resistant alloys used for internal parts of various industrial furnaces.
The present invention relates to a method for producing a heat-resistant alloy that has high creep rupture strength even when exposed to high temperatures, has excellent oxidation resistance, and has excellent elongation characteristics at room temperature.

[従来技術] 1000℃以上の高温で使用される工業用炉の炉内部品
等は、長時間の酸化作用を受け、また長時間の応力を受
けるため、これに使用される材料は高温における耐酸化
性にすぐれ、且つクリープ破断強度の高い特性が要求さ
れる。また、加熱・冷却の熱サイクルを受けるため、高
い熱疲労強度が要求される。これに適合する材料として
少量のTiを含有したニッケル・クロム・コバルト系耐
熱合金が提案されている(例えば、特開昭55−119
155参照)。
[Prior art] Furnace parts of industrial furnaces used at high temperatures of 1000°C or higher are subject to long-term oxidation and long-term stress, so the materials used for them must be resistant to acid at high temperatures. It is required to have excellent chemical properties and high creep rupture strength. Furthermore, since it is subjected to thermal cycles of heating and cooling, high thermal fatigue strength is required. A nickel-chromium-cobalt heat-resistant alloy containing a small amount of Ti has been proposed as a material compatible with this (for example, JP-A-55-119
155).

[発明が解決しようとする課題] 前記のニッケル・クロム・コバルト系の耐熱合金は、少
量のTIを添加することにより、熱疲労強度の改善を図
るものである。
[Problems to be Solved by the Invention] The above-mentioned nickel-chromium-cobalt-based heat-resistant alloy is intended to improve its thermal fatigue strength by adding a small amount of TI.

しかし、前記の合金は、溶接性、室温伸び特性に劣るた
め、材料の加工段階でしばしば破損する問題があった。
However, the above-mentioned alloys have poor weldability and room temperature elongation properties, so they often break during material processing.

前記の公知合金は、大気中にて溶解される。しかし、大
気溶解の場合、Tiを添加するとT1の一部がスラグ(
T iの酸化物、窒化物等)となるため、通常はその減
少分を見込んでTiが過剰に添加される。浮上するスラ
グは合金から排除されるが、浮上しないスラグは鋳造時
に巻き込まれて鋳造欠陥発生の原因となるばかりか、室
温伸び特性を低下させる原因にもなることがわかった。
The known alloys mentioned above are melted in the atmosphere. However, in the case of atmospheric dissolution, when Ti is added, part of T1 becomes slag (
(Ti oxide, nitride, etc.), therefore, an excessive amount of Ti is usually added in anticipation of the reduction. The slag that floats is removed from the alloy, but the slag that does not float gets caught up during casting and not only causes casting defects but also causes a decrease in room temperature elongation properties.

また、室温伸び特性と溶接性とは相関関係があって、室
温伸び特性を改善すれば溶接性もそれに対応して向上す
ることは知られている。
It is also known that there is a correlation between room temperature elongation properties and weldability, and that if room temperature elongation properties are improved, weldability will be correspondingly improved.

[発明の目的] 本発明は、ニッケル・クロム・コバルト系に少量のTi
を添加した耐熱合金の清浄度を高め、室温伸び特性を改
善することを目的とする。
[Object of the invention] The present invention is directed to the addition of a small amount of Ti to a nickel-chromium-cobalt system.
The purpose is to increase the cleanliness of heat-resistant alloys containing added chlorine and improve the room temperature elongation properties.

[課題を解決するための手段] 溶製段階におけるTfの過剰添加を防止するため、本発
明者は脱ガス溶解に着目した。脱ガス溶解によれば、次
の式に示す通り、脱酸反応が生じ、[0](溶鋼中の酸
素)は除去され、Tiと酸素との反応量は少なくなって
、Tfの添加量は大気溶解の場合に比べて軽減できると
考えられるからである。
[Means for Solving the Problems] In order to prevent excessive addition of Tf in the melting stage, the present inventors focused on degassing melting. According to degassing melting, as shown in the following equation, a deoxidizing reaction occurs, [0] (oxygen in molten steel) is removed, the amount of reaction between Ti and oxygen decreases, and the amount of Tf added is This is because it is thought that this can be reduced compared to the case of atmospheric dissolution.

