JPH03118403A - Probe of scanning tunneling microscope - Google Patents

Probe of scanning tunneling microscope

Info

Publication number
JPH03118403A
JPH03118403A JP25545589A JP25545589A JPH03118403A JP H03118403 A JPH03118403 A JP H03118403A JP 25545589 A JP25545589 A JP 25545589A JP 25545589 A JP25545589 A JP 25545589A JP H03118403 A JPH03118403 A JP H03118403A
Authority
JP
Japan
Prior art keywords
probe
tip
base material
sample
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25545589A
Other languages
Japanese (ja)
Inventor
Kozo Taira
平 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25545589A priority Critical patent/JPH03118403A/en
Publication of JPH03118403A publication Critical patent/JPH03118403A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correctly measure the roughness of a sample by forming a conductive thin film at least at a part of an end of a probe to allow a tunnelling current to run between the probe and the surface of the sample. CONSTITUTION:A thin protrusion 2 is formed at an end of a base 1 of a probe. The protrusion is formed by using a scanning electron microscope and left for 10-20 minutes while the focus of the microscope is met. At this time, the beam size is made minimum and the magnification of the microscope is set to be 20-50K. Since the thin electron beam is continuously irradiated to one point at the end of the probe, the protrusion 2 is formed on the base 1. Thereafter, a conductive film (Au film) 3 is coated on the base 1 and protrusion 2 through sputtering. By using the probe with this structure, a tunnelling current flowing between a specimen and the end of the probe when a bias voltage is impressed to the probe can be detected through the conductive thin film. The surface of the specimen can be monitored by controlling the value of the tunnelling current.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、走査型トンネル顕微鏡の探針の改良に関し
、特に試料の表面形状又は表面粗さ等を観察する走査型
トンネル顕微鏡の探針に関する。
Detailed Description of the Invention [Purpose of the Invention (Industrial Application Field) This invention relates to the improvement of a probe for a scanning tunneling microscope, and in particular to a scanning tunneling microscope for observing the surface shape or surface roughness of a sample. Concerning the probe of a microscope.

(従来の技術) 周知のごとく、走査型トンネル顕微鏡(3cannin
g  T unnel  M tcroscope 、
以下、rsTMJと略称する)は、探針を試料表面に1
0オングストロ一ム程度まで近づけ、バイアス電圧をか
けながら、試料表面を走査すると、探針と試料表面の距
離に対応して変化するトンネル電流が流れる現象を利用
し、試料表面を原子的尺度で観察できる顕微鏡であって
、第9図のごとき構成になっている。例えば駆動電圧源
70から供給される駆動電圧によって、試料8にバイア
ス電圧Bをかけながら、ピエゾ微動素子(X、Y、Z方
向に微動可能)52先端の探針10を試料面に近付け、
試料面との距離が一定値(約10オングストローム)に
達すると、一定のトンネル電流Tが流れる。そこで、そ
のトンネル電流値を一定に保持しつつ、探針で試料面上
を走査すれば、探針走査による試料表面の形状が、コン
ピュータ80により解析され、画像表示器90で観測で
きる。このSTMは近年、原子像を観察できる顕微鏡と
して開発が進んでいるが、原子像の観察だけでなくオン
グストロームオーダの解像度を有しているため、微細三
次元形状の測定装置としても注目されている。
(Prior art) As is well known, a scanning tunneling microscope (3 cannin
g Tunnel M tcroscope,
(hereinafter abbreviated as rsTMJ), the probe is placed on the sample surface once.
When the sample surface is scanned while approaching the tip to about 0 angstroms and applying a bias voltage, the sample surface can be observed on an atomic scale by utilizing the phenomenon in which a tunnel current flows, which changes depending on the distance between the tip and the sample surface. This microscope has the configuration shown in Figure 9. For example, while applying a bias voltage B to the sample 8 using a drive voltage supplied from the drive voltage source 70, the probe 10 at the tip of the piezo fine movement element (which can be moved finely in the X, Y, and Z directions) is brought close to the sample surface.
When the distance to the sample surface reaches a certain value (approximately 10 angstroms), a certain tunnel current T flows. Therefore, by scanning the sample surface with the probe while keeping the tunneling current value constant, the shape of the sample surface due to the probe scanning is analyzed by the computer 80 and can be observed on the image display 90. In recent years, this STM has been developed as a microscope that can observe atomic images, and because it has a resolution on the angstrom order, it is also attracting attention as a device for measuring minute three-dimensional shapes. .

