JPH03117900A - Receiver - Google Patents

Receiver

Info

Publication number
JPH03117900A
JPH03117900A JP1254771A JP25477189A JPH03117900A JP H03117900 A JPH03117900 A JP H03117900A JP 1254771 A JP1254771 A JP 1254771A JP 25477189 A JP25477189 A JP 25477189A JP H03117900 A JPH03117900 A JP H03117900A
Authority
JP
Japan
Prior art keywords
kalman filter
covariance
output
noise power
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1254771A
Other languages
Japanese (ja)
Inventor
Seiichi Yoneyama
米山 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1254771A priority Critical patent/JPH03117900A/en
Publication of JPH03117900A publication Critical patent/JPH03117900A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce acceleration carried on an airframe to improve hit precision by selecting an optimum covariance of optimum system noise and observation noise from a Kalman filter covariance table according to measurement noise power with the use of a noise measuring instrument to set in a Kalman filter calculation part to estimate a degree of optimum target addition to add to the output of a proportional navigation calculation part. CONSTITUTION:A noise power measuring instrument 18 measures noise power containing a guide signal which is the output of a FFT circuit 13. A Kalman filter calculation part 15 performs Kalman filter calculation by the use of covariance selected from a covariance table 19 to estimate target acceleration so as to add to the output of a proportional navigation calculation part 14. In a receiver, optimum covariance is selected from a Kalman filter covariance table 19 according to noise power measured with the use of a noise measuring instrument 18 to set in the Kalman filter calculation part 15. Acceleration compensation type proportional navigation is realized by adding an estimation target acceleration to the output of the proportional navigation calculation part 14 to reduce acceleration carried on an airframe so as to improve hit precision.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、飛翔体の誘導制御における受信装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a receiving device for guiding and controlling a flying object.

[従来の技術] 第2図は、従来の受信装置であり9図において、(1)
はアンテナ、(2)は、受信機の信号を混合する混合器
、(3)は9周波数弁別器、(4)は。
[Prior Art] Fig. 2 shows a conventional receiving device, and in Fig. 9, (1)
is an antenna, (2) is a mixer that mixes the receiver signal, (3) is a 9-frequency discriminator, and (4) is a 9-frequency discriminator.

周波数弁別器のフィルタリングをするフィルタ(5)は
9周波数捜索制御器、 (6a)は、タイミング弁別器
の電圧を供給する増幅器、(7)は2周波数捜索制御器
に入力するきよ歯状波を発生するきよ歯状波発生器、 
(6b)は1局部発振器の増幅器、(8)は、タイミン
グ捜索制御器、(9)は、タイミング弁別器、 (10
a) 、 (10b)は9位相復調器への受信信号を混
合する混合器、 (lla) 、 (llb)は2位相
復調器、 (12)は1局部発振器、 (13)は。
The filter (5) that filters the frequency discriminator is a 9-frequency search controller, (6a) is an amplifier that supplies the voltage of the timing discriminator, and (7) is the filter that filters the clean tooth wave input to the 2-frequency search controller. A clean tooth wave generator that generates
(6b) is a local oscillator amplifier, (8) is a timing search controller, (9) is a timing discriminator, (10) is a timing search controller, (9) is a timing discriminator, (10)
a), (10b) are mixers that mix the received signals to the 9-phase demodulator, (lla), (llb) are 2-phase demodulators, (12) is 1 local oscillator, (13) is.

ビデオ信号なFFTするFFT回路、 (141は。FFT circuit that performs FFT on video signals (141).

FFT回路の出力である誘導信号により比例航法計算を
行う比例航法計算部、 (15)は、目標加速度の推定
計算をするカルマンフィルタ計算部である。(16)は
、加速度コマンド出力より操舵装置への出力である舵角
コマンドを出力するオートパイロット計算部である。さ
らに(17)は、舵角コマンドより舵角出力をする操舵
装置である。
A proportional navigation calculation section (15) performs proportional navigation calculation using the guidance signal output from the FFT circuit. (15) is a Kalman filter calculation section that performs estimation calculation of the target acceleration. (16) is an autopilot calculation unit that outputs a steering angle command, which is an output to the steering device, based on the acceleration command output. Furthermore, (17) is a steering device that outputs a steering angle based on a steering angle command.