[C]  +  [0] −Go(g)具体的には、重
量%にて、c :0.3〜0.6%、Si :2.0%
以下、Mn:2.0%以下、Cr:22〜32%、Nt
:26〜42%、co=9〜26%、W:3〜16%、
T i :0.05〜2%を含有し、残部Fe及び不可
避の不純物からなる耐熱合金の溶製段階において、溶製
開始から長くても30分間、5 、 On+mHg以下
の真空状態とし、溶製時に添加するTiは2.5%以下
とするものである。
[C] + [0] -Go (g) Specifically, in weight%, c: 0.3 to 0.6%, Si: 2.0%
Below, Mn: 2.0% or less, Cr: 22-32%, Nt
:26~42%, co=9~26%, W:3~16%,
In the melting stage of a heat-resistant alloy containing T i 0.05 to 2% and the balance consisting of Fe and unavoidable impurities, the melting process is carried out in a vacuum state of 5 On + mHg or less for at most 30 minutes from the start of the melting. The amount of Ti that is sometimes added is 2.5% or less.

[発明の効果] 溶製段階でTiを過剰に添加しなくともよいがら、Ti
酸化物のスラグは殆んど発生せず、溶製された合金の清
浄度がよく、合金の室温特性が改善される。また、10
00℃以上の高温の使用において、高いクリープ破断強
度とすぐれた耐酸化性を発揮する。
[Effect of the invention] Although it is not necessary to add excessive Ti in the melting stage, Ti
Almost no oxide slag is generated, the cleanliness of the melted alloy is good, and the room temperature properties of the alloy are improved. Also, 10
Demonstrates high creep rupture strength and excellent oxidation resistance when used at high temperatures of 00°C or higher.

従って、本発明の方法によった耐熱合金は、ハースロー
ル、ラジアントチューブ、トレイ等の工業用炉の炉内部
品に適用すると、加工性にすぐれ、高温で使用してもそ
の特性が充分に発揮される。
Therefore, when the heat-resistant alloy produced by the method of the present invention is applied to the inner parts of industrial furnaces such as hearth rolls, radiant tubes, and trays, it has excellent workability and its properties are fully exhibited even when used at high temperatures. be done.

[成分限定理由] 本発明の溶製法は前記成分組成の耐熱合金を対象とする
ものであって、該耐熱合金の成分組成の限定理由は次の
通りである。
[Reasons for Limiting Ingredients] The melting method of the present invention is directed to a heat-resistant alloy having the above-mentioned composition, and the reasons for limiting the composition of the heat-resistant alloy are as follows.

C: 0.3〜066% C含有量が0.3%に満たないとクリープ破断強度は著
しく低下する。一方、0.6%を超えて含有すると(:
r、W複炭化物だけが増加するため、これら元素の固溶
によって高温強度の確保が困難となるばかりか、耐酸化
性も著しく低下する。このため、Cは0.3〜0.6%
とする。なお、0.45〜0.55%の範囲内で含有す
るのがより好ましい。
C: 0.3 to 066% If the C content is less than 0.3%, the creep rupture strength will decrease significantly. On the other hand, if the content exceeds 0.6% (:
Since only r and W double carbides increase, solid solution of these elements not only makes it difficult to secure high temperature strength, but also significantly reduces oxidation resistance. Therefore, C is 0.3-0.6%
shall be. In addition, it is more preferable to contain within the range of 0.45 to 0.55%.

S i : 2.0%以下 Siは高温強度を損なう元素であり、その傾向は、10
00℃以上の高温で特に著しい。しかし、鋳造性を高め
る効果も有するため、2.0%以下の範囲で含有させる
Si: 2.0% or less Si is an element that impairs high temperature strength, and its tendency is
This is particularly noticeable at high temperatures of 00°C or higher. However, since it also has the effect of improving castability, it is contained within a range of 2.0% or less.

Mn:2.0%以下 Mnは耐酸化性及び高温強度を低下させるため、多量に
含むことは好ましくない。しかし、鋳物としての鋳造性
を高め、脱酸剤、脱硫剤としても有効である。従って、
耐酸化性及び高温強度を著しく低下させない範囲、即ち
2.0%以下の範囲で含有させる。
Mn: 2.0% or less Mn lowers oxidation resistance and high temperature strength, so it is not preferable to include it in a large amount. However, it improves the castability of castings and is also effective as a deoxidizing agent and desulfurizing agent. Therefore,
It is contained within a range that does not significantly reduce oxidation resistance and high temperature strength, that is, within a range of 2.0% or less.