また、近年、大容量メモリとして開発されている光ディ
スクの表面には、情報信号に対応してO01μm程度の
深さ、ビット幅0.4μm及び一定のピット長をもつ複
数のビットが形成されて情報トラックを形成している。
In addition, on the surface of optical disks that have been developed as large-capacity memories in recent years, multiple bits with a depth of about 01 μm, a bit width of 0.4 μm, and a constant pit length are formed in response to information signals. forming a track.

このビットは、ビット幅の僅かな変化が、再生信号に大
きく影響を与えるにもかかわらず、これまで正確にビッ
トの表面形状や断面形状を測定する手段がなかった。
Despite the fact that a slight change in the bit width has a large effect on the reproduced signal, there has been no means to accurately measure the surface shape or cross-sectional shape of the bit.

しかし、上述したSTMが開発された結果、オングスト
ローム・オーダの解像度を有する性能のため、光ディス
クの表面形状、断面形状等の測定に期待がもたれている
。従来のSTM用探針は、その先端の曲率半径が通常5
0nmよりは小さいが、必ずしも小さくはなく、頂角も
広いため、光デイスク表面のビットの形状を探針で正確
に検出することができない。例えば光デイスク表面に深
さhのビット5を有する試料面4上を、第10図に示す
ように探針10で図中左から右方へ走査すると、探針1
0の移動する軌跡6がこのときに観察されるビット断面
形状7を示す。しかし、ビット5の孔径よりも、探針1
0の外径が大きいから、試料面4上のビット5中に十分
入り榛′むことができず、ビット5の真の断面形状7を
測定することができない。
However, as a result of the development of the above-mentioned STM, expectations are high for measuring the surface shape, cross-sectional shape, etc. of optical disks because of its performance with resolution on the angstrom order. Conventional STM probes usually have a radius of curvature of 5
Although it is smaller than 0 nm, it is not necessarily small and the apex angle is wide, making it impossible to accurately detect the shape of the bit on the surface of the optical disk with a probe. For example, when a sample surface 4 having a bit 5 of depth h on the optical disk surface is scanned with a probe 10 from left to right in the figure as shown in FIG.
A moving locus 6 of 0 indicates the cross-sectional shape 7 of the bit observed at this time. However, the tip 1 is smaller than the hole diameter of the bit 5.
Since the outer diameter of the bit 0 is large, it cannot fully penetrate into the bit 5 on the sample surface 4, and the true cross-sectional shape 7 of the bit 5 cannot be measured.

また、STMの探針は、タングステン(W)材製の電解
研摩針が用いられ、探針の先端は径が0゜1μm1頂角
20度程度のものが用いられている。
Further, as the STM probe, an electrolytically polished needle made of tungsten (W) material is used, and the tip of the probe has a diameter of about 0.1 μm and an apex angle of about 20 degrees.

(発明が解決しようとする課題) ところが、上述したタングステン材製の電解研摩針は、
常に同一形状の針を作成することが困難である。しかも
、大気中ではタングステン材は酸化して、先端形状がく
ずれる傾向がある。そのために、大気中で安定な白金(
Pt )などの貴金属をSTM探針の材料に取り入れる
こともあるが、電解研摩が困難である。
(Problem to be solved by the invention) However, the above-mentioned electrolytic polishing needle made of tungsten material
It is difficult to always create needles with the same shape. Moreover, in the atmosphere, tungsten material tends to oxidize and lose its tip shape. For this purpose, platinum (
Noble metals such as Pt (Pt) are sometimes incorporated into STM probe materials, but electrolytic polishing is difficult.

そのために、切削により加工成形しているが先端形状が
非対称となり、タングステン材製のような鋭い先端部を
もつSTMの探針を作成することは困難であった。
For this reason, although the tip is shaped by cutting, the shape of the tip becomes asymmetrical, making it difficult to create an STM probe with a sharp tip such as one made of tungsten material.

一方、先端形状が鋭いSTM針の作成方法として電子ビ
ーム照射によって探針を成長させる方法がある。これは
真空中で一点に電子ビームを照射させることにより、真
空チャンバー内に存在するカーボンなどのコンタミネー
ションが熱や帯電などの影響で一点に集中し、時間とと
もに照射部に成長してくる現象を利用したものである。
On the other hand, as a method for producing an STM needle with a sharp tip shape, there is a method of growing the probe by electron beam irradiation. This is because by irradiating a single point with an electron beam in a vacuum, contaminants such as carbon present in the vacuum chamber are concentrated at one point due to the effects of heat and charging, and over time they grow in the irradiated area. It was used.