[発明が解決しようとする課題] 従来の受信装置は、目標の加速度を推定するのにカルマ
ンフィルタフィルタを用いており、その出力である目標
加速度を比例航法計算により出力した加速度コマンドを
加えていた。
[Problems to be Solved by the Invention] Conventional receiving devices use a Kalman filter to estimate target acceleration, and add an acceleration command that outputs the target acceleration, which is the output thereof, by proportional navigation calculation.

しかし、カルマンフィルタは、 (13)のFFT回路
の出力である誘導信号に含まれる外乱(ノイズ)によっ
て応答が変化するために必ずしも最適な加速度補償計算
を施せるとは、限らない。そのため、 (16)のオー
トパイロットに入力する加速度コマンドで発生する機体
の加速度が、最適値となっていないことがあった。
However, since the response of the Kalman filter changes due to the disturbance (noise) contained in the induction signal that is the output of the FFT circuit (13), it is not always possible to perform optimal acceleration compensation calculations. As a result, the acceleration of the aircraft generated by the acceleration command input to the autopilot in (16) was sometimes not at the optimal value.

この発明は、上記のような課題を解消するためになされ
たもので、カルマンフィルタによる目標加速度の推定を
最適値とし、従来の比例航法よりも機体にかかる加速度
が軽減され、命中精度も向上する。
This invention was made to solve the above-mentioned problems, and the estimation of the target acceleration using the Kalman filter is set to the optimum value, thereby reducing the acceleration applied to the aircraft compared to conventional proportional navigation, and improving the accuracy of the target.

[課題を解決するための手段] この発明に係る受信装置は、ノイズパワー計測器とカル
マンフィルタ共分散テーブルにより、カルマンフィルタ
計算部に最適な共分散分散を設定し、カルマンフィルタ
の応答を最適としたものである。以下カルマンフィルタ
アルゴリズムについて説明する。カルマンフィルタは、
入力観測値として、ミサイル−目標間の偏差(y責n)
)を用い。
[Means for Solving the Problems] A receiving device according to the present invention sets an optimal covariance variance in a Kalman filter calculation section using a noise power measuring device and a Kalman filter covariance table, and optimizes the response of the Kalman filter. be. The Kalman filter algorithm will be explained below. Kalman filter is
As an input observation value, the missile-target deviation (y responsibility n)
) using.

出力として、目標の推定加速度x3.を予測する。As output, the estimated acceleration of the target x3. Predict.

これを式に示すと以下の通りとなる。This can be expressed as the following equation.