Cr:2Z〜32% Crの含有量は22%に満たないと1000℃以上の高
温材料として充分な耐酸化性を具備することができない
。一方、含有量が32%を超えると鋳造割れの発生が著
しく増加すると共に高温強度も低下する。このため、含
有量は22〜32%に規定する。
Cr: 2Z to 32% If the Cr content is less than 22%, the material cannot have sufficient oxidation resistance as a high temperature material of 1000° C. or higher. On the other hand, if the content exceeds 32%, the occurrence of casting cracks will significantly increase and high temperature strength will also decrease. Therefore, the content is specified at 22 to 32%.

なお、24〜28%の範囲内で含有することがより好ま
しい。
In addition, it is more preferable to contain within the range of 24 to 28%.

Ni:26〜42% NiはWの存在下においてCrの酸化物と共存し、緻密
で且つ高温安定性にすぐれる耐酸化皮膜を形成し、基地
のオーステナイトを安定化させる作用を有する。また、
WSCrSCとの相互作用によって高温強度を確保する
作用を有する。このため、含有量は26〜42%に規定
する。なお、33〜37%の範囲内で含有することがよ
り好ましい。
Ni: 26-42% Ni coexists with Cr oxide in the presence of W, forms a dense oxidation-resistant film with excellent high-temperature stability, and has the effect of stabilizing the base austenite. Also,
It has the effect of ensuring high temperature strength through interaction with WSCrSC. Therefore, the content is specified to be 26 to 42%. In addition, it is more preferable to contain within the range of 33 to 37%.

CO:9〜26% COはCの溶解度を高め、クリープ破断強度を向上させ
る作用を有する。しかし、その含有量が9%に満たない
とその効果が認められない。また、26%を超えて含有
すると、クリープ破断強度は向上するが、耐酸化性を低
下させる。このため、含有量は9〜26%に規定する。
CO: 9-26% CO has the effect of increasing the solubility of C and improving creep rupture strength. However, if the content is less than 9%, no effect will be observed. Moreover, if the content exceeds 26%, the creep rupture strength will improve, but the oxidation resistance will decrease. Therefore, the content is defined as 9 to 26%.

なお、14〜16%の範囲内で含有することがより好ま
しい。
In addition, it is more preferable to contain within the range of 14 to 16%.

W:3〜16% Wはオーステナイト基地の固溶体強化及びCr。W: 3-16% W is solid solution reinforcement of austenite base and Cr.

W複炭化物の粒界析出による粒界強化を図る上で有効な
元素である。その含有量が3%より少なければ1000
℃以上の高温におけるクリープ破断強度の向上に顕著な
効果が認められない。一方、16%を超えて含有しても
、対応する強度向上効果が認められないばかりか、相対
的にC「やNfの量を低下させて耐酸化性の低下を招く
。このため、含有量は3〜16%に規定する。なお、4
.0〜6.0%の範囲内で含有することがより好ましい
It is an effective element for strengthening grain boundaries through grain boundary precipitation of W double carbides. 1000 if the content is less than 3%
No significant effect was observed in improving creep rupture strength at high temperatures of ℃ or higher. On the other hand, even if the content exceeds 16%, not only will no corresponding strength improvement effect be observed, but the content will also relatively reduce the amount of C and Nf, leading to a decrease in oxidation resistance. is defined as 3 to 16%.In addition, 4
.. The content is more preferably within the range of 0 to 6.0%.

T i : 0.05〜2% Tiは炭窒化物等の形成によって、クリープ破断強度等
の高温強度、耐熱衝撃性を高める。その含有量が0.0
5%に満たないとその効果を充分に発揮できない。含有
量の増加に伴ってその効果は増すが、含有量が2%を超
えると析出物の粗大化や酸化物系介在物量が増加し、却
って強度の低下を招来する。このため、含有量は0,0
5〜2%に規定する。
Ti: 0.05 to 2% Ti improves high temperature strength such as creep rupture strength and thermal shock resistance by forming carbonitrides and the like. Its content is 0.0
If it is less than 5%, its effect cannot be fully exhibited. The effect increases as the content increases, but if the content exceeds 2%, the precipitates become coarser and the amount of oxide-based inclusions increases, resulting in a decrease in strength. Therefore, the content is 0,0
It is specified at 5-2%.