この方法によれば、十分に絞り込んだ荷電粒子ビーム例
えば電子ビームによると、探針直径は0゜1μ−以下、
先端曲率半径は0.01μ−以下、長さ数μmの円柱状
の探針を作ることが可能である。
According to this method, when using a sufficiently narrowed charged particle beam, such as an electron beam, the probe diameter is less than 0°1μ.
It is possible to make a cylindrical probe with a tip radius of curvature of 0.01 μm or less and a length of several μm.

しかし、このようにして作成したSTMの探針は、基材
自体の抵抗が大きい場合には、探針を通して試料との間
のトンネル電流を検出することが難かしくなり、試料表
面の形状観察を正確に行うことが難かしくなる傾向があ
る。
However, with the STM probe created in this way, if the resistance of the base material itself is large, it becomes difficult to detect the tunneling current between the probe and the sample, making it difficult to observe the shape of the sample surface. It tends to be difficult to do accurately.

以上の事情に鑑み、この発明はSTMの探針作成上の難
点を除去し試料の三次元形状測定の粗さの測定を正確に
行いうるSTMの探針を提供しようとするものである。
In view of the above circumstances, it is an object of the present invention to provide an STM probe that can eliminate the difficulties in producing an STM probe and accurately measure the roughness of a three-dimensional shape of a sample.

[発明の構成] (課題を解決するための手段) 以上の課題を解決するために、この発明のSTMの探針
の基本構成は、第6図ないし第8図に示すように、探針
10の先端部の少なくとも一部に、探針と被検試料面4
問にトンネル電流が流れるように導電性WJ膜3を形成
してなることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the basic structure of the STM probe of the present invention is as shown in FIGS. 6 to 8. At least a part of the tip of the probe and the sample surface 4
It is characterized in that a conductive WJ film 3 is formed so that a tunnel current flows through the film.

(作用) 以上のように構成されているから、本発明のSTMの探
針を使用すると、探針にバイアス電圧の印加時に被検試
料と探針先端との間に流れるトンネル電流は、導電性薄
膜を通して検知することができ、トンネル電流値をコン
トロールして試料面を観察することができる。
(Function) Since the STM probe of the present invention is configured as described above, when a bias voltage is applied to the probe, the tunnel current flowing between the test sample and the tip of the probe is caused by the conductivity. It can be detected through a thin film, and the sample surface can be observed by controlling the tunnel current value.

(実施例) つぎに、図面を参照しながらこの発明にががるSTMの
探針の実施例について説明する。
(Example) Next, an example of the STM probe according to the present invention will be described with reference to the drawings.

第1図は本発明の走査型トンネル顕微鏡の探針の作製に
用いた走査型電子顕微鏡(以下rsEMJと略称づる)
の概略構成図である。図中100はチャンバであり、こ
のチャンバ100の上には電子光学鏡筒20が設置され
ている。チャンバ100内にはX、Y方向の移動及び傾
斜が可能な試料台11が配置され、この試料台11に探
針基材(針体)2が取付けられている。電子光学鏡筒2
0は、電子銃21.コンデンサレンズ22.偏向コイル
23及び対物レンズ24等から構成されており、鏡筒2
0により集束された電子ビーム25は前記探針基材1の
表面に照射されるものとなっている。
Figure 1 shows a scanning electron microscope (hereinafter abbreviated as rsEMJ) used to fabricate the probe of the scanning tunneling microscope of the present invention.
FIG. In the figure, 100 is a chamber, and an electron optical lens barrel 20 is installed above this chamber 100. A sample stage 11 that can move and tilt in the X and Y directions is arranged in the chamber 100, and a probe base material (needle body) 2 is attached to this sample stage 11. Electron optical lens barrel 2
0 is the electron gun 21. Condenser lens 22. It consists of a deflection coil 23, an objective lens 24, etc., and a lens barrel 2.
The electron beam 25 focused by 0 is irradiated onto the surface of the probe base material 1.