x+p(n)=x+g(n−1)+ Z 、xzgfn
−1)+(z ”/2Hx3g(n−11−a&1(n
−1))X2. (n) =x*t (n−1) + 
テ4xst (n−1)−av (n−i) )xs 
p (n) ”X3g [n−1)x+gfn)□x+
p(n)+a (n) (y″(n)−X、 p(nl
)x、、(n)=x2.(nD(β(n)/τBy責n
)−xl、 (n) ’rxsg(n+・xsp(nD
(2・γ(n)/で2)(y″(n) −x 1. (
n) )a [n)=P+、(n)/(P+、(n)+
R)β(n)□P2p[n)/ (P+p(n)+Rl
’)’ (n)11/2)l’3p(n)/ (P+−
(n)+R)Pl−(n)□ (1−a (n)トPI
 p (n)pzg(n)= (1−a (n) ip
zp(n)P3g(n)= (1−a (n) 1P3
p(n)Pnr(n)”P4p(n)−β(nl ・P
2− (n)P5g(n)・Psp(nl−β(n) 
・P3− (nlpeg(n)=p、(n)−y (n
) ・Pl、(n)P+、(n)□P+rO+:”P2
gO”PagO”P4 t O+p□0+P6,0/2
+Qpzp(n)=p2rO+pagf)+p4gO+
(3/2)P、□0 +pa、 0 +QPsp (n
) =p3f() +PsfO+pag(1+QP4p
 (n) ”P4g O+2Psg O+2Pag 0
Pspfn)□Psr()+2Pag()+Qp、p(
n)=ps、0+q 但しP :推定誤差の共分散 R:観測雑音の共分散 Qニジステム雑音の共分散 0=(n−1) ここでQ及びRは、システム雑音の共分散、観測雑音の
共分散であり、フィルタの構成の際には、これらアプリ
オリ情報を必要としていた。この発明では、ノイズパワ
ー計測器を使用して、このアプリオリ情報の最適値を選
ぶようにしたものである。最適値の設定方法は、理論的
には、導出しにくいため、ノイズパワー計測器を使用し
て以下のように行う。
x+p(n)=x+g(n-1)+Z, xzgfn
-1)+(z ”/2Hx3g(n-11-a&1(n
-1))X2. (n) =x*t (n-1) +
Te4xst (n-1)-av (n-i) )xs
p (n) ”X3g [n-1)x+gfn)□x+
p(n)+a (n) (y″(n)−X, p(nl
)x, , (n)=x2. (nD(β(n)/τBy responsibilityn
)−xl, (n) 'rxsg(n+・xsp(nD
(2・γ(n)/2)(y″(n) −x 1.
n) )a [n)=P+, (n)/(P+, (n)+
R) β(n)□P2p[n)/ (P+p(n)+Rl
')'(n)11/2)l'3p(n)/ (P+-
(n)+R)Pl-(n)□ (1-a (n)toPI
p (n) pzg (n) = (1-a (n) ip
zp(n)P3g(n)= (1-a (n) 1P3
p(n)Pnr(n)”P4p(n)−β(nl ・P
2- (n)P5g(n)・Psp(nl-β(n)
・P3- (nlpeg(n)=p, (n)-y (n
) ・Pl, (n)P+, (n)□P+rO+:”P2
gO”PagO”P4 t O+p□0+P6,0/2
+Qpzp(n)=p2rO+pagf)+p4gO+
(3/2)P, □0 +pa, 0 +QPsp (n
) =p3f() +PsfO+pag(1+QP4p
(n) ”P4g O+2Psg O+2Pag 0
Pspfn)□Psr()+2Pag()+Qp,p(
n) = ps, 0+q where P: covariance of estimation error R: covariance of observation noise Q covariance of system noise 0 = (n-1) where Q and R are covariance of system noise, covariance of observation noise This is covariance, and this a priori information was required when configuring the filter. In this invention, a noise power measuring device is used to select the optimum value of this a priori information. The method for setting the optimum value is theoretically difficult to derive, so it is performed as follows using a noise power measuring instrument.

■、メモリに、受信機ノイズ、フェーディングノイズ、
レシーバ−ノイズのノイズスペクトラム強度のノミナル
値を設定してお(。
■, memory, receiver noise, fading noise,
Set the nominal value of the noise spectrum strength of the receiver noise (.

[Qのノミナル値] 2、図3に示したノイズのノミナル値におけるRのノミ
ナル値をシミュレーションにより最適応答となるように
確かめておき、その値を設定しておく。[Rのノミ太ル
値]3、ノイズパワー計測器で計測したノイズのスベク
トル密度を最小2乗法により、IOサンプルの平均をと
る。
[Nominal value of Q] 2. The nominal value of R at the nominal value of noise shown in FIG. 3 is confirmed by simulation so as to give an optimal response, and the value is set. [R's thickness value] 3. Calculate the average of the IO samples using the least squares method for the noise svector density measured by the noise power measuring device.

その平均値を、Qのノミナル値と比較し。Compare the average value with the nominal value of Q.

その偏差に重みをかけた値で、Rのノミナル値を変える
The nominal value of R is changed by the weighted value of the deviation.

以上の方法により、カルマンフィルタの応答を最適とす
ることができる。
By the above method, the response of the Kalman filter can be optimized.

[作用] この発明においては、ノイズパワー計測器で。[Effect] In this invention, with a noise power measuring device.

計測したノイズパワーにより、カルマンフィルタ共分散
テーブルから最適なシステム雑音及び観測雑音の最適な
共分散を選択して、カルマンフィルタ計算部に設定する
ことにより、最適な目標加速度を推定し、比例航法計算
部の出力に加えることにより1機体にかかる加速度を軽
減するとともに、命中精度が、向上するようにしたもの
である。
Based on the measured noise power, the optimal covariance of system noise and observation noise is selected from the Kalman filter covariance table and set in the Kalman filter calculation section, thereby estimating the optimal target acceleration and calculating the optimal covariance of the proportional navigation calculation section. By adding this to the output, the acceleration applied to each aircraft is reduced, and the accuracy of hitting is improved.

[実施例] 以下、この発明における実施例について説明する。[Example] Examples of the present invention will be described below.