上記合金の残部は、Fe及び不可避的に混入するP、S
その他の不純物元素からなる。なお、不純物は、この種
の合金で通常許容される範囲内であれば差し支えない。
The remainder of the above alloy is Fe and unavoidably mixed P and S.
Consists of other impurity elements. Note that impurities may be contained within the range normally allowed for this type of alloy.

[実施例] 次に、実施例によって本発明の脱ガス溶解法の効果を具
体的に説明する。
[Example] Next, the effects of the degassing and dissolving method of the present invention will be specifically explained using examples.

第1表は、脱ガス溶解によって溶製した耐熱合金(本発
明例)と、大気溶解によって溶製した耐熱合金(比較例
)の供試材の化学成分組成を示す。第2表はこれら供試
材の清浄度及び室温における機械的性質を調べたもので
ある。清浄度はJIS G 0555に基づいて求めた
。機械的性質は、JIS試験方法に基づいて、耐力、引
張強さ及び伸びを調べた。
Table 1 shows the chemical composition of test materials of a heat-resistant alloy produced by degassing melting (inventive example) and a heat-resistant alloy produced by atmospheric melting (comparative example). Table 2 shows the cleanliness and mechanical properties of these test materials at room temperature. The cleanliness was determined based on JIS G 0555. For mechanical properties, yield strength, tensile strength, and elongation were examined based on JIS test methods.

表中、Xα1及びNα2は比較例、Nα3及びNα4は
本発明例を夫々示す。なお、第1表において、特にTi
については、脱ガス溶解の効果を明瞭にするため、添加
量も併記した。
In the table, Xα1 and Nα2 represent comparative examples, and Nα3 and Nα4 represent inventive examples, respectively. In addition, in Table 1, especially Ti
In order to clarify the effect of degassing and dissolution, the amount added is also shown.

(以下余白) 第2表 第1表から明らかなように、Tiの添加量を着目すると
、本発明例の添加量は比較例に比べて著しく少なくて済
むことがわかる。即ち、本発明例の場合、合金に含有さ
せるべき量の約1.2倍程度の量を溶製段階で添加すれ
ばよいのに対し、比較例では約2倍添加する必要がある
。本発明が対象とする合金のTi含有量は最大2%であ
るから、特許請求の範囲に規定するごとく、最大2.5
%の添加によって目的を達成できる。
(The following is a blank space) As is clear from Table 2 and Table 1, when focusing on the amount of Ti added, it can be seen that the amount of Ti added in the examples of the present invention is significantly smaller than that in the comparative examples. That is, in the case of the present invention example, it is sufficient to add about 1.2 times the amount that should be contained in the alloy at the melting stage, whereas in the comparative example, it is necessary to add about twice the amount. Since the Ti content of the alloy targeted by the present invention is at most 2%, as defined in the claims, the Ti content is at most 2.5%.
The purpose can be achieved by adding %.

第2表から明らかなように、Ti添加量の削減効果とし
て、合金の清浄度と伸び特性が著しく改善されているこ
とが立証される。即ち、本発明例の清浄度は0.05〜
0.06%であるのに対し、比較例の清浄度は0.15
〜0.17%である。また、本発明例の伸びは1O08
〜11.1%であるのに対し、比較例の伸びは4.4〜
5.1%である。
As is clear from Table 2, it is proved that the cleanliness and elongation properties of the alloy are significantly improved as a result of reducing the amount of Ti added. That is, the cleanliness of the present invention example is 0.05~
The cleanliness of the comparative example was 0.15, while it was 0.06%.
~0.17%. Moreover, the elongation of the present invention example is 1O08
~11.1%, while the elongation of the comparative example was ~4.4%.
It is 5.1%.