チャンバ100内には、ターゲットからの2次電子を検
出する電子検出器13が設置されており、この検出器1
3の検出信号は増幅器14を介してCRTl 5に供給
される。一方、偏向コイル23には走査用電源18から
倍率可変のための抵抗17を介して電流が供給されてい
る。また、この電流はCRTl5の偏向コイル16にも
供給されている。そして、ビーム走査による2次電子情
報はCRTl5に表示され、その表示がカメラ19によ
り撮像されるものとなっている。
An electron detector 13 is installed in the chamber 100 to detect secondary electrons from the target.
The detection signal of 3 is supplied to the CRTl 5 via an amplifier 14. On the other hand, current is supplied to the deflection coil 23 from a scanning power source 18 via a resistor 17 for varying magnification. This current is also supplied to the deflection coil 16 of the CRT15. The secondary electron information obtained by the beam scanning is displayed on the CRT 15, and the display is imaged by the camera 19.

なお、第1図の基本的な構成は周知のSEMと同様であ
るが、この装置では特に、チャンバ100の側壁にガス
を導入しているためガス導入口10aが設けられている
。このガス導入口10aからは、探針を生成づるための
原料ガスが導入され、チャンバ100内のガスは排気口
10bから排気されるものとなっている。
The basic configuration shown in FIG. 1 is the same as that of a well-known SEM, but in this device, gas is introduced into the side wall of the chamber 100, so a gas inlet 10a is provided. A raw material gas for producing a probe is introduced through the gas inlet 10a, and the gas inside the chamber 100 is exhausted through the exhaust port 10b.

次に、このような装置を用いたSTM用探針の製造方法
について説明する。まず、機械研磨或いは電界研磨した
細線を探針基材1とし、これをSEMの試料台11に例
えば45゛傾けて取付け、SEMで観察しなから探針基
材1の先端頂部を捜し出す。試料台11を傾けて、探針
基材1の軸と電子ビームが一致するように位置合わせし
、電子ビーム25の径を適度に絞って焦点合わせを行い
照射する。これにより探針基材1の先端部には、第5図
に示す如く、電子ビーム25の径と略等価な線形の針状
物質(EBD探針)30が形成される。EBD探針30
の形状は探針基材1の種類(例えば導電性物質や絶縁体
)には依存しておらず、電子ビームの径によって決定さ
れる。EBD探針30の成長は、電子ビームの照射時間
が長いほど高いものとなるが、その成長率は照射時間に
比例するものではない。例えば、15分間連続照射した
EBD探針と、5分間隔でトータルで15分間照射した
EBD探針とを比較すると、分割照射の方が熱的問題等
を解除できるため、その成長率は高い。
Next, a method for manufacturing an STM probe using such an apparatus will be described. First, a mechanically polished or electropolished thin wire is used as the probe base material 1, and this is mounted on the sample stage 11 of the SEM at an angle of 45 degrees, for example, and the top of the tip of the probe base material 1 is searched for while observing with the SEM. The sample stage 11 is tilted to align the axis of the probe base material 1 and the electron beam, and the diameter of the electron beam 25 is appropriately narrowed down to focus and irradiate. As a result, a linear needle-like substance (EBD probe) 30 having a diameter substantially equivalent to the diameter of the electron beam 25 is formed at the tip of the probe base material 1, as shown in FIG. EBD probe 30
The shape of the probe base material 1 does not depend on the type of the probe base material 1 (for example, a conductive material or an insulator), but is determined by the diameter of the electron beam. The growth of the EBD probe 30 increases as the electron beam irradiation time increases, but the growth rate is not proportional to the irradiation time. For example, when comparing an EBD probe that is continuously irradiated for 15 minutes and an EBD probe that is irradiated at 5-minute intervals for a total of 15 minutes, the growth rate is higher with divided irradiation because thermal problems can be resolved.

EBD探針30を用いてSTMで拘束スキャンした後の
SEM観察において、END探針30の形状に変化が見
られないことから、EBD探針30と探針基材1との密
着性が高いことを確認している。EBD探針30の成分
は、通常(例えば、常温、真空度10’Torr程度)
の場合、含有量のほとんどは炭素(C)である。従って
、導電性であるため、そのままSTM用探針として使用
することができる。また、SEMのチャンバ100にガ
ス導入口11aを設け、原料ガスを導入することによっ
て、種々のEBD探針を作ることが可能となる。探針基
材或いはEBD探針が絶縁物質で構成されている場合で
も、金属(例えば金)を蒸着することによって導電性と
することができる。
In SEM observation after restraint scanning with STM using the EBD probe 30, no change in the shape of the END probe 30 is observed, which indicates that the adhesion between the EBD probe 30 and the probe base material 1 is high. has been confirmed. The components of the EBD probe 30 are normally (for example, room temperature, vacuum level of about 10' Torr)
In the case of , most of the content is carbon (C). Therefore, since it is conductive, it can be used as it is as an STM probe. Further, by providing a gas inlet 11a in the chamber 100 of the SEM and introducing a raw material gas, it becomes possible to make various EBD probes. Even when the probe base material or the EBD probe is made of an insulating material, it can be made conductive by vapor depositing a metal (for example, gold).