第1図において、(1)〜(17)は、従来の受信装置
と同一である。(18)は、FFT回路(13)の出力
である誘導信号に含まれるノイズパワーを計測するノイ
ズパワー計測器、  (19)は、ノイズパワーにより
2選択される共分散テーブルを記憶しておく部分であり
、 (15)は、 (19)で選択された共分散により
、カルマンフィルタ計算を行う、カルマンフィルタ計算
部であり、ここで、目標加速度を推定し、比例航法計算
部(I4)の出力に加え合わせる。
In FIG. 1, (1) to (17) are the same as the conventional receiving device. (18) is a noise power measuring device that measures the noise power included in the induced signal that is the output of the FFT circuit (13), and (19) is a part that stores two covariance tables selected depending on the noise power. (15) is a Kalman filter calculation unit that performs Kalman filter calculation using the covariance selected in (19). Here, the target acceleration is estimated and added to the output of the proportional navigation calculation unit (I4). match.

次に動作について説明する。Next, the operation will be explained.

この受信装置では、  (18)のノイズ計測器で計測
したノイズパワーにより、 (19)のカルマンフィル
タ共分散テーブルで最適な共分散を選択し、 (15)
のカルマンフィルタ計算部に設定し、推定した目標加速
度を比例航法計算部の出力に加え合わせることにより、
加速度補償型比例航法を実現し2機体に加わる加速度を
軽減するとともに命中精度も向上する。
In this receiving device, the optimal covariance is selected using the Kalman filter covariance table (19) based on the noise power measured by the noise measuring device (18), and (15)
By setting it in the Kalman filter calculation section and adding the estimated target acceleration to the output of the proportional navigation calculation section,
It realizes acceleration-compensated proportional navigation, reduces the acceleration applied to the two aircraft, and improves accuracy.

[発明の効果] 以上のように、この発明によれば、ノイズパワー計測器
、カルマンフィルタ共分散テーブルで。
[Effects of the Invention] As described above, according to the present invention, a noise power measuring device and a Kalman filter covariance table can be used.

最適な共分散を選択し、カルマンフィルタ計算部で目標
加速度を計算し、比例航法計算部の出力に加えることで
、最適な加速度コマンドとし、オートパイロット計算部
へ人力することで9機体に加わる加速度を最小とすると
ともに、命中精度も向上することができる。
By selecting the optimal covariance, calculating the target acceleration in the Kalman filter calculation section, and adding it to the output of the proportional navigation calculation section, it becomes the optimal acceleration command, and by manually inputting it to the autopilot calculation section, the acceleration applied to the nine aircraft can be calculated. It is possible to minimize the damage and improve accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例による受信装置を示す図、
第2図は、従来の受信装置を示す図である。 図において、(1)は、アンテナ、(2)は、混合器、
(3)は周波数弁別器、(4)は、フィルタ。 (5)は1周波数捜索制御器、(6)は、増幅器。 (7)は、きよ歯状波発生器、(8)は、タイミング捜
索制御器、(9)は、タイミング弁別器、 [10)は
、混合器、 (11)は9位相復調器、 (12)は9
局部発振器、 (13)はFFT回路、 (14)は、
比例航法計算部、 (15)は、カルマンフィルタ計算
部、 (16)は、オートパイロット計算部、 (17
)は、操舵装置、 (18)は、ノイズパワー計測器、
 (19)は、カルマンフィルタ共分散テーブルである
。 なお9図中同一符号は、同一あるいは相当部分を示す。
FIG. 1 is a diagram showing a receiving device according to an embodiment of the present invention;
FIG. 2 is a diagram showing a conventional receiving device. In the figure, (1) is an antenna, (2) is a mixer,
(3) is a frequency discriminator, and (4) is a filter. (5) is a single frequency search controller, and (6) is an amplifier. (7) is a sharp tooth wave generator, (8) is a timing search controller, (9) is a timing discriminator, [10] is a mixer, (11) is a 9-phase demodulator, (12) is a ) is 9
Local oscillator, (13) is FFT circuit, (14) is
proportional navigation calculation section, (15) is Kalman filter calculation section, (16) is autopilot calculation section, (17
) is a steering device, (18) is a noise power measuring device,
(19) is the Kalman filter covariance table. Note that the same reference numerals in FIG. 9 indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] アンテナ、位相変調器、受信信号を位相変調するタイミ
ングを制御するためのタイミング弁別器、周波数変位を
復調するための周波数弁別器、フィルタ、周波数捜索制
御器、きよ歯状波発生器、タイミング弁別器により起動
され、増幅器のタイミングを制御するタイミング捜索制
御器、局部発振器、ビデオ信号をFFT処理するFFT
回路、その出力である誘導信号により比例航法計算を実
施する比例航法計算部、誘導信号のFFT出力により、
ノイズパワーを計測するノイズパワー計測器、計測した
ノイズパワーより、最適なカルマンフイルタの共分散を
選択するカルマンフイルタ共分散テーブル部、さらにそ
の最適な共分散を用いて、目標加速度の予測計算を実施
するカルマンフィルタ計算部、カルマンフィルタ計算部
の出力である目標加速度と、比例航法計算部の出力であ
る加速度コマンドを加え合わせた補償加速度コマンドに
より、舵角コマンドを出力するオートパイロット計算部
、舵角コマンドより舵角を出力する操舵装置を備えた受
信装置。
Antenna, phase modulator, timing discriminator for controlling the timing of phase modulating the received signal, frequency discriminator for demodulating frequency displacement, filter, frequency search controller, tooth-tooth wave generator, timing discriminator a timing search controller that controls the timing of the amplifier, a local oscillator, and an FFT that processes the video signal.
circuit, a proportional navigation calculation section that performs proportional navigation calculations using the guidance signal that is its output, and an FFT output of the guidance signal.
A noise power measuring device that measures noise power, a Kalman filter covariance table that selects the optimal Kalman filter covariance from the measured noise power, and a prediction calculation of the target acceleration using the optimal covariance. The autopilot calculation unit outputs the rudder angle command using the compensation acceleration command, which is the sum of the target acceleration output from the Kalman filter calculation unit and the acceleration command output from the proportional navigation calculation unit, and the rudder angle command. A receiving device equipped with a steering device that outputs a steering angle.
JP1254771A 1989-09-29 1989-09-29 Receiver Pending JPH03117900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254771A JPH03117900A (en) 1989-09-29 1989-09-29 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254771A JPH03117900A (en) 1989-09-29 1989-09-29 Receiver