溶製開始後、少なくとも約15分間、長くとも約30分
間、5.0mmHg以下の真空状態で溶製した場合、鋳
造時の雰囲気が、真空、Arガス又は大気の何れの雰囲
気であっても、鋳造品の品質に差がないことも判明した
。これは、−旦脱ガスされた溶湯は、出鋼後から鋳造ま
での間の吸収ガス量に影響されないことを示している。
When melting is performed in a vacuum state of 5.0 mmHg or less for at least about 15 minutes and at most about 30 minutes after the start of melting, regardless of whether the atmosphere during casting is vacuum, Ar gas, or air, It was also found that there was no difference in the quality of the cast products. This indicates that the molten metal, once degassed, is not affected by the amount of gas absorbed during the period from tapping to casting.

Claims (1)

【特許請求の範囲】[Claims] (1)重量%にて、C:0.3〜0.6%、Si:2.
0%以下、Mn:2.0%以下、Cr:22〜32%、
Ni:26〜42%、Co:9〜26%、W:3〜16
%、Ti:0.05〜2%を含有し、残部Fe及び不可
避の不純物からなる耐熱合金の溶製法において、溶製開
始から長くても30分間、5.0mmHg以下の真空状
態とし、溶製時に添加するTiを2.5%以下とするこ
とを特徴とする、室温伸び特性にすぐれた耐熱合金の溶
製法。
(1) In weight%, C: 0.3 to 0.6%, Si: 2.
0% or less, Mn: 2.0% or less, Cr: 22 to 32%,
Ni: 26-42%, Co: 9-26%, W: 3-16
%, Ti: 0.05 to 2%, and the balance is Fe and unavoidable impurities. A method for producing a heat-resistant alloy with excellent room temperature elongation properties, characterized by adding at least 2.5% of Ti.
JP25960089A 1989-10-03 1989-10-03 Method for refining heat resisting alloy excellent in room temperature elongation characteristics Pending JPH03120310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25960089A JPH03120310A (en) 1989-10-03 1989-10-03 Method for refining heat resisting alloy excellent in room temperature elongation characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25960089A JPH03120310A (en) 1989-10-03 1989-10-03 Method for refining heat resisting alloy excellent in room temperature elongation characteristics

Publications (1)

Publication Number Publication Date
JPH03120310A true JPH03120310A (en) 1991-05-22

Family

ID=17336352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25960089A Pending JPH03120310A (en) 1989-10-03 1989-10-03 Method for refining heat resisting alloy excellent in room temperature elongation characteristics

Country Status (1)

Country Link
JP (1) JPH03120310A (en)

Similar Documents

Publication Publication Date Title
US4834808A (en) Producing a weldable, ferritic stainless steel strip
KR100613943B1 (en) AGE-HARDENABLE, CORROSION RESISTANT Ni-Cr-Mo ALLOYS
US6280540B1 (en) Copper-containing Ni-Cr-Mo alloys
JPH02200756A (en) High strength heat resisting steel excellent in workability
JP2818195B2 (en) Nickel-based chromium alloy, resistant to sulfuric acid and oxidation
KR100788533B1 (en) Ni-Cr-Mo-Cu ALLOYS RESISTANT TO SULFURIC ACID AND WET PROCESS PHOSPHORIC ACID
JPS63312940A (en) High nickel-chromium alloy
JPH0346535B2 (en)
JPH02267240A (en) Heat-resistant alloy
JPH0776721A (en) Heat treatment of heat resisting cast alloy
JPH03120310A (en) Method for refining heat resisting alloy excellent in room temperature elongation characteristics
JP2003138334A (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPH03120338A (en) Heat-resistant alloy having excellent room temperature elongation property and its refining method
JPH07103447B2 (en) High purity heat resistant steel
JPS6221860B2 (en)
JP2000192205A (en) Heat resistant alloy excellent in oxidation resistance
JPS609848A (en) Heat resistant co alloy
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JP2002173720A (en) Ni BASED ALLOY EXCELLENT IN HOT WORKABILITY
JPS60165341A (en) Ultra-high heat resistant alloy excellent in room temperature extensibility
JP2963594B2 (en) High chromium ferritic heat resistant alloy steel
JP2000204448A (en) Nickel - iron - chromium alloy having ductility
JPS6126751A (en) Superheat resistant alloy having superior elongation characteristic at room temperature
JP3016614B2 (en) Manufacturing method of high toughness heat-resistant steel