また、この場合は密着性も向上することができる。Moreover, in this case, adhesion can also be improved.

ここで、電子ビーム25の焦点を探針基材1の表面に合
わせると、探針台近傍の電荷密度分布は第3図に示す如
くなる。EBD探針30の先端の曲率を小さくするには
、電子ビームの焦点を最終的に形成されEBD探針の先
端に合わせておけばよい。
Here, when the electron beam 25 is focused on the surface of the probe base material 1, the charge density distribution near the probe base becomes as shown in FIG. In order to reduce the curvature of the tip of the EBD probe 30, it is sufficient to focus the electron beam on the tip of the EBD probe that is finally formed.

また、より細い探針を作成するには、電子ビームの焦点
を成長時のEBD探針の先端に合わせて移動させればよ
い。なお、電子ビームの焦点を可変にする代わりに第4
図に示すごとき試料ホルダーを用いてもよい。この試料
ホルダーは、基台41上に圧電素子42を介して移動台
43を設けたものであり、移動台43上に前記試料台1
1を載せた状態で、圧電素子42を駆動することにより
、試料台11を微小ステップで上下動することができる
Furthermore, in order to create a thinner probe, the focus of the electron beam may be moved to match the tip of the EBD probe during growth. Note that instead of making the focus of the electron beam variable, a fourth
A sample holder as shown in the figure may also be used. This sample holder has a movable stage 43 provided on a base 41 via a piezoelectric element 42, and the sample stage 1 is mounted on the movable stage 43.
By driving the piezoelectric element 42 with the specimen 1 placed thereon, the specimen stage 11 can be moved up and down in minute steps.

一方、EBD探針が87M探針−として作用するために
は、EBD探針30の先端が探針基材1を含めた探針全
体の頂点になっていなければならない。そのためには、
EBD探針30を探針基材1となる細線の真の頂点に成
長させることが必要である。しかし、通常の機械研磨探
針を探針基材1として用いる場合、1μm以下のスケー
ルでは先端の起伏が大きく、SEM観察によって真の頂
点を見出すことは必ずしも容易ではない。このため、む
しろ探針基材1となる細線の先端を平坦にすることが探
針作成上は望ましい。
On the other hand, in order for the EBD probe to function as an 87M probe, the tip of the EBD probe 30 must be the apex of the entire probe including the probe base material 1. for that purpose,
It is necessary to grow the EBD probe 30 at the true apex of the thin wire that will become the probe base material 1. However, when an ordinary mechanically polished probe is used as the probe base material 1, the tip has large undulations on a scale of 1 μm or less, and it is not necessarily easy to find the true apex by SEM observation. For this reason, it is preferable to make the tip of the thin wire serving as the probe base material 1 flat in terms of probe production.

探針基材を平坦化するには、例えば第5図に示すように
づればよい。すなわち、機械研磨を施した先端の尖鋭な
探針基材1を探針ホルダー51に取付け、圧電素子(微
動用)52及びマイクロメーターヘッド(粗動用)52
等を用いて、探針基材1の先端部を対向壁54に軽く押
付ける。探針基材1と対向壁54との距離は、例えばS
TMのトンネル電流検出器55やSCaMの容量検出器
56等で検出する。このとき、対向壁54の表面は平坦
で且つ探針基材1よりも固い材質と覆る。
In order to flatten the probe base material, it is possible to flatten it as shown in FIG. 5, for example. That is, a mechanically polished probe base material 1 with a sharp tip is attached to a probe holder 51, and a piezoelectric element (for fine movement) 52 and a micrometer head (for coarse movement) 52 are attached.
Lightly press the tip of the probe base material 1 against the opposing wall 54 using a tool or the like. The distance between the probe base material 1 and the opposing wall 54 is, for example, S
Detection is performed using a TM tunnel current detector 55, an SCaM capacitance detector 56, or the like. At this time, the surface of the opposing wall 54 is flat and covered with a material harder than the probe base material 1.