Publications (1)

Publication Number Publication Date
JPH03117900A true JPH03117900A (en) 1991-05-20

Family

ID=17269658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254771A Pending JPH03117900A (en) 1989-09-29 1989-09-29 Receiver

Country Status (1)

Country Link
JP (1) JPH03117900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298738A (en) * 2007-06-04 2008-12-11 Mitsubishi Electric Corp Target-tracking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298738A (en) * 2007-06-04 2008-12-11 Mitsubishi Electric Corp Target-tracking device

Similar Documents

Publication Publication Date Title
US4416067A (en) Correction method and device for a magnetic field probe
JP4106370B2 (en) Quadrature modulation apparatus calibration method, quadrature modulation apparatus, and wireless terminal test apparatus
US6184638B1 (en) Control system for an induction motor
JP2003513260A (en) AC magnetic position measurement system with reduced error due to eddy current
JP2002164198A (en) Plasma generator by microwave
JP2769187B2 (en) Angular rotation position calculation system
US6584842B2 (en) Angular velocity sensor
CN100511038C (en) Decoupling a harmonic signal from a signal path
JPH05188125A (en) Method and apparatus for compensating for disturbance of magnetism in magnetic field
US8755467B2 (en) Method and circuit system for deciding a symbol upon reception of received symbols coupled with a quadrature signal pair
JPH03117900A (en) Receiver
US20040008800A1 (en) Methods and apparatus for delay free phase shifting in correcting PLL phase offset
US10782329B2 (en) Phase analysis circuit
US7251900B2 (en) Methods and systems utilizing intermediate frequencies to control multiple coriolis gyroscopes
RU2202102C2 (en) Procedure establishing positions of mobile objects and device for its realization
JPH05264292A (en) Position detecting device
JP3882311B2 (en) Flying object guidance control device
JP3212259B2 (en) Guidance control device
JPH06138199A (en) Guidance controller of flying object
JPH10160746A (en) Measuring apparatus for tidal flow
JPH0593782A (en) Metal detector
Yoon et al. Relative position estimation of moving distributed sources using the extended Kalman filter
JPS62144021A (en) Resolver detection apparatus
RU2236080C2 (en) Method and unit for detecting phase lockout of channels (alternatives), two-dimensional control method and system
JPH033424A (en) Receiver