例えば、探針基材1が白金のときは、対向壁54として
クロムの蒸着面を使用覆る。このような衝突法を用いる
ことによって、探針基材1の先端部を容易に平坦化する
ことが可能となる。
For example, when the probe base material 1 is made of platinum, a chromium vapor-deposited surface is used as the opposing wall 54. By using such a collision method, the tip of the probe base material 1 can be easily flattened.

第6図はこの発明のSTMの探針の一実施例の構成を示
す要部断面図である。第6図中、1は探針基材であり、
通常、市販のpt−1r製切削研摩針が用いられる。こ
の探針基材は先端部が径0゜5〜1.0μmである。し
たがって光デイスク面の幅0.4μ1.深さ0.1μ■
のビットの凹凸断面形状を観察するには、先端頂角が広
がりすぎているため適当ではない。
FIG. 6 is a sectional view of essential parts showing the structure of an embodiment of the STM probe of the present invention. In Fig. 6, 1 is the probe base material;
Usually, a commercially available PT-1R cutting and polishing needle is used. The tip of this probe base material has a diameter of 0.5 to 1.0 μm. Therefore, the width of the optical disk surface is 0.4μ1. Depth 0.1μ■
It is not suitable for observing the uneven cross-sectional shape of the bit because the apex angle of the tip is too wide.

そのため、探針基材1の先端に細い突起2を形成させる
。このような突起2は、走査型電子顕微鏡を使用し、探
針基材1の先端部にビームサイズを最小にした状態で2
0〜50に倍の倍率で焦点を合せ、10〜20分間放置
する。このとき、細く絞り込まれた電子ビームが探針先
端の一点に照射され続けることになりこれにより突起部
2が探針基材1上に成長する。突起部2のサイズは探針
基材1へ照射される電子ビームサイズおよび倍率によっ
て異なるが、調整により直径1001!程度のものまで
自由に作成可能である。また、その長さは電子ビームの
照射時間によって制御でき、10分で1〜2μmの長さ
の円柱状に成長させることができる。これを走査型電子
顕微鏡より取り出し探針基材1及び突起部2全体に導電
性膜(金。
Therefore, a thin protrusion 2 is formed at the tip of the probe base material 1. Such a protrusion 2 is formed using a scanning electron microscope at the tip of the probe base material 1 with the beam size minimized.
Focus at 0-50x magnification and leave for 10-20 minutes. At this time, the finely focused electron beam continues to be irradiated onto one point at the tip of the probe, and as a result, the protrusion 2 grows on the probe base material 1. The size of the protrusion 2 varies depending on the size of the electron beam irradiated onto the probe base material 1 and the magnification, but can be adjusted to a diameter of 1001 mm. You can freely create up to a certain level. Moreover, the length can be controlled by the electron beam irradiation time, and can be grown into a columnar shape with a length of 1 to 2 μm in 10 minutes. This was taken out using a scanning electron microscope and covered with a conductive film (gold) over the entire probe base material 1 and protrusion 2.

Au膜)3をスパッタ法によりコーティングする。An Au film) 3 is coated by sputtering.

第7図は、この発明のSTMの探針の他の実施例の構成
を示す要部断面図である。
FIG. 7 is a cross-sectional view of essential parts showing the structure of another embodiment of the STM probe of the present invention.

第7図のSTM探針針は探針基材1の先端突起部2の一
側面のみに導電性膜III 3をコーティングした以外
は、第6図のSTM探針と同様にして作成される。第7
図に示すSTM探針は、導電性薄膜3 (Au )が突
起部2の一側面のみにコーティングすると、探針先端の
曲率半径は突起部2全体にコーティングするよりも、広
がりの影響を低減できる。したがって、探針10先端で
のトンネル電流は、この導電性薄膜3を通って検知する
ことが必要である。
The STM probe shown in FIG. 7 is produced in the same manner as the STM probe shown in FIG. 6, except that only one side of the tip projection 2 of the probe base material 1 is coated with the conductive film III 3. 7th
In the STM probe shown in the figure, when the conductive thin film 3 (Au) is coated on only one side of the protrusion 2, the radius of curvature of the tip of the probe is less affected by the spread than when the entire protrusion 2 is coated. . Therefore, it is necessary to detect the tunnel current at the tip of the probe 10 through the conductive thin film 3.

導電性薄膜3の膜厚は、探針先端から探針基材1にかけ
て導電性がとれればよく、通常200〜300オングス
トロ一ム程度で十分である。
The thickness of the conductive thin film 3 only needs to be conductive from the tip of the probe to the probe base 1, and a thickness of about 200 to 300 angstroms is usually sufficient.

第8図は、この発明にがかるSTMの探針を用いて光デ
ィスク(試料4)表面を観察したときの、測定方法を示
ず説明図である。
FIG. 8 is an explanatory diagram, without showing the measurement method, when the surface of the optical disk (sample 4) is observed using the STM probe according to the present invention.

導電性11vi3でコートされた探針基材上の突起2の
先端は光ディスクのビット5よりは十分に小ざい方法を
有するように形成されているので、ビット5の中を走査
することが可能であり、このときの探針先端の軌跡が断
面形状線6として観察することができる。これにより真
のビット断面形状7をほぼ正確に観察することが可能と
なる。
The tip of the protrusion 2 on the probe base material coated with conductive 11vi3 is formed to be sufficiently smaller than the bit 5 of the optical disk, so it is possible to scan inside the bit 5. The locus of the tip of the probe at this time can be observed as the cross-sectional shape line 6. This makes it possible to observe the true cross-sectional shape 7 of the bit almost accurately.

以上の実施例では、探針基材1としてpt−Ir合金を
用いた例について説明したが、このPt−1r合金の他
、白金(Pt )や金(Au)又はタングステン(W)
、及びこれらの金属の合金、さらには非1ift性のダ
イヤモンドやプラスチック等も用いることができる。
In the above embodiments, an example was explained in which a pt-Ir alloy was used as the probe base material 1, but in addition to this Pt-1r alloy, platinum (Pt), gold (Au), or tungsten (W) could be used.
, alloys of these metals, and non-ift diamond, plastic, etc. can also be used.

ただし、この場合、表面形状観察が十分に可能なほど探
針先端が鋭いか、電子ビーム照射により基材との@着に
問題なく、細い突起部が成長していくことができる材質
であることが必要である。
However, in this case, the tip of the probe must be sharp enough to allow observation of the surface shape, or the material must be able to grow thin protrusions without problems in adhering to the base material when irradiated with an electron beam. is necessary.

また、コーテイング材としての導電性薄膜はAllだけ
でなくPtやその合金などが可能である。
Furthermore, the conductive thin film as a coating material can be made of not only Al but also Pt and alloys thereof.

ざらにCuやFeなとの導電性薄膜も用いることができ
る。成膜法としてもスパッタ法以外、熱蒸着法、電子ビ
ーム加熱蒸着法、化学気相成長法なども可能であり、ざ
らにレーザビーム照射加熱成膜法の技術を応用して形成
した導電膜を用いることもできる。
A conductive thin film of Cu or Fe may also be used. In addition to sputtering, film formation methods such as thermal evaporation, electron beam heating evaporation, and chemical vapor deposition are also possible. It can also be used.

[発明の効果] 以上説明から明らかなごとく、この発明にかかるSTM
の探針は、探針の先端部の少なくとも一部に探針と被検
試料面間にトンネル電流を流れるように導電性薄膜を形
成しているから、被検試料と探針先端との間に流れるト
ンネル電流を、導電性薄膜を通して検知することができ
る。また、トンネル電流値をコントロールして、試料面
の走査トンネル顕微1を観察を行うことができる。
[Effect of the invention] As is clear from the above explanation, the STM according to this invention
The probe has a conductive thin film formed on at least a portion of the tip of the probe so that a tunnel current flows between the probe and the surface of the sample to be tested, so there is no connection between the sample to be sampled and the tip of the probe. The tunnel current flowing through the conductive thin film can be detected through the conductive thin film. Further, by controlling the tunnel current value, it is possible to observe the sample surface using the scanning tunneling microscope 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の走査型顕微鏡の探針の製造に使用した
SEMを示J概略構成図、第2図は探針製造状態を示す
側面図、第3図はビームの焦点と電v1密度分布との関
係を示す模式図、第4図は試料ホルダーの概略構成を示
す断面図、第5図は6釦先端の平坦化装置を示す概略図
、第6図は、この発明のSTMの探針の一実施例の構成
を示す要部断面図、第7図はこの発明のSTMの探針の
他の実施例の構成を示す要部断面図、第8図はこの発明
にかがるSTMの探針による被検試料面の走査測定方法
の態様を説明図、第9図はSTMの概略構成図、第10
図は従来のSTM探針による被検試料面の走査測定の態
様を示づ説明図である。 1・・・探針基材 2・・・探針基材上の突起部 3・・・導電性薄膜 5・・・光デイスク表面のピット孔 7・・・ビット断面形状 10・・・探針(探針基材及び突起) 11・・・試料台
Figure 1 shows a schematic configuration diagram of the SEM used to manufacture the probe of the scanning microscope of the present invention, Figure 2 is a side view showing the state of manufacturing the probe, and Figure 3 shows the beam focus and electric v1 density. Fig. 4 is a schematic diagram showing the relationship with the distribution, Fig. 4 is a sectional view showing the schematic configuration of the sample holder, Fig. 5 is a schematic diagram showing the flattening device at the tip of the six buttons, and Fig. 6 is the STM probe of the present invention. FIG. 7 is a cross-sectional view of the main part showing the structure of one embodiment of the probe of the present invention, FIG. 8 is a cross-sectional view of the main part showing the structure of another embodiment of the STM probe of the present invention, and FIG. Fig. 9 is a schematic diagram of the STM configuration;
The figure is an explanatory diagram showing a mode of scanning measurement of a test sample surface using a conventional STM probe. 1... Probe base material 2... Protrusion on the probe base material 3... Conductive thin film 5... Pit hole on the surface of the optical disk 7... Bit cross-sectional shape 10... Probe (Tip base material and protrusion) 11... Sample stage

Claims (1)

【特許請求の範囲】[Claims] 探針の先端部の少なくとも一部に、探針と被検試料面間
にトンネル電流が流れるように導電性薄膜を形成して成
ることを特徴とする走査型トンネル顕微鏡の探針。
A probe for a scanning tunneling microscope, characterized in that a conductive thin film is formed on at least a portion of the tip of the probe so that a tunneling current flows between the probe and the surface of a sample to be examined.
JP25545589A 1989-09-30 1989-09-30 Probe of scanning tunneling microscope Pending JPH03118403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25545589A JPH03118403A (en) 1989-09-30 1989-09-30 Probe of scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25545589A JPH03118403A (en) 1989-09-30 1989-09-30 Probe of scanning tunneling microscope

Publications (1)

Publication Number Publication Date
JPH03118403A true JPH03118403A (en) 1991-05-21

Family

ID=17279008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25545589A Pending JPH03118403A (en) 1989-09-30 1989-09-30 Probe of scanning tunneling microscope

Country Status (1)

Country Link
JP (1) JPH03118403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209103A (en) * 1990-01-11 1991-09-12 Canon Inc Minute probe and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209103A (en) * 1990-01-11 1991-09-12 Canon Inc Minute probe and its production

Similar Documents

Publication Publication Date Title
JP4688400B2 (en) Probe for scanning probe microscope
US6546788B2 (en) Nanotomography
US7337656B2 (en) Surface characteristic analysis apparatus
US4868396A (en) Cell and substrate for electrochemical STM studies
US20030066962A1 (en) Scanning atom probe
JP4656761B2 (en) SPM cantilever
US6583412B2 (en) Scanning tunneling charge transfer microscope
JPH081382B2 (en) Nanometer-scale probe and manufacturing method thereof
US5986261A (en) Tapered structure suitable for microthermocouples microelectrodes, field emission tips and micromagnetic sensors with force sensing capabilities
US5375087A (en) Tunneling-stabilized magnetic reading and recording
US5245187A (en) Microtip, process for preparation thereof, surface-observing apparatus and information-treating apparatus employing the same
JP3266995B2 (en) Method and apparatus for observing and measuring conductive members
JPH03118403A (en) Probe of scanning tunneling microscope
JP2718748B2 (en) Manufacturing method of scanning microscope probe
US3447366A (en) Process of determining dimensions and properties of cutting edges of molecular dimensions
Bartolome et al. Imaging an optical disc by the combined use of scanning tunnelling microscopy and scanning electron microscopy
JP4858924B2 (en) Creating a probe for a scanning probe microscope
JPH07113634A (en) Probe for scanning probe microscope, manufacture thereof, recording reproducer using probe and fine machining device
JP3090295B2 (en) Needle tip shape measurement device, standard sample, and needle tip shape measurement method
Paul et al. Field ion microscopy for the characterization of scanning probes
EP0839383B1 (en) Tapered structure suitable for microthermocouples microelectrodes, field emission tips and micromagnetic sensors with force sensing capabilities
JPH0611335A (en) Cantilever with microchip for scanning microscope and manufacture of microchip
JPH09127139A (en) Manufacture of cantilever type minute probe and cantilever type minute probe
JP2789244B2 (en) Method of forming microprobe
JP2805232B2 (en) Micro probe and manufacturing method thereof